首页 > 最新文献

Colloid and Polymer Science最新文献

英文 中文
Effect of functional groups of plasticizers on starch plasticization 增塑剂官能团对淀粉塑化的影响
IF 2.2 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-05-30 DOI: 10.1007/s00396-024-05272-9
Yanxue Chen, Ziyi Wang, Lexin Jia, Chaodan Niu, Ziyue Hu, Chengyuan Wu, Siqun Zhang, Jie Ren, Guoqiang Qin, Guanglei Zhang, Jinhui Yang

To investigate the impact of plasticizer functional groups on starch plasticization, three distinct plasticizers were selected in this study: ethylene glycol (EG), ethylenediamine (EDA), and ethylenebisformamide (EBF). Three models of the plasticizer/starch system were constructed using molecular dynamics (MD) simulations, and the analysis encompassed the computation of mean square displacement (MSD), radial distribution function (RDF), and hydrogen bonding energy for each system. Additionally, the proportions of simulation were used to prepare thermoplastic starch films, which were subsequently subjected to examinations such as DSC, XRD, FT-IR, SEM, and mechanical property testing. Comparative analysis of the simulation data from the three systems and the properties of the manufactured thermoplastic starch (TPS) established that the diverse functional groups of plasticizers significantly influenced starch plasticization. In different plasticizer functional group types, it was observed that hydroxyl groups in EG and amino groups in EDA predominantly form hydrogen bonds with hydroxyl groups in starch molecular chain. In contrast, amide groups in EBF can establish hydrogen bonds not only with hydroxyl groups of starch but also with ether bonds on the starch main chain, thereby resulting in more effective starch plasticization.

Graphical Abstract

为了研究增塑剂官能团对淀粉增塑的影响,本研究选择了三种不同的增塑剂:乙二醇(EG)、乙二胺(EDA)和乙烯双甲酰胺(EBF)。利用分子动力学(MD)模拟构建了增塑剂/淀粉体系的三个模型,分析包括计算每个体系的均方位移(MSD)、径向分布函数(RDF)和氢键能。此外,还利用模拟比例制备了热塑性淀粉薄膜,随后对薄膜进行了 DSC、XRD、傅立叶变换红外光谱、扫描电镜和机械性能测试。通过对三种体系的模拟数据和制备的热塑性淀粉(TPS)性能进行比较分析,发现增塑剂的不同官能团对淀粉塑化有显著影响。在不同的增塑剂官能团类型中,可以观察到 EG 中的羟基和 EDA 中的氨基主要与淀粉分子链中的羟基形成氢键。相比之下,EBF 中的酰胺基不仅能与淀粉的羟基形成氢键,还能与淀粉主链上的醚键形成氢键,从而使淀粉塑化更有效。
{"title":"Effect of functional groups of plasticizers on starch plasticization","authors":"Yanxue Chen,&nbsp;Ziyi Wang,&nbsp;Lexin Jia,&nbsp;Chaodan Niu,&nbsp;Ziyue Hu,&nbsp;Chengyuan Wu,&nbsp;Siqun Zhang,&nbsp;Jie Ren,&nbsp;Guoqiang Qin,&nbsp;Guanglei Zhang,&nbsp;Jinhui Yang","doi":"10.1007/s00396-024-05272-9","DOIUrl":"10.1007/s00396-024-05272-9","url":null,"abstract":"<div><p>To investigate the impact of plasticizer functional groups on starch plasticization, three distinct plasticizers were selected in this study: ethylene glycol (EG), ethylenediamine (EDA), and ethylenebisformamide (EBF). Three models of the plasticizer/starch system were constructed using molecular dynamics (MD) simulations, and the analysis encompassed the computation of mean square displacement (MSD), radial distribution function (RDF), and hydrogen bonding energy for each system. Additionally, the proportions of simulation were used to prepare thermoplastic starch films, which were subsequently subjected to examinations such as DSC, XRD, FT-IR, SEM, and mechanical property testing. Comparative analysis of the simulation data from the three systems and the properties of the manufactured thermoplastic starch (TPS) established that the diverse functional groups of plasticizers significantly influenced starch plasticization. In different plasticizer functional group types, it was observed that hydroxyl groups in EG and amino groups in EDA predominantly form hydrogen bonds with hydroxyl groups in starch molecular chain. In contrast, amide groups in EBF can establish hydrogen bonds not only with hydroxyl groups of starch but also with ether bonds on the starch main chain, thereby resulting in more effective starch plasticization.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141194928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing synthesis and application of an enhanced oil recovery agent: stability assessment of the optimized nanostructured PNIPAM/PS core–shell polymer using a developed DLVO-based model 优化提高石油采收率剂的合成和应用:利用开发的基于 DLVO 的模型对优化的纳米结构 PNIPAM/PS 核壳聚合物进行稳定性评估
IF 2.2 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-05-30 DOI: 10.1007/s00396-024-05270-x
Ramin Mohammadipour, Hossein Ali Akhlaghi Amiri, Ali Dashti, Seyed Farzan Tajbakhsh

