Pub Date : 2024-07-08DOI: 10.1007/s00396-024-05282-7
Alexander Berger, Maximilian Theis, Henrike von Wedel, Tamino Rößler, Georg Papastavrou, Jürgen Senker, Markus Retsch
Abstract
Colloidal particles play a pivotal role in numerous applications across various disciplines, many of which necessitate precise control over particle size and size distribution. Seeded growth reactions have been established as effective methods for reproducibly accessing tailor-made particles. However, conventional batch-wise syntheses only yield discrete particle sizes. With the increasing focus on complex structures in current research, there is a demand for innovative and adaptable techniques to produce colloidal particles with precise sizes and size distributions. The Controlled Emulsion Extraction Process (CrEEP) is capable of addressing this challenge. Here, we present in detail how this synthesis works and demonstrate its reliability and versatility. Our approach exploits the time-dependent particle growth and enables accessing dispersions of controlled particle size distributions. We highlight these possibilities through a variation of the monomer feed and feed composition, resulting in gradual changes in both size and glass transition temperature, respectively. Beyond its application to polymer particles, CrEEP can be seamlessly extended to other seeded-growth mechanisms, such as the silica Stöber synthesis. Consequently, the Controlled Extraction Stöber Process (CrESP) similarly yields a size gradient, showcasing the generality of this synthetic advancement.
{"title":"A versatile method for facile and reliable synthesis of colloidal particles with a size and composition gradient","authors":"Alexander Berger, Maximilian Theis, Henrike von Wedel, Tamino Rößler, Georg Papastavrou, Jürgen Senker, Markus Retsch","doi":"10.1007/s00396-024-05282-7","DOIUrl":"https://doi.org/10.1007/s00396-024-05282-7","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Colloidal particles play a pivotal role in numerous applications across various disciplines, many of which necessitate precise control over particle size and size distribution. Seeded growth reactions have been established as effective methods for reproducibly accessing tailor-made particles. However, conventional batch-wise syntheses only yield discrete particle sizes. With the increasing focus on complex structures in current research, there is a demand for innovative and adaptable techniques to produce colloidal particles with precise sizes and size distributions. The Controlled Emulsion Extraction Process (CrEEP) is capable of addressing this challenge. Here, we present in detail how this synthesis works and demonstrate its reliability and versatility. Our approach exploits the time-dependent particle growth and enables accessing dispersions of controlled particle size distributions. We highlight these possibilities through a variation of the monomer feed and feed composition, resulting in gradual changes in both size and glass transition temperature, respectively. Beyond its application to polymer particles, CrEEP can be seamlessly extended to other seeded-growth mechanisms, such as the silica Stöber synthesis. Consequently, the Controlled Extraction Stöber Process (CrESP) similarly yields a size gradient, showcasing the generality of this synthetic advancement.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"55 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141576802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-06DOI: 10.1007/s00396-024-05283-6
Namita Hegde, Kapil Juvale, Sachin Puri, Aditi Chavan, Shivani Shah
Marketed valproic acid formulations use its solid salt forms, which are hygroscopic and difficult to handle. The current study focuses on developing valproic acid nanoemulsion using the physically most stable liquid form of the drug and evaluating its anticancer potential. Valproic acid is a histone deacetylase inhibitor having anticancer potential.The valproic acid nanoemulsion was formulated using a facile and scalable homogenization process. The emulsion stabilization was achieved through viscosity-enhancing polymer polyvinylpyrrolidone K-30 and tween 80. The formulation was optimized using the Box-Behnken model of design of experiments and was evaluated for efficacy and safety in cancer and fibroblast cell lines, respectively.The optimized emulsion showed particle size below 150 nm, polydispersity index below 0.3, zeta potential near − 8.5 mV, density 0.9923 g/cm3, viscosity 2.06 poise, creaming index below 20, drug content 100.37%w/v and acceptable stability at accelerated environmental conditions. Overall, under all the studied conditions of in vitro dissolution and ex vivo permeability, drug release from emulsion was found better than the free drug and comparable to the marketed solution of sodium valproate. The cytotoxicity studies demonstrated improved IC50 values for breast and lung cancer cell lines, with selectivity for cancer cells.The valproic acid nanoemulsion was prepared using its physically stable liquid form. The combination of polymer polyvinylpyrrolidone K-30 and tween 80 demonstrated the desired stabilization of the dispersed phase of the emulsion. The formulated nanoemulsion effectively potentiated valproic acid’s anticancer activity in cell culture assays.