Enhancing the compatibility of immiscible polymer blends is crucial to achieving optimized performance for polymer materials. This work presents a comprehensive investigation into the effect of copolymer-tethered nanoparticles (NPs) on the compatibilization of immiscible polystyrene/polymethyl methacrylate (PS/PMMA) blends. The morphology, rheological behavior, and mechanical properties of the blends were analyzed to compare the compatibilization effects of NPs tethered with block, random, and graft copolymers. Our findings indicate that block copolymer-tethered NPs exhibited superior compatibilization efficiency in contrast to random and graft copolymer-tethered NPs. Moreover, by achieving an optimized balance in selective molecular entanglement, the incorporation of 3 wt% block copolymer-tethered NPs with extended PS and PMMA blocks demonstrated the most efficient compatibilization, decreasing the size of dispersed phases from 6.42 ± 9.66 µm to 1.25 ± 0.73 µm while boosting the tensile strength of blends by 78%.
Graphical Abstract
This work presents a comprehensive investigation into the effect of copolymer-tethered nanoparticles on the compatibilization of immiscible polystyrene/polymethyl methacrylate (PS/PMMA) blends.