Pub Date : 2023-10-23DOI: 10.3390/computation11100208
Almudena Recio-Román, Manuel Recio-Menéndez, María Victoria Román-González
Vaccine hesitancy is a significant public health concern, with numerous studies demonstrating its negative impact on immunization rates. One factor that can influence vaccine hesitancy is media coverage of vaccination. The media is a significant source of immunization information and can significantly shape people’s attitudes and behaviors toward vaccine uptake. Media influences vaccination positively or negatively. Accurate coverage of the benefits and effectiveness of vaccination can encourage uptake, while coverage of safety concerns or misinformation may increase hesitancy. Our study investigated whether vaccine hesitancy acts as a mediator between information sources and vaccination uptake. We analyzed a cross-sectional online survey by the European Commission of 27,524 citizens from all EU member states between 15 and 29 March 2019. The study used structural equation modeling to conduct a mediation analysis, revealing that the influence of media on vaccine uptake is fully mediated by vaccine hesitancy, except for television, which depicted an inconsistent mediating role. In other words, the effect of different media on vaccine uptake is largely driven by the extent to which individuals are hesitant or resistant to vaccinating. Therefore, media outlets, governments, and public health organizations must work together to promote accurate and reliable information about vaccination and address vaccine hesitancy.
{"title":"Influence of Media Information Sources on Vaccine Uptake: The Full and Inconsistent Mediating Role of Vaccine Hesitancy","authors":"Almudena Recio-Román, Manuel Recio-Menéndez, María Victoria Román-González","doi":"10.3390/computation11100208","DOIUrl":"https://doi.org/10.3390/computation11100208","url":null,"abstract":"Vaccine hesitancy is a significant public health concern, with numerous studies demonstrating its negative impact on immunization rates. One factor that can influence vaccine hesitancy is media coverage of vaccination. The media is a significant source of immunization information and can significantly shape people’s attitudes and behaviors toward vaccine uptake. Media influences vaccination positively or negatively. Accurate coverage of the benefits and effectiveness of vaccination can encourage uptake, while coverage of safety concerns or misinformation may increase hesitancy. Our study investigated whether vaccine hesitancy acts as a mediator between information sources and vaccination uptake. We analyzed a cross-sectional online survey by the European Commission of 27,524 citizens from all EU member states between 15 and 29 March 2019. The study used structural equation modeling to conduct a mediation analysis, revealing that the influence of media on vaccine uptake is fully mediated by vaccine hesitancy, except for television, which depicted an inconsistent mediating role. In other words, the effect of different media on vaccine uptake is largely driven by the extent to which individuals are hesitant or resistant to vaccinating. Therefore, media outlets, governments, and public health organizations must work together to promote accurate and reliable information about vaccination and address vaccine hesitancy.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"46 12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135414835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-18DOI: 10.3390/computation11100207
Noura H. AlShamrani, Reham H. Halawani, Wafa Shammakh, Ahmed M. Elaiw
This research aims to formulate and analyze two mathematical models describing the within-host dynamics of human immunodeficiency virus type-1 (HIV-1) in case of impaired humoral immunity. These models consist of five compartments, including healthy CD4+ T cells, (HIV-1)-latently infected cells, (HIV-1)-actively infected cells, HIV-1 particles, and B-cells. We make the assumption that healthy cells can become infected when exposed to: (i) HIV-1 particles resulting from viral infection (VI), (ii) (HIV-1)-latently infected cells due to latent cellular infection (CI), and (iii) (HIV-1)-actively infected cells due to active CI. In the second model, we introduce distributed time-delays. For each of these systems, we demonstrate the non-negativity and boundedness of the solutions, calculate the basic reproductive number, identify all possible equilibrium states, and establish the global asymptotic stability of these equilibria. We employ the Lyapunov method in combination with LaSalle’s invariance principle to investigate the global stability of these equilibrium points. Theoretical findings are subsequently validated through numerical simulations. Additionally, we explore the impact of B-cell impairment, time-delays, and CI on HIV-1 dynamics. Our results indicate that weakened immunity significantly contributes to disease progression. Furthermore, the presence of time-delays can markedly decrease the basic reproductive number, thereby suppressing HIV-1 replication. Conversely, the existence of latent CI spread increases the basic reproductive number, intensifying the progression of HIV-1. Consequently, neglecting latent CI spread in the HIV-1 dynamics model can lead to an underestimation of the basic reproductive number, potentially resulting in inaccurate or insufficient drug therapies for eradicating HIV-1 from the body. These findings offer valuable insights that can enhance the understanding of HIV-1 dynamics within a host.
