首页 > 最新文献

IEEE Journal on Multiscale and Multiphysics Computational Techniques最新文献

英文 中文
Fast Analysis of Broadband Electromagnetic Scattering Problems by Combining Hyper Basis Functions-Based MoM With Compressive Sensing 将基于超基元函数的模拟模型与压缩传感相结合,快速分析宽带电磁散射问题
IF 2.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-01-23 DOI: 10.1109/JMMCT.2024.3355976
Zhonggen Wang;Chenwei Li;Yufa Sun;Wenyan Nie;Xuejun Zhang;Pan Wang
The hyper basis functions (HBF)-based MoM has been proven to be an efficient numerical method to analyze broadband electromagnetic scattering problems. However, this method costs a lot of time to reconstruct the impedance matrix and reduced matrix at each frequency point. In order to solve the above problem, a novel method combining HBF-based MoM and compressive sensing (CS) has been proposed in this paper. The proposed method first applies the characteristic modes (CM) derived at the highest frequency point as the HBF for solving the scattering problems at lower frequency points, and performs sparse transform of the induced currents as the sparse basis for the CS framework. Then the measurement matrix is constructed using the method of uniformly extracting the impedance matrix by rows to obtain stable calculation results. Finally, according to the prior condition that a few CM are sufficient to characterize the surface currents approximately, the recovery algorithm is simplified least square method to reconstruct the current coefficients. Numerical simulation results show that it can significantly improve the efficiency of solving broadband electromagnetic problems compared with HBF-based MoM.
基于超基函数(HBF)的 MoM 已被证明是一种分析宽带电磁散射问题的高效数值方法。然而,这种方法需要花费大量时间来重建每个频点的阻抗矩阵和还原矩阵。为了解决上述问题,本文提出了一种结合基于 HBF 的 MoM 和压缩传感(CS)的新方法。该方法首先应用在最高频率点得到的特征模态(CM)作为 HBF 来解决较低频率点的散射问题,并对感应电流进行稀疏变换作为 CS 框架的稀疏基础。然后采用按行均匀提取阻抗矩阵的方法构建测量矩阵,从而获得稳定的计算结果。最后,根据几个 CM 就足以近似表征表面电流的先验条件,采用简化的最小二乘法来重建电流系数的恢复算法。数值模拟结果表明,与基于 HBF 的 MoM 相比,它能显著提高解决宽带电磁问题的效率。
{"title":"Fast Analysis of Broadband Electromagnetic Scattering Problems by Combining Hyper Basis Functions-Based MoM With Compressive Sensing","authors":"Zhonggen Wang;Chenwei Li;Yufa Sun;Wenyan Nie;Xuejun Zhang;Pan Wang","doi":"10.1109/JMMCT.2024.3355976","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3355976","url":null,"abstract":"The hyper basis functions (HBF)-based MoM has been proven to be an efficient numerical method to analyze broadband electromagnetic scattering problems. However, this method costs a lot of time to reconstruct the impedance matrix and reduced matrix at each frequency point. In order to solve the above problem, a novel method combining HBF-based MoM and compressive sensing (CS) has been proposed in this paper. The proposed method first applies the characteristic modes (CM) derived at the highest frequency point as the HBF for solving the scattering problems at lower frequency points, and performs sparse transform of the induced currents as the sparse basis for the CS framework. Then the measurement matrix is constructed using the method of uniformly extracting the impedance matrix by rows to obtain stable calculation results. Finally, according to the prior condition that a few CM are sufficient to characterize the surface currents approximately, the recovery algorithm is simplified least square method to reconstruct the current coefficients. Numerical simulation results show that it can significantly improve the efficiency of solving broadband electromagnetic problems compared with HBF-based MoM.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"9 ","pages":"84-91"},"PeriodicalIF":2.3,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139710586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of Q-Factor for AM-SLM Cavity Based Resonators Using Surface Roughness Models 利用表面粗糙度模型分析基于 AM-SLM 腔的谐振器的 Q 系数
IF 2.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-01-16 DOI: 10.1109/JMMCT.2024.3354489
Qazi Mashaal Khan;Dan Kuylenstierna
This research delves into losses of X-band cavity resonators manufactured using additive manufacturing-selective laser melting (AM-SLM) compared to the standard subtractive manufacturing milling technology. Measured losses are benchmarked in terms of resonator (quality) $Q$-factor. The measured data is further modelled using the Groiss and one-ball Huray models taking into account the implications of surface roughness and electrical conductivity. The unloaded $Q$-factor is derived from frequency-dependent scattering ($S$) parameters obtained from measurements and full-wave simulations. Surface roughness was found to impact the $Q$-factor significantly and the resonant frequency marginally. Cavities based on AM-SLM technology exhibit higher roughness compared to milling and lowers the $Q$-factor. A fusion of both manufacturing methods by milling AM-SLM cavity walls demonstrates an augmented $Q$-factor compared to a directly printed cavity. In the study it was also found that the Groiss model tends to overestimate the $Q$-factor owing to AM-SLM's rougher surface, while the one-ball Huray model furnishes precise projections by establishing a link between surface roughness and powder particles. Electrical conductivity's influence on $Q$-factor was also investigated, showing negligible impact with increased surface roughness. Further, side walls of the AM-SLM cavity were more susceptible to surface roughness, compared to the cavity front walls due to higher surface current density. This study underscores the significance of analyzing surface roughness and electrical conductivity in AM-SLM cavity resonators and highlights the suitability of the one-ball Huray model for accurate $Q$-factor prediction of microwave structures with rough surfaces.