To improve the efficiency of hydrophilic polymers in oil reservoirs, a method encapsulates the polymer within a protective shell, safeguarding the core polymer and enabling controlled release in demanding, high-temperature conditions. Poly(N-isopropylacrylamide) nanoparticles are encapsulated with polystyrene shells through emulsion polymerization in this study. Varying the amounts of shell monmer and crosslinking agents resulted thick, sphere-shaped shells with homogeneous morphology, which protects the core polymer and enabling controlled release. Structural and morphological properties are characterized using Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (H1NMR), dynamic light scattering (DLS), and scanning electron microscope (SEM) imaging. Increasing the styrene amounts lead to larger particles, while higher crosslinker amounts result in a narrower size distribution. Thermal testing indicates heat resistance up to 300 °C, suitable for enhanced oil recovery (EOR) applications. Rheological tests determine an optimal 30-day release for the PNIPAM core, with the CS polymer showing increased viscosity under harsh conditions. The colloidal stability model estblished by Derjaguin, Landau, Verwey, and Overbeek (DLVO theory) and experimental results demonstrate good stability and energy barriers at room temperature, but decreased stability and increased agglomeration at higher temperatures. Thickening the styrene shell leads to particle agglomeration and unsuitable stability. The study confirms the effectiveness of the model in analyzing CS colloidal latex systems.

Graphical Abstract

为了提高亲水性聚合物在油藏中的使用效率,有一种方法可以将聚合物封装在保护壳内,从而保护核心聚合物,并在苛刻的高温条件下实现可控释放。本研究通过乳液聚合法将聚(N-异丙基丙烯酰胺)纳米粒子与聚苯乙烯外壳封装在一起。通过改变外壳单体和交联剂的用量,获得了具有均匀形态的厚球形外壳,从而保护了核心聚合物并实现了控释。利用傅立叶变换红外光谱(FTIR)、质子核磁共振(H1NMR)、动态光散射(DLS)和扫描电子显微镜(SEM)成像对结构和形态特性进行了表征。苯乙烯用量越多,颗粒越大,而交联剂用量越多,粒度分布越窄。热测试表明,其耐热性最高可达 300°C,适用于提高石油采收率(EOR)应用。流变测试表明,PNIPAM 核心的最佳释放期为 30 天,而 CS 聚合物在苛刻条件下的粘度会增加。由 Derjaguin、Landau、Verwey 和 Overbeek 建立的胶体稳定性模型(DLVO 理论)和实验结果表明,在室温下具有良好的稳定性和能量屏障,但在较高温度下稳定性降低,团聚现象增加。苯乙烯外壳增厚会导致颗粒团聚,稳定性也会降低。该研究证实了该模型在分析 CS 胶体乳胶系统中的有效性。
{"title":"Optimizing synthesis and application of an enhanced oil recovery agent: stability assessment of the optimized nanostructured PNIPAM/PS core–shell polymer using a developed DLVO-based model","authors":"Ramin Mohammadipour,&nbsp;Hossein Ali Akhlaghi Amiri,&nbsp;Ali Dashti,&nbsp;Seyed Farzan Tajbakhsh","doi":"10.1007/s00396-024-05270-x","DOIUrl":"10.1007/s00396-024-05270-x","url":null,"abstract":"<div><p>To improve the efficiency of hydrophilic polymers in oil reservoirs, a method encapsulates the polymer within a protective shell, safeguarding the core polymer and enabling controlled release in demanding, high-temperature conditions. Poly(N-isopropylacrylamide) nanoparticles are encapsulated with polystyrene shells through emulsion polymerization in this study. Varying the amounts of shell monmer and crosslinking agents resulted thick, sphere-shaped shells with homogeneous morphology, which protects the core polymer and enabling controlled release. Structural and morphological properties are characterized using Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (H<sup>1</sup>NMR), dynamic light scattering (DLS), and scanning electron microscope (SEM) imaging. Increasing the styrene amounts lead to larger particles, while higher crosslinker amounts result in a narrower size distribution. Thermal testing indicates heat resistance up to 300 °C, suitable for enhanced oil recovery (EOR) applications. Rheological tests determine an optimal 30-day release for the PNIPAM core, with the CS polymer showing increased viscosity under harsh conditions. The colloidal stability model estblished by Derjaguin, Landau, Verwey, and Overbeek (DLVO theory) and experimental results demonstrate good stability and energy barriers at room temperature, but decreased stability and increased agglomeration at higher temperatures. Thickening the styrene shell leads to particle agglomeration and unsuitable stability. The study confirms the effectiveness of the model in analyzing CS colloidal latex systems.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141194763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liquid crystalline structuring in dilute suspensions of high aspect ratio clay nanosheets 高纵横比粘土纳米片稀释悬浮液中的液晶结构
IF 2.4 4区 化学 Q2 Materials Science Pub Date : 2024-05-27 DOI: 10.1007/s00396-024-05268-5
Osvaldo Trigueiro Neto, Sabine Rosenfeldt, Paulo Henrique Michels-Brito, Konstanse Kvalem Seljelid, Andrew Akanno, Bruno Telli Ceccato, Rini Padinjakkara Ravindranathan, Tomás S. Plivelic, Leander Michels, Josef Breu, Kenneth D. Knudsen, Jon Otto Fossum

Aqueous liquid suspensions of high aspect ratio 2D clay nanosheets were investigated using small angle X-ray scattering (SAXS). The high aspect ratio of synthetic fluorohectorite clays allows for investigation of liquid crystalline orientational order for relatively large nanosheet spacings, in the range which can produce structural coloration, thus providing two handles for determining the nanosheet spacings: SAXS and visible color. Various clay concentrations were investigated, and good agreement with previous work on structural coloration from such suspensions was obtained. Particular attention is given to the confinement caused by the container geometry, where both cylindrical and flat confinements were investigated. In both cases, the SAXS data suggest coherent regions that have a nematic inter-orientational distribution that surprisingly is linked to the container geometry, which apparently determines the efficiency of packing of the suspension. For both geometries, the analysis suggests that these coherent regions have a 1D lamellar periodic intra-structure with uniform nanosheet spacing determined by the clay concentration and a typical correlation length in the range of 200 to 500 nm.