{"title":"Stability of Impaired Humoral Immunity HIV-1 Models with Active and Latent Cellular Infections","authors":"Noura H. AlShamrani, Reham H. Halawani, Wafa Shammakh, Ahmed M. Elaiw","doi":"10.3390/computation11100207","DOIUrl":"https://doi.org/10.3390/computation11100207","url":null,"abstract":"This research aims to formulate and analyze two mathematical models describing the within-host dynamics of human immunodeficiency virus type-1 (HIV-1) in case of impaired humoral immunity. These models consist of five compartments, including healthy CD4+ T cells, (HIV-1)-latently infected cells, (HIV-1)-actively infected cells, HIV-1 particles, and B-cells. We make the assumption that healthy cells can become infected when exposed to: (i) HIV-1 particles resulting from viral infection (VI), (ii) (HIV-1)-latently infected cells due to latent cellular infection (CI), and (iii) (HIV-1)-actively infected cells due to active CI. In the second model, we introduce distributed time-delays. For each of these systems, we demonstrate the non-negativity and boundedness of the solutions, calculate the basic reproductive number, identify all possible equilibrium states, and establish the global asymptotic stability of these equilibria. We employ the Lyapunov method in combination with LaSalle’s invariance principle to investigate the global stability of these equilibrium points. Theoretical findings are subsequently validated through numerical simulations. Additionally, we explore the impact of B-cell impairment, time-delays, and CI on HIV-1 dynamics. Our results indicate that weakened immunity significantly contributes to disease progression. Furthermore, the presence of time-delays can markedly decrease the basic reproductive number, thereby suppressing HIV-1 replication. Conversely, the existence of latent CI spread increases the basic reproductive number, intensifying the progression of HIV-1. Consequently, neglecting latent CI spread in the HIV-1 dynamics model can lead to an underestimation of the basic reproductive number, potentially resulting in inaccurate or insufficient drug therapies for eradicating HIV-1 from the body. These findings offer valuable insights that can enhance the understanding of HIV-1 dynamics within a host.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135888220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-17DOI: 10.3390/computation11100206
Raffaele Marino, Scott Kirkpatrick
The maximum independent set problem is a classic and fundamental combinatorial challenge, where the objective is to find the largest subset of vertices in a graph such that no two vertices are adjacent. In this paper, we introduce a novel linear prioritized local algorithm tailored to address this problem on random d-regular graphs with a small and fixed degree d. Through exhaustive numerical simulations, we empirically investigated the independence ratio, i.e., the ratio between the cardinality of the independent set found and the order of the graph, which was achieved by our algorithm across random d-regular graphs with degree d ranging from 5 to 100. Remarkably, for every d within this range, our results surpassed the existing lower bounds determined by theoretical methods. Consequently, our findings suggest new conjectured lower bounds for the MIS problem on such graph structures. This finding has been obtained using a prioritized local algorithm. This algorithm is termed ‘prioritized’ because it strategically assigns priority in vertex selection, thereby iteratively adding them to the independent set.
