Recently, there has been a surge in the development of data-driven propagation models. These models aspire to distill knowledge from propagation solvers or measured data and eventually become capable of predicting characteristics related to radiowave propagation. In this paper, we present the functionality of a generalizable and robust data-driven propagation model that enables efficient and reliable simulations of indoor wireless communication systems (IWCSs). In particular, we modify our previously introduced model, EM DeepRay, to consider the impact of antenna directivity, and we present a training and inference strategy that allows the simulation of large-scale and complicated IWCSs. Our data-driven model is trained over a rich data set comprising diverse building geometries, frequency bands, and antenna radiation patterns. Benchmarking its performance with that of a ray-tracer in complicated IWCSs with real-world measured data yields similar results that have a distinct advantage in terms of computational time. Ultimately, our work paves the way for replacing legacy IWCSs simulators, with high-fidelity artificial intelligence-based models.
{"title":"Rigorous Indoor Wireless Communication System Simulations With Deep Learning-Based Radio Propagation Models","authors":"Stefanos Bakirtzis;Kehai Qiu;Jiming Chen;Hui Song;Jie Zhang;Ian Wassell","doi":"10.1109/JMMCT.2024.3506693","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3506693","url":null,"abstract":"Recently, there has been a surge in the development of data-driven propagation models. These models aspire to distill knowledge from propagation solvers or measured data and eventually become capable of predicting characteristics related to radiowave propagation. In this paper, we present the functionality of a generalizable and robust data-driven propagation model that enables efficient and reliable simulations of indoor wireless communication systems (IWCSs). In particular, we modify our previously introduced model, EM DeepRay, to consider the impact of antenna directivity, and we present a training and inference strategy that allows the simulation of large-scale and complicated IWCSs. Our data-driven model is trained over a rich data set comprising diverse building geometries, frequency bands, and antenna radiation patterns. Benchmarking its performance with that of a ray-tracer in complicated IWCSs with real-world measured data yields similar results that have a distinct advantage in terms of computational time. Ultimately, our work paves the way for replacing legacy IWCSs simulators, with high-fidelity artificial intelligence-based models.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"10 ","pages":"58-68"},"PeriodicalIF":1.8,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142905782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-29DOI: 10.1109/JMMCT.2024.3509773
Aggraj Gupta;Uday K Khankhoje
Deep learning frameworks are gaining prominence in the electromagnetics community for designing microwave and mm-wave devices. This paper presents a computationally efficient transfer learning technique for designing and scaling multi-band microstrip antennas to a desired dielectric and frequency of interest. The proposed methodology involves a two-step process. First, a pre-trained model trained extensively on air-filled microstrip antennas is used for knowledge transfer. This pre-trained model is fine-tuned with a limited set of dielectric simulations, reducing data acquisition costs. In the second step, the developed forward model serves as a surrogate to design dielectric-filled antennas using the Improved Binary Particle Swarm Optimization algorithm. In contrast to conventional methods, this approach enables the design of compact antennas across various dielectrics and frequency ranges, with a significantly reduced number of time-consuming dielectric simulations (88% fewer simulations) and a lower neural network training time (75% lesser time). We analyze the optimal ways of generating dielectric antenna datasets via scaling, and perform sensitivity analysis with respect to the antenna's physical parameters. We report simulation and experimental results for single and double band antennas fabricated using the proposed approach.