Graphical abstract

利用小角 X 射线散射 (SAXS) 对高纵横比二维粘土纳米片的水基液体悬浮液进行了研究。合成氟蛭石粘土的高纵横比允许研究相对较大纳米片间距的液体结晶取向顺序,在此范围内可产生结构着色,从而为确定纳米片间距提供了两种方法:SAXS 和可见光颜色。对各种粘土浓度进行了研究,结果与之前关于此类悬浮液结构着色的研究结果十分吻合。我们特别关注了容器几何形状造成的限制,对圆柱形和扁平限制进行了研究。在这两种情况下,SAXS 数据都显示出具有向列取向间分布的相干区域,令人惊讶的是,这种分布与容器的几何形状有关,而容器的几何形状显然决定了悬浮液的堆积效率。对于这两种几何形状,分析表明这些相干区域具有一维片状周期性内部结构,其均匀的纳米片间距由粘土浓度决定,典型的相关长度范围为 200 至 500 nm。
{"title":"Liquid crystalline structuring in dilute suspensions of high aspect ratio clay nanosheets","authors":"Osvaldo Trigueiro Neto, Sabine Rosenfeldt, Paulo Henrique Michels-Brito, Konstanse Kvalem Seljelid, Andrew Akanno, Bruno Telli Ceccato, Rini Padinjakkara Ravindranathan, Tomás S. Plivelic, Leander Michels, Josef Breu, Kenneth D. Knudsen, Jon Otto Fossum","doi":"10.1007/s00396-024-05268-5","DOIUrl":"https://doi.org/10.1007/s00396-024-05268-5","url":null,"abstract":"<p>Aqueous liquid suspensions of high aspect ratio 2D clay nanosheets were investigated using small angle X-ray scattering (SAXS). The high aspect ratio of synthetic fluorohectorite clays allows for investigation of liquid crystalline orientational order for relatively large nanosheet spacings, in the range which can produce structural coloration, thus providing two handles for determining the nanosheet spacings: SAXS and visible color. Various clay concentrations were investigated, and good agreement with previous work on structural coloration from such suspensions was obtained. Particular attention is given to the confinement caused by the container geometry, where both cylindrical and flat confinements were investigated. In both cases, the SAXS data suggest coherent regions that have a nematic inter-orientational distribution that surprisingly is linked to the container geometry, which apparently determines the efficiency of packing of the suspension. For both geometries, the analysis suggests that these coherent regions have a 1D lamellar periodic intra-structure with uniform nanosheet spacing determined by the clay concentration and a typical correlation length in the range of 200 to 500 nm.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141169328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational analysis of MHD channel flow of Maxwell fluid with radiation and chemical reaction effects 具有辐射和化学反应效应的麦克斯韦流体 MHD 沟道流计算分析
IF 2.2 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-05-25 DOI: 10.1007/s00396-024-05267-6
K. Sudarmozhi, D. Iranian, Hadil Alhazmi, Ilyas Khan, A. F. Aljohani

We embarked on an investigation with potential implications for studying blood flow within the cardiovascular system; keeping this application in mind, this investigation aims to provide numerical evaluations for a complex problem involving MHD flow, chemical reactivity, and energy transfer of a Maxwell fluid within a channel. The governing equations for momentum, concentration, and energy are renovated into ODEs for concentrated analysis using a similarity transformation. Dimensionless velocity, temperature, and concentration fields corresponding to steady motions of Maxwell fluid over a channel are numerically recognized using the bvp4c inbuilt software in MATLAB. We validated our results with existing work to check the gained results and got an excellent agreement. The impression of physical parameters on fluid motion is plotted and debated. The quantitative outcome of this study is that the Deborah number surges, and both velocity and temperature experience enhancement while the concentration within the fluid diminishes. This knowledge can be applied to various fields, such as material processing, biomedical engineering, and environmental sciences, to optimize processes and design systems accordingly. The outcomes and key findings of this study indicate that concentration distribution declines with the introduction of a chemical reaction and a complex Schmidt number. Additionally, the quantitative results of this learning are that the impression of the magnetic parameter is observed, resulting in reduced velocity and temperature profiles, while concentration profiles exhibit an increase across the entire domain. Furthermore, the rise in the Reynolds number corresponds to an escalation in the temperature outline.