{"title":"Large Independent Sets on Random d-Regular Graphs with Fixed Degree d","authors":"Raffaele Marino, Scott Kirkpatrick","doi":"10.3390/computation11100206","DOIUrl":"https://doi.org/10.3390/computation11100206","url":null,"abstract":"The maximum independent set problem is a classic and fundamental combinatorial challenge, where the objective is to find the largest subset of vertices in a graph such that no two vertices are adjacent. In this paper, we introduce a novel linear prioritized local algorithm tailored to address this problem on random d-regular graphs with a small and fixed degree d. Through exhaustive numerical simulations, we empirically investigated the independence ratio, i.e., the ratio between the cardinality of the independent set found and the order of the graph, which was achieved by our algorithm across random d-regular graphs with degree d ranging from 5 to 100. Remarkably, for every d within this range, our results surpassed the existing lower bounds determined by theoretical methods. Consequently, our findings suggest new conjectured lower bounds for the MIS problem on such graph structures. This finding has been obtained using a prioritized local algorithm. This algorithm is termed ‘prioritized’ because it strategically assigns priority in vertex selection, thereby iteratively adding them to the independent set.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"92 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135944953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-16DOI: 10.3390/computation11100204
Miglena N. Koleva, Lubin G. Vulkov
The retrospective inverse problem for evolution equations is formulated as the reconstruction of unknown initial data by a given solution at the final time. We consider the inverse retrospective problem for a one-dimensional parabolic equation in two disconnected intervals with weak solutions in weighted Sobolev spaces. The two solutions are connected with nonstandard interface conditions, and thus this problem is solved in the whole spatial region. Such a problem, as with other inverse problems, is ill-posed, and for its numerical solution, specific techniques have to be used. The direct problem is first discretized by a difference scheme which provides a second order of approximation in space. For the resulting ordinary differential equation system, the positive coerciveness is established. Next, we develop an iterative conjugate gradient method to solve the ill-posed systems of the difference equations, which are obtained after weighted time discretization, of the inverse problem. Test examples with noisy input data are discussed.
{"title":"Numerical Solution of the Retrospective Inverse Parabolic Problem on Disjoint Intervals","authors":"Miglena N. Koleva, Lubin G. Vulkov","doi":"10.3390/computation11100204","DOIUrl":"https://doi.org/10.3390/computation11100204","url":null,"abstract":"The retrospective inverse problem for evolution equations is formulated as the reconstruction of unknown initial data by a given solution at the final time. We consider the inverse retrospective problem for a one-dimensional parabolic equation in two disconnected intervals with weak solutions in weighted Sobolev spaces. The two solutions are connected with nonstandard interface conditions, and thus this problem is solved in the whole spatial region. Such a problem, as with other inverse problems, is ill-posed, and for its numerical solution, specific techniques have to be used. The direct problem is first discretized by a difference scheme which provides a second order of approximation in space. For the resulting ordinary differential equation system, the positive coerciveness is established. Next, we develop an iterative conjugate gradient method to solve the ill-posed systems of the difference equations, which are obtained after weighted time discretization, of the inverse problem. Test examples with noisy input data are discussed.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136112605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-16DOI: 10.3390/computation11100205
Aminat Uzdenova
Electromembrane processes underlie the functioning of electrodialysis devices and nano- and microfluidic devices, the scope of which is steadily expanding. One of the main aspects that determine the effectiveness of membrane systems is the choice of the optimal electrical mode. The solution of this problem, along with experimental studies, requires tools for the theoretical analysis of ion-transport processes in various electrical modes. The system of Nernst–Planck–Poisson and Navier–Stokes (NPP–NS) equations is widely used to describe the overlimiting mass transfer associated with the development of electroconvection. This paper proposes a new approach to describe the electrical mode in a membrane system using the displacement current equation. The equation for the displacement current makes it possible to simulate the galvanodynamic mode, in which the electric field is determined by the given current density. On the basis of the system of Nernst–Planck, displacement current and Navier–Stokes (NPD–NS) equations, a model of the electroconvective overlimiting mass transfer in the diffusion layer at the surface of the ion-exchange membrane in the DC current mode was constructed. Mathematical models based on the NPP–NS and NPD–NS equations, formulated to describe the same physical situation of mass transfer in the membrane system, differ in the peculiarities of numerical solution. At overlimiting currents, the required accuracy of the numerical solution is achieved in the approach based on the NPP–NS equations with a smaller time step than the NPD–NS equation approach. The accuracy of calculating the current density at the boundaries parallel to the membrane surface is higher for the model based on the NPD–NS equations compared to the model based on the NPP–NS equations.