{"title":"Transfer Learning Based Rapid Design of Frequency and Dielectric Agile Antennas","authors":"Aggraj Gupta;Uday K Khankhoje","doi":"10.1109/JMMCT.2024.3509773","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3509773","url":null,"abstract":"Deep learning frameworks are gaining prominence in the electromagnetics community for designing microwave and mm-wave devices. This paper presents a computationally efficient transfer learning technique for designing and scaling multi-band microstrip antennas to a desired dielectric and frequency of interest. The proposed methodology involves a two-step process. First, a pre-trained model trained extensively on air-filled microstrip antennas is used for knowledge transfer. This pre-trained model is fine-tuned with a limited set of dielectric simulations, reducing data acquisition costs. In the second step, the developed forward model serves as a surrogate to design dielectric-filled antennas using the Improved Binary Particle Swarm Optimization algorithm. In contrast to conventional methods, this approach enables the design of compact antennas across various dielectrics and frequency ranges, with a significantly reduced number of time-consuming dielectric simulations (88% fewer simulations) and a lower neural network training time (75% lesser time). We analyze the optimal ways of generating dielectric antenna datasets via scaling, and perform sensitivity analysis with respect to the antenna's physical parameters. We report simulation and experimental results for single and double band antennas fabricated using the proposed approach.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"10 ","pages":"47-57"},"PeriodicalIF":1.8,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1109/JMMCT.2024.3502830
Eng Leong Tan;Ding Yu Heh
This paper presents the critical-point-based stability analyses of finite-difference time-domain (FDTD) methods for Schrödinger equation incorporating vector and scalar potentials. Most previous FDTD formulations and stability analyses for the Schrödinger equation involve only the scalar potentials. On the other hand, the existing stability conditions that include both vector and scalar potentials were not thoroughly nor rigorously analyzed, hence they are inadequate for general cases. In this paper, rigorous stability analyses of the FDTD methods will be performed for Schrödinger equation in full 3D incorporating both vector and scalar potentials. New stability conditions are derived rigorously based on the critical points within the interior and boundary regions, while considering the local and global extrema across all variables. Two FDTD schemes are considered, of which one is updated entirely in complex form, and the other is decomposed into real and imaginary parts and updated in a leapfrog manner. Comparisons of the new stability conditions are made against those of prior works, highlighting the thoroughness, completeness and adequacy. Numerical experiments further validate the derived stability conditions and demonstrate their applicability in FDTD methods. Using these stability conditions, the FDTD methods are useful for simulations of quantum-electromagnetic interactions involving vector and scalar potentials.
{"title":"Critical-Point-Based Stability Analyses of Finite-Difference Time-Domain Methods for Schrödinger Equation Incorporating Vector and Scalar Potentials","authors":"Eng Leong Tan;Ding Yu Heh","doi":"10.1109/JMMCT.2024.3502830","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3502830","url":null,"abstract":"This paper presents the critical-point-based stability analyses of finite-difference time-domain (FDTD) methods for Schrödinger equation incorporating vector and scalar potentials. Most previous FDTD formulations and stability analyses for the Schrödinger equation involve only the scalar potentials. On the other hand, the existing stability conditions that include both vector and scalar potentials were not thoroughly nor rigorously analyzed, hence they are inadequate for general cases. In this paper, rigorous stability analyses of the FDTD methods will be performed for Schrödinger equation in full 3D incorporating both vector and scalar potentials. New stability conditions are derived rigorously based on the critical points within the interior and boundary regions, while considering the local and global extrema across all variables. Two FDTD schemes are considered, of which one is updated entirely in complex form, and the other is decomposed into real and imaginary parts and updated in a leapfrog manner. Comparisons of the new stability conditions are made against those of prior works, highlighting the thoroughness, completeness and adequacy. Numerical experiments further validate the derived stability conditions and demonstrate their applicability in FDTD methods. Using these stability conditions, the FDTD methods are useful for simulations of quantum-electromagnetic interactions involving vector and scalar potentials.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"10 ","pages":"38-46"},"PeriodicalIF":1.8,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19DOI: 10.1109/JMMCT.2024.3502062
Yanan Liu;Hongliang Li;Jian-Ming Jin
In this paper, we present a machine learning technique based on analytic extension of eigenvalues and neural networks for the efficient modeling of high-frequency devices. In the proposed method, neural networks are used to learn the mapping between device's geometry and its modal equivalent circuit parameters. These circuit parameters are extracted from the eigen-decomposition of the deviceâs $Z$