Graphical Abstract

我们开始了一项对研究心血管系统内血流具有潜在影响的研究;考虑到这一应用,本研究旨在为一个复杂问题提供数值评估,该问题涉及通道内麦克斯韦流体的 MHD 流动、化学反应性和能量传递。利用相似性转换,将动量、浓度和能量的控制方程转换为 ODE,以便进行集中分析。使用 MATLAB 中内置的 bvp4c 软件对麦克斯韦流体在通道上稳定运动时对应的无量纲速度场、温度场和浓度场进行了数值识别。我们将我们的结果与现有工作进行了验证,以检查所获得的结果,结果非常吻合。我们绘制并讨论了物理参数对流体运动的影响。这项研究的定量结果表明,在流体内部浓度降低的同时,德博拉数激增,速度和温度都有所提高。这些知识可应用于材料加工、生物医学工程和环境科学等多个领域,从而优化流程和设计系统。这项研究的成果和主要发现表明,浓度分布会随着化学反应和复杂施密特数的引入而下降。此外,本研究的定量结果还表明,磁参数的影响导致速度和温度曲线下降,而整个域的浓度曲线则呈现上升趋势。此外,雷诺数的上升与温度曲线的上升相对应。
{"title":"Computational analysis of MHD channel flow of Maxwell fluid with radiation and chemical reaction effects","authors":"K. Sudarmozhi,&nbsp;D. Iranian,&nbsp;Hadil Alhazmi,&nbsp;Ilyas Khan,&nbsp;A. F. Aljohani","doi":"10.1007/s00396-024-05267-6","DOIUrl":"10.1007/s00396-024-05267-6","url":null,"abstract":"<div><p>We embarked on an investigation with potential implications for studying blood flow within the cardiovascular system; keeping this application in mind, this investigation aims to provide numerical evaluations for a complex problem involving MHD flow, chemical reactivity, and energy transfer of a Maxwell fluid within a channel. The governing equations for momentum, concentration, and energy are renovated into ODEs for concentrated analysis using a similarity transformation. Dimensionless velocity, temperature, and concentration fields corresponding to steady motions of Maxwell fluid over a channel are numerically recognized using the bvp4c inbuilt software in MATLAB. We validated our results with existing work to check the gained results and got an excellent agreement. The impression of physical parameters on fluid motion is plotted and debated. The quantitative outcome of this study is that the Deborah number surges, and both velocity and temperature experience enhancement while the concentration within the fluid diminishes. This knowledge can be applied to various fields, such as material processing, biomedical engineering, and environmental sciences, to optimize processes and design systems accordingly. The outcomes and key findings of this study indicate that concentration distribution declines with the introduction of a chemical reaction and a complex Schmidt number. Additionally, the quantitative results of this learning are that the impression of the magnetic parameter is observed, resulting in reduced velocity and temperature profiles, while concentration profiles exhibit an increase across the entire domain. Furthermore, the rise in the Reynolds number corresponds to an escalation in the temperature outline.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141149517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A non-spherical nanoparticles system for the delivery of peptides using polymer grafted nanocellulose 利用聚合物接枝纳米纤维素递送肽的非球形纳米颗粒系统
IF 2.4 4区 化学 Q2 Materials Science Pub Date : 2024-05-23 DOI: 10.1007/s00396-024-05265-8
Y. Khine, Yimeng Li, Wei Ge, M. Stenzel
{"title":"A non-spherical nanoparticles system for the delivery of peptides using polymer grafted nanocellulose","authors":"Y. Khine, Yimeng Li, Wei Ge, M. Stenzel","doi":"10.1007/s00396-024-05265-8","DOIUrl":"https://doi.org/10.1007/s00396-024-05265-8","url":null,"abstract":"","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141106520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Entropy generation analysis of MHD nanofluid in a corrugated vertical walls enclosure with a rectangular baffle using the Brinkmann-Forchheimer model 利用布林克曼-福克海默模型分析带矩形障板的波纹状垂直壁围墙中的 MHD 纳米流体的熵产生情况
IF 2.2 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-05-18 DOI: 10.1007/s00396-024-05264-9
Asad Ali, Kejia Pan, Rashid Ali, Muhammad Waqas Ashraf

Copper is abundant and has good conductivity, corrosion resistance, and malleability. These properties affect the behavior of nanofluids by contributing to the interaction between nanoparticles and the magnetic field. This work aims to assess the thermal transfer characteristics of a Cu-water nanofluid filled in an enclosure having vertical wavy walls under the influence of natural convection. The system also experiences the existence of a constant inclined magnetic field and features an inner heated rectangular baffle. In this study, a comprehensive analysis is conducted on several thermo-physical parameters, including the Rayleigh number (({10}^{3} le {text{Ra}} le {10}^{5})), Hartmann number ((0 le {text{Ha}} le 150),) nanoparticle concentration ((0.00 le phi le 0.09),) and porosity ((0.2 le varepsilon le 0.8)). The Galerkin finite element method (GFEM) is employed in this study to conduct calculations, enabling a comprehensive analysis of streamlines, isotherms, entropy generation, and mean Nusselt numbers. The key findings demonstrate that raising the number of Rayleigh and porosity raises the velocity profile within the enclosure. For the various angles of the inner rectangular baffle ((theta =0^circ ,30^circ ,60^circ ,mathrm{ and} 90^circ )) at ({text{Ra}}={10}^{3}- {10}^{5}), the calculated maximum increase in ({{text{Nu}}}_{{text{avg}}}) are (77.5%, 78.3%), (81.9% ,) and (82.2%,) respectively. Furthermore, significant rise in the value of (({S}_{{text{Total}}})) up to (96.1%, 11.1%), and (8.8%) is experienced when (left(Raright), left(phi right),) and ((varepsilon )) increase, while (19.5%) decrement is observed when (({text{Ha}})) increases. Additionally, the average Bejan number (({{text{Be}}}_{{text{avg}}})) grows as the fraction volume of nanoparticle ((phi )) climbs and the Hartmann number (({text{Ha}})) declines. The geometry configurations employed in this research have real-world applications across different engineering fields, such as energy storage, chemical processing equipment, biomedical systems, solar collectors, heat exchangers, and cooling systems for electronic devices.