{"title":"Time-Dependent Two-Dimensional Model of Overlimiting Mass Transfer in Electromembrane Systems Based on the Nernst–Planck, Displacement Current and Navier–Stokes Equations","authors":"Aminat Uzdenova","doi":"10.3390/computation11100205","DOIUrl":"https://doi.org/10.3390/computation11100205","url":null,"abstract":"Electromembrane processes underlie the functioning of electrodialysis devices and nano- and microfluidic devices, the scope of which is steadily expanding. One of the main aspects that determine the effectiveness of membrane systems is the choice of the optimal electrical mode. The solution of this problem, along with experimental studies, requires tools for the theoretical analysis of ion-transport processes in various electrical modes. The system of Nernst–Planck–Poisson and Navier–Stokes (NPP–NS) equations is widely used to describe the overlimiting mass transfer associated with the development of electroconvection. This paper proposes a new approach to describe the electrical mode in a membrane system using the displacement current equation. The equation for the displacement current makes it possible to simulate the galvanodynamic mode, in which the electric field is determined by the given current density. On the basis of the system of Nernst–Planck, displacement current and Navier–Stokes (NPD–NS) equations, a model of the electroconvective overlimiting mass transfer in the diffusion layer at the surface of the ion-exchange membrane in the DC current mode was constructed. Mathematical models based on the NPP–NS and NPD–NS equations, formulated to describe the same physical situation of mass transfer in the membrane system, differ in the peculiarities of numerical solution. At overlimiting currents, the required accuracy of the numerical solution is achieved in the approach based on the NPP–NS equations with a smaller time step than the NPD–NS equation approach. The accuracy of calculating the current density at the boundaries parallel to the membrane surface is higher for the model based on the NPD–NS equations compared to the model based on the NPP–NS equations.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136115969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-11DOI: 10.3390/computation11100203
Quentin Marécat, Matthieu Saubanère
The performance of embedding methods is directly tied to the quality of the bath orbital construction. In this paper, we develop a versatile framework, enabling the investigation of the optimal construction of the orbitals of the bath. As of today, in state-of-the-art embedding methods, the orbitals of the bath are constructed by performing a Singular Value Decomposition (SVD) on the impurity-environment part of the one-body reduced density matrix, as originally presented in Density Matrix Embedding Theory. Recently, the equivalence between the SVD protocol and the use of unitary transformation, the so-called Block-Householder transformation, has been established. We present a generalization of the Block-Householder transformation by introducing additional flexible parameters. The additional parameters are optimized such that the bath-orbitals fulfill physically motivated constraints. The efficiency of the approach is discussed and exemplified in the context of the half-filled Hubbard model in one-dimension.
{"title":"A Versatile Unitary Transformation Framework for an Optimal Bath Construction in Density-Matrix Based Quantum Embedding Approaches","authors":"Quentin Marécat, Matthieu Saubanère","doi":"10.3390/computation11100203","DOIUrl":"https://doi.org/10.3390/computation11100203","url":null,"abstract":"The performance of embedding methods is directly tied to the quality of the bath orbital construction. In this paper, we develop a versatile framework, enabling the investigation of the optimal construction of the orbitals of the bath. As of today, in state-of-the-art embedding methods, the orbitals of the bath are constructed by performing a Singular Value Decomposition (SVD) on the impurity-environment part of the one-body reduced density matrix, as originally presented in Density Matrix Embedding Theory. Recently, the equivalence between the SVD protocol and the use of unitary transformation, the so-called Block-Householder transformation, has been established. We present a generalization of the Block-Householder transformation by introducing additional flexible parameters. The additional parameters are optimized such that the bath-orbitals fulfill physically motivated constraints. The efficiency of the approach is discussed and exemplified in the context of the half-filled Hubbard model in one-dimension.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136212307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-09DOI: 10.3390/computation11100202
Yaser Al Mtawa
High availability is vital for network operators to ensure reliable services. Network faults can disrupt functionality and require quick recovery. Multipath networking enhances availability through load balancing and optimal link utilization. However, equal-cost multipath (ECMP) routing has limitations in effectively using multipaths, decreasing network availability. This paper proposes a three-phase disjoint-path framework that improves availability by directing traffic flows through separate paths. The framework provides effective load balancing and meets various service requirements. It includes the Optimization phase for identifying optimal multipath solutions, the Path Separation phase for dividing the multipath into working and backup sets, and the Quality Assessment phase for evaluating the robustness of both sets using topological metrics and micro-based characteristics. The simulations demonstrate the proposed framework’s validation and effectiveness in enhancing network availability.