铜资源丰富,具有良好的导电性、耐腐蚀性和延展性。这些特性通过促进纳米粒子与磁场之间的相互作用来影响纳米流体的行为。这项研究旨在评估在自然对流作用下,填充在具有垂直波浪形墙壁的外壳中的铜-水纳米流体的传热特性。该系统还经历了一个恒定的倾斜磁场,并具有一个内部加热的矩形挡板。本研究对多个热物理参数进行了综合分析,包括瑞利数(({10}^{3} le {text{Ra}} le {10}^{5}))、哈特曼数(((0 le {text{Ha}} le 150))、纳米粒子浓度((0.00 le phi le 0.09),()和孔隙率(((0.2 le varepsilon le 0.8))。本研究采用 Galerkin 有限元方法(GFEM)进行计算,从而能够对流线、等温线、熵生成和平均努塞尔特数进行综合分析。主要研究结果表明,增加瑞利数和孔隙率会提高围护结构内的速度曲线。对于内矩形障板的不同角度((theta =0^circ ,30^circ ,60^circ ,mathrm{ and} 90^circ )),在({text{Ra}}={10}^{3}- {10}^{5}})时,计算出的({text{Nu}}}_{text{avg}})的最大增加值分别为(77.5%,78.3%),(81.9%)和(82.2%)。此外,({S}_{text{Total}})的值也大幅上升,达到(96.1%, 11.1%)和(8.当(left(Raright), left(phiright),) 和((varepsilon))增加时,会出现(8%)的下降,而当(({text{Ha}}))增加时,会出现(19.5%)的下降。此外,平均贝扬数(({text{Be}}}_{text{avg}})随着纳米粒子体积分数((phi ))的增加而增加,哈特曼数(({text{Ha}}))随着纳米粒子体积分数((phi ))的增加而减少。本研究中采用的几何结构在不同的工程领域都有实际应用,如能量存储、化学处理设备、生物医学系统、太阳能集热器、热交换器和电子设备冷却系统等。
{"title":"Entropy generation analysis of MHD nanofluid in a corrugated vertical walls enclosure with a rectangular baffle using the Brinkmann-Forchheimer model","authors":"Asad Ali,&nbsp;Kejia Pan,&nbsp;Rashid Ali,&nbsp;Muhammad Waqas Ashraf","doi":"10.1007/s00396-024-05264-9","DOIUrl":"10.1007/s00396-024-05264-9","url":null,"abstract":"<div><p>Copper is abundant and has good conductivity, corrosion resistance, and malleability. These properties affect the behavior of nanofluids by contributing to the interaction between nanoparticles and the magnetic field. This work aims to assess the thermal transfer characteristics of a Cu-water nanofluid filled in an enclosure having vertical wavy walls under the influence of natural convection. The system also experiences the existence of a constant inclined magnetic field and features an inner heated rectangular baffle. In this study, a comprehensive analysis is conducted on several thermo-physical parameters, including the Rayleigh number (<span>({10}^{3} le {text{Ra}} le {10}^{5})</span>), Hartmann number <span>((0 le {text{Ha}} le 150),)</span> nanoparticle concentration <span>((0.00 le phi le 0.09),)</span> and porosity <span>((0.2 le varepsilon le 0.8))</span>. The Galerkin finite element method (GFEM) is employed in this study to conduct calculations, enabling a comprehensive analysis of streamlines, isotherms, entropy generation, and mean Nusselt numbers. The key findings demonstrate that raising the number of Rayleigh and porosity raises the velocity profile within the enclosure. For the various angles of the inner rectangular baffle <span>((theta =0^circ ,30^circ ,60^circ ,mathrm{ and} 90^circ ))</span> at <span>({text{Ra}}={10}^{3}- {10}^{5})</span>, the calculated maximum increase in <span>({{text{Nu}}}_{{text{avg}}})</span> are <span>(77.5%, 78.3%)</span>, <span>(81.9% ,)</span> and <span>(82.2%,)</span> respectively. Furthermore, significant rise in the value of (<span>({S}_{{text{Total}}})</span>) up to <span>(96.1%, 11.1%)</span>, and <span>(8.8%)</span> is experienced when <span>(left(Raright), left(phi right),)</span> and <span>((varepsilon ))</span> increase, while <span>(19.5%)</span> decrement is observed when (<span>({text{Ha}})</span>) increases. Additionally, the average Bejan number <span>(({{text{Be}}}_{{text{avg}}}))</span> grows as the fraction volume of nanoparticle <span>((phi ))</span> climbs and the Hartmann number <span>(({text{Ha}}))</span> declines. The geometry configurations employed in this research have real-world applications across different engineering fields, such as energy storage, chemical processing equipment, biomedical systems, solar collectors, heat exchangers, and cooling systems for electronic devices.</p></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141059693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of sorption properties of zirconia, alumina, and silica in relation to repellents 氧化锆、氧化铝和二氧化硅与驱虫剂相关的吸附特性研究
IF 2.2 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-05-16 DOI: 10.1007/s00396-024-05260-z
Sergei A. Zverev, Yana V. Vinogradova, Anna A. Selivanova, Roman D. Solovov, Konstantin A. Sakharov, Anatoliy A. Ischenko, Sergei V. Andreev

In this work, the morphology of zirconia, alumina, and silicas was studied, and static sorption of the repellents N, N-diethyl-3-methylbenzamide and ethyl-3-[acetyl(butyl)amino]propionate on these oxides was carried out. ZrO2, Al2O3, and SiO2 phenyl were shown to have high sorption activity to the repellents N, N-diethyl-3-methylbenzamide (239 mg/g for SiO2 phenyl) and ethyl-3-[acetyl(butyl)amino]propionate (251 mg/g for ZrO2). Pointedly, it was found that despite having the largest pore volume and high specific surface area (compared to the other studied oxides), SiO2 C2 has a significantly inferior sorption capacity in respect to other oxides, in particular SiO2 phenyl, which can be explained by the presence of the phenyl group in the latter that has chemical affinity for repellent molecules. Obtained isotherms of SiO2 300 also confirm the low sorption activity towards N, N-diethyl-3-methylbenzamide. The sorption equilibrium for both repellents, in most cases, is described by the Langmuir monomolecular adsorption model. The obtained results suggest that the studied zirconia, alumina, and silica can be used as carrier components of repellents.

Graphical abstract

这项研究对氧化锆、氧化铝和二氧化硅的形态进行了研究,并在这些氧化物上对驱避剂 N,N-二乙基-3-甲基苯甲酰胺和 3-[乙酰(丁基)氨基]丙酸乙酯进行了静态吸附。结果表明,ZrO2、Al2O3 和 SiO2 苯基对驱避剂 N, N-二乙基-3-甲基苯甲酰胺(SiO2 苯基 239 毫克/克)和 3-[乙酰(丁基)氨基]丙酸乙酯(ZrO2 251 毫克/克)具有较高的吸附活性。值得注意的是,尽管 SiO2 C2 具有最大的孔体积和较高的比表面积(与所研究的其他氧化物相比),但其吸附能力明显低于其他氧化物,特别是 SiO2 苯基,这可以解释为后者中存在苯基,而苯基对排斥分子具有化学亲和力。获得的 SiO2 300 等温线也证实了它对 N,N-二乙基-3-甲基苯甲酰胺的吸附活性较低。在大多数情况下,两种驱避剂的吸附平衡都可以用 Langmuir 单分子吸附模型来描述。研究结果表明,所研究的氧化锆、氧化铝和二氧化硅可用作驱避剂的载体成分。
{"title":"Study of sorption properties of zirconia, alumina, and silica in relation to repellents","authors":"Sergei A. Zverev,&nbsp;Yana V. Vinogradova,&nbsp;Anna A. Selivanova,&nbsp;Roman D. Solovov,&nbsp;Konstantin A. Sakharov,&nbsp;Anatoliy A. Ischenko,&nbsp;Sergei V. Andreev","doi":"10.1007/s00396-024-05260-z","DOIUrl":"10.1007/s00396-024-05260-z","url":null,"abstract":"<div><p>In this work, the morphology of zirconia, alumina, and silicas was studied, and static sorption of the repellents <i>N, N</i>-diethyl-3-methylbenzamide and ethyl-3-[acetyl(butyl)amino]propionate on these oxides was carried out. ZrO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, and SiO<sub>2</sub> phenyl were shown to have high sorption activity to the repellents <i>N, N</i>-diethyl-3-methylbenzamide (239 mg/g for SiO<sub>2</sub> phenyl) and ethyl-3-[acetyl(butyl)amino]propionate (251 mg/g for ZrO<sub>2</sub>). Pointedly, it was found that despite having the largest pore volume and high specific surface area (compared to the other studied oxides), SiO<sub>2</sub> C2 has a significantly inferior sorption capacity in respect to other oxides, in particular SiO<sub>2</sub> phenyl, which can be explained by the presence of the phenyl group in the latter that has chemical affinity for repellent molecules. Obtained isotherms of SiO<sub>2</sub> 300 also confirm the low sorption activity towards <i>N, N</i>-diethyl-3-methylbenzamide. The sorption equilibrium for both repellents, in most cases, is described by the Langmuir monomolecular adsorption model. The obtained results suggest that the studied zirconia, alumina, and silica can be used as carrier components of repellents.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><img></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140966659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward coupling across inorganic/organic hybrid interfaces: polyaniline-coated gold nanoparticles with 4-aminothiophenol as gold-anchoring moieties 跨无机/有机杂化界面的耦合:以 4-氨基苯硫酚为金锚定分子的聚苯胺涂层金纳米粒子
IF 2.4 4区 化学 Q2 Materials Science Pub Date : 2024-05-15 DOI: 10.1007/s00396-024-05262-x
Gyusang Yi, Marisa Hoffmann, Sezer Seçkin, Tobias A. F. König, Ilka Hermes, Christian Rossner, Andreas Fery
{"title":"Toward coupling across inorganic/organic hybrid interfaces: polyaniline-coated gold nanoparticles with 4-aminothiophenol as gold-anchoring moieties","authors":"Gyusang Yi, Marisa Hoffmann, Sezer Seçkin, Tobias A. F. König, Ilka Hermes, Christian Rossner, Andreas Fery","doi":"10.1007/s00396-024-05262-x","DOIUrl":"https://doi.org/10.1007/s00396-024-05262-x","url":null,"abstract":"","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140976183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the effect of poly (sodium styrene sulfonate) on sodium glycodeoxycholate and sodium tetradecyl sulfate mixed micelle 研究聚(苯乙烯磺酸钠)对甘脱氧胆酸钠和十四烷基硫酸钠混合胶束的影响
IF 2.2 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-05-09 DOI: 10.1007/s00396-024-05263-w
Anirudh Srivastava, Mukul Kumar, Doli Devi, Javed Masood Khan, Sandeep Kumar Singh