{"title":"Enhancing Network Availability: An Optimization Approach","authors":"Yaser Al Mtawa","doi":"10.3390/computation11100202","DOIUrl":"https://doi.org/10.3390/computation11100202","url":null,"abstract":"High availability is vital for network operators to ensure reliable services. Network faults can disrupt functionality and require quick recovery. Multipath networking enhances availability through load balancing and optimal link utilization. However, equal-cost multipath (ECMP) routing has limitations in effectively using multipaths, decreasing network availability. This paper proposes a three-phase disjoint-path framework that improves availability by directing traffic flows through separate paths. The framework provides effective load balancing and meets various service requirements. It includes the Optimization phase for identifying optimal multipath solutions, the Path Separation phase for dividing the multipath into working and backup sets, and the Quality Assessment phase for evaluating the robustness of both sets using topological metrics and micro-based characteristics. The simulations demonstrate the proposed framework’s validation and effectiveness in enhancing network availability.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135094158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-08DOI: 10.3390/computation11100201
Gyurhan Nedzhibov
Dynamic Mode Decomposition with Control is a powerful technique for analyzing and modeling complex dynamical systems under the influence of external control inputs. In this paper, we propose a novel approach to implement this technique that offers computational advantages over the existing method. The proposed scheme uses singular value decomposition of a lower order matrix and requires fewer matrix multiplications when determining corresponding approximation matrices. Moreover, the matrix of dynamic modes also has a simpler structure than the corresponding matrix in the standard approach. To demonstrate the efficacy of the proposed implementation, we applied it to a diverse set of numerical examples. The algorithm’s flexibility is demonstrated in tests: accurate modeling of ecological systems like Lotka-Volterra, successful control of chaotic behavior in the Lorenz system and efficient handling of large-scale stable linear systems. This showcased its versatility and efficacy across different dynamical systems.
{"title":"An Improved Approach for Implementing Dynamic Mode Decomposition with Control","authors":"Gyurhan Nedzhibov","doi":"10.3390/computation11100201","DOIUrl":"https://doi.org/10.3390/computation11100201","url":null,"abstract":"Dynamic Mode Decomposition with Control is a powerful technique for analyzing and modeling complex dynamical systems under the influence of external control inputs. In this paper, we propose a novel approach to implement this technique that offers computational advantages over the existing method. The proposed scheme uses singular value decomposition of a lower order matrix and requires fewer matrix multiplications when determining corresponding approximation matrices. Moreover, the matrix of dynamic modes also has a simpler structure than the corresponding matrix in the standard approach. To demonstrate the efficacy of the proposed implementation, we applied it to a diverse set of numerical examples. The algorithm’s flexibility is demonstrated in tests: accurate modeling of ecological systems like Lotka-Volterra, successful control of chaotic behavior in the Lorenz system and efficient handling of large-scale stable linear systems. This showcased its versatility and efficacy across different dynamical systems.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"148 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135197940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-07DOI: 10.3390/computation11100200
Eyal Brill, Michael Bendersky
Process Variability (PV) is a significant water quality time-series measurement. It is a critical element in detecting abnormality. Typically, the quality control system should raise an alert if the PV exceeds its normal value after a proper delay time (DT). The literature does not address the relation between the extended process variability and the time delay for a warning. The current paper shows a graphical method for calibrating a Water Quality Model based on these two parameters. The amount of variability is calculated based on the Euclidean distance between records in a dataset. Typically, each multivariable process has some relation between the variability and the time delay. In the case of a short period (a few minutes), the PV may be high. However, as the relevant DT is longer, it is expected to see the PV converge to some steady state. The current paper examines a method for estimating the relationship between the two measurements (PV and DT) as a detection tool for abnormality. Given the user’s classification of the actual event for true and false events, the method shows how to build a graphical map that helps the user select the best thresholds for the model. The last section of the paper offers an implementation of the method using real-world data.