The interactions of polyelectrolyte poly (sodium styrene sulfonate or NaPSS) and anionic surfactants, sodium glycodeoxycholate (SGDC) and sodium tetradecyl sulfate (STS), as well as their combination (SGDC + STS) at different mole fraction ratios, were investigated using surface tension analysis. In the SGDC + STS binary mixture, when the amount of NaPSS (0.005–0.03%) increased from ({alpha }_{{text{SGDC}}}) 0.0 to 1.0, increasing the critical micellization concentration (cmc) of the mixtures. The minimum cmc values were found from 0.833 to 1.480 mmol L−1 in the presence of 0.03% of NaPSS. Clint, Rubingh, Motomura, and Rodenas approaches were used to evaluate the ideal cmc, activity coefficients (fi), interaction parameter (–β), micellar compositions (x), and ideal micellar composition of (xid) of SGDC + STS mixtures. Synergism has been demonstrated by the experimental values of c0m being lower than the ideal values in water. Moreover, by adding NaPSS from 0.005 to 0.03%, the synergism interaction was eliminated and antagonism behavior was developed. The standard Gibb’s free energy of micellization (({Delta G}_{m}^{0})) and surface excess (Γ) and surface area per absorbed molecules (Amin) was decreased or increased depending on NaPSS amount in the SGDC + STS mixture with varying ({a}_{{text{SGDC}}}).

采用表面张力分析法研究了聚电解质聚(苯乙烯磺酸钠或 NaPSS)与阴离子表面活性剂糖脱氧胆酸钠(SGDC)和十四烷基硫酸钠(STS)以及它们在不同摩尔分数比下的组合(SGDC + STS)之间的相互作用。在 SGDC + STS 二元混合物中,当 NaPSS 的用量(0.005-0.03%)从 0.0 增加到 1.0 时,混合物的临界胶束化浓度(cmc)也随之增加。在 NaPSS 含量为 0.03% 的情况下,最小 cmc 值为 0.833 至 1.480 mmol L-1。Clint 法、Rubingh 法、Motomura 法和 Rodenas 法用于评估 SGDC + STS 混合物的理想 cmc、活性系数 (fi)、相互作用参数 (-β)、胶束成分 (x) 和理想胶束成分 (xid)。c0m 的实验值低于水中的理想值,这证明了协同作用。此外,通过添加 0.005% 至 0.03% 的 NaPSS,协同作用被消除,而出现了拮抗行为。标准吉布斯胶束化自由能(({Delta G}_{m}^{0})和表面过量(Γ)以及每个吸收分子的表面积(Amin)随着 NaPSS 在 SGDC + STS 混合物中的用量的变化而减小或增大。
{"title":"Investigation of the effect of poly (sodium styrene sulfonate) on sodium glycodeoxycholate and sodium tetradecyl sulfate mixed micelle","authors":"Anirudh Srivastava,&nbsp;Mukul Kumar,&nbsp;Doli Devi,&nbsp;Javed Masood Khan,&nbsp;Sandeep Kumar Singh","doi":"10.1007/s00396-024-05263-w","DOIUrl":"10.1007/s00396-024-05263-w","url":null,"abstract":"<div><p>The interactions of polyelectrolyte poly (sodium styrene sulfonate or NaPSS) and anionic surfactants, sodium glycodeoxycholate (SGDC) and sodium tetradecyl sulfate (STS), as well as their combination (SGDC + STS) at different mole fraction ratios, were investigated using surface tension analysis. In the SGDC + STS binary mixture, when the amount of NaPSS (0.005–0.03%) increased from <span>({alpha }_{{text{SGDC}}})</span> 0.0 to 1.0, increasing the critical micellization concentration (cmc) of the mixtures. The minimum cmc values were found from 0.833 to 1.480 mmol L<sup>−1</sup> in the presence of 0.03% of NaPSS. Clint, Rubingh, Motomura, and Rodenas approaches were used to evaluate the ideal cmc, activity coefficients (<i>f</i><sub>i</sub>), interaction parameter (–<i>β</i>), micellar compositions (<i>x</i>), and ideal micellar composition of (<i>x</i><sup><i>id</i></sup>) of SGDC + STS mixtures. Synergism has been demonstrated by the experimental values of <i>c</i><sub><i>0m</i></sub> being lower than the ideal values in water. Moreover, by adding NaPSS from 0.005 to 0.03%, the synergism interaction was eliminated and antagonism behavior was developed. The standard Gibb’s free energy of micellization (<span>({Delta G}_{m}^{0}))</span> and surface excess (<i>Γ</i>) and surface area per absorbed molecules (<i>A</i><sub>min</sub>) was decreased or increased depending on NaPSS amount in the SGDC + STS mixture with varying <span>({a}_{{text{SGDC}}})</span>.</p></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140933526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyelectrolyte complexes hydrogels based on chitosan/pectin/NaCl for potentially wound dressing: development, characterization, and evaluation 基于壳聚糖/pectin/NaCl 的聚电解质复合物水凝胶用于潜在伤口敷料:开发、表征和评估
IF 2.2 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-05-08 DOI: 10.1007/s00396-024-05261-y
Micaela Ferrante, Vera A. Alvarez, Liesel B. Gende, Diego Guerrieri, Eduardo Chuluyan, Jimena S. Gonzalez

In this research, hydrogels based on chitosan, pectin, and salt (NaCl) were synthesized through the formation of polyelectrolyte complexes (PECs). The synthesis parameters, including pH, salinity, and polymer concentration, were varied to explore their influence. Weight and texture analysis revealed differences in hydrogel morphology. Swelling behavior studies showed hydrogels synthesized at pH 4 exhibiting higher swelling capacities. Additionally, the presence of salt affected the formation process. Thermal characterization showed a first decomposition step occurring around 180–224 °C. Morphological testing using SEM highlighted differences in pore size and distribution, notably when salt was included in the formulation (pore wall diameter without NaCl, 2.2 ± 1.1 um, with NaCl, 4.7 ± 1.2 um). Physico-chemical tests, including Zeta potential, FTIR, and XRD, provided insights into interactions within the hydrogels: hydrogen bonds and electrostatic interactions. Moreover, antibacterial tests demonstrated efficacy against Escherichia coli and Staphylococcus aureus, with varying inhibition degrees correlated with NaCl content (halo for E. coli without NaCl, 8 and 10 mm; with NaCl, 10 and 15 mm). Further assessments, including water vapor transmission rate (WVTR) and lidocaine release assays, highlighted hydrogel potential for wound dressing applications, with suitable moisture retention properties and controlled drug release capabilities. The release percentage achieved by the hydrogel with 0.15 M NaCl was higher than without salt (111.1% ± 9.5% and 31.16% ± 15.13%, respectively). Preliminary in vivo wound healing studies showed promising results. Overall, our findings emphasize the tunable properties of these hydrogels and their potential for wound dressings.

本研究通过形成聚电解质复合物(PECs)合成了基于壳聚糖、果胶和盐(NaCl)的水凝胶。研究人员改变了合成参数,包括 pH 值、盐度和聚合物浓度,以探讨它们的影响。重量和质地分析显示了水凝胶形态的差异。膨胀行为研究表明,pH 值为 4 时合成的水凝胶具有更高的膨胀能力。此外,盐的存在也影响了水凝胶的形成过程。热表征显示,第一个分解步骤发生在 180-224 °C 左右。使用扫描电子显微镜进行的形态测试突出显示了孔径和分布的差异,尤其是在配方中加入盐时(不含氯化钠时的孔壁直径为 2.2 ± 1.1 um,含氯化钠时为 4.7 ± 1.2 um)。包括 Zeta 电位、傅立叶变换红外光谱和 XRD 在内的物理化学测试深入揭示了水凝胶内部的相互作用:氢键和静电相互作用。此外,抗菌测试表明,水凝胶对大肠杆菌和金黄色葡萄球菌有效,不同的抑制程度与 NaCl 含量有关(不含 NaCl 时,大肠杆菌的光晕为 8 和 10 毫米;含 NaCl 时,为 10 和 15 毫米)。进一步的评估,包括水蒸气透过率(WVTR)和利多卡因释放试验,突出了水凝胶在伤口敷料应用方面的潜力,因为它具有合适的保湿性能和可控药物释放能力。含 0.15 M NaCl 的水凝胶的药物释放率高于不含盐的水凝胶(分别为 111.1% ± 9.5% 和 31.16% ± 15.13%)。初步的体内伤口愈合研究显示了良好的结果。总之,我们的研究结果强调了这些水凝胶的可调特性及其用于伤口敷料的潜力。
{"title":"Polyelectrolyte complexes hydrogels based on chitosan/pectin/NaCl for potentially wound dressing: development, characterization, and evaluation","authors":"Micaela Ferrante,&nbsp;Vera A. Alvarez,&nbsp;Liesel B. Gende,&nbsp;Diego Guerrieri,&nbsp;Eduardo Chuluyan,&nbsp;Jimena S. Gonzalez","doi":"10.1007/s00396-024-05261-y","DOIUrl":"10.1007/s00396-024-05261-y","url":null,"abstract":"<div><p>In this research, hydrogels based on chitosan, pectin, and salt (NaCl) were synthesized through the formation of polyelectrolyte complexes (PECs). The synthesis parameters, including pH, salinity, and polymer concentration, were varied to explore their influence. Weight and texture analysis revealed differences in hydrogel morphology. Swelling behavior studies showed hydrogels synthesized at pH 4 exhibiting higher swelling capacities. Additionally, the presence of salt affected the formation process. Thermal characterization showed a first decomposition step occurring around 180–224 °C. Morphological testing using SEM highlighted differences in pore size and distribution, notably when salt was included in the formulation (pore wall diameter without NaCl, 2.2 ± 1.1 um, with NaCl, 4.7 ± 1.2 um). Physico-chemical tests, including Zeta potential, FTIR, and XRD, provided insights into interactions within the hydrogels: hydrogen bonds and electrostatic interactions. Moreover, antibacterial tests demonstrated efficacy against <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>, with varying inhibition degrees correlated with NaCl content (halo for <i>E. coli</i> without NaCl, 8 and 10 mm; with NaCl, 10 and 15 mm). Further assessments, including water vapor transmission rate (WVTR) and lidocaine release assays, highlighted hydrogel potential for wound dressing applications, with suitable moisture retention properties and controlled drug release capabilities. The release percentage achieved by the hydrogel with 0.15 M NaCl was higher than without salt (111.1% ± 9.5% and 31.16% ± 15.13%, respectively). Preliminary in vivo wound healing studies showed promising results. Overall, our findings emphasize the tunable properties of these hydrogels and their potential for wound dressings.</p></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140933694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Colloid and Polymer Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1