{"title":"A Graphical Calibration Method for a Water Quality Model Considering Process Variability Versus Delay Time: Theory and a Case Study","authors":"Eyal Brill, Michael Bendersky","doi":"10.3390/computation11100200","DOIUrl":"https://doi.org/10.3390/computation11100200","url":null,"abstract":"Process Variability (PV) is a significant water quality time-series measurement. It is a critical element in detecting abnormality. Typically, the quality control system should raise an alert if the PV exceeds its normal value after a proper delay time (DT). The literature does not address the relation between the extended process variability and the time delay for a warning. The current paper shows a graphical method for calibrating a Water Quality Model based on these two parameters. The amount of variability is calculated based on the Euclidean distance between records in a dataset. Typically, each multivariable process has some relation between the variability and the time delay. In the case of a short period (a few minutes), the PV may be high. However, as the relevant DT is longer, it is expected to see the PV converge to some steady state. The current paper examines a method for estimating the relationship between the two measurements (PV and DT) as a detection tool for abnormality. Given the user’s classification of the actual event for true and false events, the method shows how to build a graphical map that helps the user select the best thresholds for the model. The last section of the paper offers an implementation of the method using real-world data.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"119 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135251924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Attaining sustainable development goals is a complex process that involves a range of economic, social, and environmental factors. It requires investments in infrastructure, technology, and human capital. In this case, green finance is conducive to channel investments toward sustainable projects and initiatives by providing incentives for environmentally friendly practices and technologies and by encouraging companies and investors to adopt sustainable business models. This paper aims to check the spatial spillover effect of green finance on attaining sustainable development for European Union (EU) countries for 2008–2021. The study applies the spatial Durbin model to explore the research hypothesis. The findings confirm that green finance promotes the achievement of sustainable development goals. However, the impact of green finance on attaining sustainable development is heterogeneous depending on the EU region. In this case, the EU should intensify its green finance policy considering the regional features that significantly affect the achievement of sustainable development goals by reducing greenhouse gas emissions, improving energy efficiency, and promoting renewable energy. In addition, it is necessary to develop alternative financial sources involving green bonds that could be used to fund green projects on renewable energy projects, green building construction, etc.
{"title":"Spillover Effects of Green Finance on Attaining Sustainable Development: Spatial Durbin Model","authors":"Aleksy Kwilinski, Oleksii Lyulyov, Tetyana Pimonenko","doi":"10.3390/computation11100199","DOIUrl":"https://doi.org/10.3390/computation11100199","url":null,"abstract":"Attaining sustainable development goals is a complex process that involves a range of economic, social, and environmental factors. It requires investments in infrastructure, technology, and human capital. In this case, green finance is conducive to channel investments toward sustainable projects and initiatives by providing incentives for environmentally friendly practices and technologies and by encouraging companies and investors to adopt sustainable business models. This paper aims to check the spatial spillover effect of green finance on attaining sustainable development for European Union (EU) countries for 2008–2021. The study applies the spatial Durbin model to explore the research hypothesis. The findings confirm that green finance promotes the achievement of sustainable development goals. However, the impact of green finance on attaining sustainable development is heterogeneous depending on the EU region. In this case, the EU should intensify its green finance policy considering the regional features that significantly affect the achievement of sustainable development goals by reducing greenhouse gas emissions, improving energy efficiency, and promoting renewable energy. In addition, it is necessary to develop alternative financial sources involving green bonds that could be used to fund green projects on renewable energy projects, green building construction, etc.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135481762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}