与标准的减法制造铣削技术相比,本研究深入探讨了使用增材制造-选择性激光熔化(AM-SLM)技术制造的 X 波段空腔谐振器的损耗。测量损耗以谐振器(质量)Q$系数为基准。考虑到表面粗糙度和电导率的影响,使用 Groiss 模型和单球 Huray 模型对测量数据进行了进一步建模。根据测量和全波模拟获得的与频率相关的散射 ($S$) 参数推导出空载 $Q$ 因子。研究发现,表面粗糙度对 Q$ 因子的影响很大,而对谐振频率的影响很小。与铣削相比,基于 AM-SLM 技术的腔体表现出更高的粗糙度,并降低了 Q$ 因子。与直接印刷的腔体相比,通过铣削 AM-SLM 腔体壁将两种制造方法融合在一起,显示出更高的 Q$ 因子。研究还发现,由于 AM-SLM 的表面更粗糙,格罗伊斯模型往往会高估 Q 值系数,而单球 Huray 模型则通过建立表面粗糙度和粉末颗粒之间的联系,提供了精确的预测。电导率对 Q$ 因子的影响也进行了研究,结果表明随着表面粗糙度的增加,电导率的影响可以忽略不计。此外,由于表面电流密度较高,与空腔前壁相比,AM-SLM 空腔的侧壁更容易受到表面粗糙度的影响。这项研究强调了分析 AM-SLM 谐振器表面粗糙度和电导率的重要性,并突出了单球 Huray 模型适用于精确预测具有粗糙表面的微波结构的 Q$ 因子。
{"title":"Analysis of Q-Factor for AM-SLM Cavity Based Resonators Using Surface Roughness Models","authors":"Qazi Mashaal Khan;Dan Kuylenstierna","doi":"10.1109/JMMCT.2024.3354489","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3354489","url":null,"abstract":"This research delves into losses of X-band cavity resonators manufactured using additive manufacturing-selective laser melting (AM-SLM) compared to the standard subtractive manufacturing milling technology. Measured losses are benchmarked in terms of resonator (quality) \u0000<inline-formula><tex-math>$Q$</tex-math></inline-formula>\u0000-factor. The measured data is further modelled using the Groiss and one-ball Huray models taking into account the implications of surface roughness and electrical conductivity. The unloaded \u0000<inline-formula><tex-math>$Q$</tex-math></inline-formula>\u0000-factor is derived from frequency-dependent scattering (\u0000<inline-formula><tex-math>$S$</tex-math></inline-formula>\u0000) parameters obtained from measurements and full-wave simulations. Surface roughness was found to impact the \u0000<inline-formula><tex-math>$Q$</tex-math></inline-formula>\u0000-factor significantly and the resonant frequency marginally. Cavities based on AM-SLM technology exhibit higher roughness compared to milling and lowers the \u0000<inline-formula><tex-math>$Q$</tex-math></inline-formula>\u0000-factor. A fusion of both manufacturing methods by milling AM-SLM cavity walls demonstrates an augmented \u0000<inline-formula><tex-math>$Q$</tex-math></inline-formula>\u0000-factor compared to a directly printed cavity. In the study it was also found that the Groiss model tends to overestimate the \u0000<inline-formula><tex-math>$Q$</tex-math></inline-formula>\u0000-factor owing to AM-SLM's rougher surface, while the one-ball Huray model furnishes precise projections by establishing a link between surface roughness and powder particles. Electrical conductivity's influence on \u0000<inline-formula><tex-math>$Q$</tex-math></inline-formula>\u0000-factor was also investigated, showing negligible impact with increased surface roughness. Further, side walls of the AM-SLM cavity were more susceptible to surface roughness, compared to the cavity front walls due to higher surface current density. This study underscores the significance of analyzing surface roughness and electrical conductivity in AM-SLM cavity resonators and highlights the suitability of the one-ball Huray model for accurate \u0000<inline-formula><tex-math>$Q$</tex-math></inline-formula>\u0000-factor prediction of microwave structures with rough surfaces.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"9 ","pages":"75-83"},"PeriodicalIF":2.3,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139654885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maxwell-Schrödinger Modeling of a Superconducting Qubit Coupled to a Transmission Line Network 耦合到传输线网络的超导微ubit 的麦克斯韦-薛定谔模型
IF 2.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-01-03 DOI: 10.1109/JMMCT.2024.3349433
Thomas E. Roth;Samuel T. Elkin
In superconducting circuit quantum information technologies, classical microwave pulses are applied to control and measure the qubit states. Currently, the design of these microwave pulses uses simple theoretical or numerical models that do not account for the self-consistent interactions of how the qubit state modifies the applied microwave pulse. In this work, we present the formulation and finite element time domain discretization of a semiclassical Maxwell-Schrödinger method for describing these self-consistent dynamics for the case of a superconducting qubit capacitively coupled to a general transmission line network. We validate the proposed method by characterizing key effects related to common control and measurement approaches for transmon and fluxonium qubits in systems that are amenable to theoretical analysis. Our numerical results also highlight scenarios where including the self-consistent interactions is essential. By treating the microwaves classically, our method is substantially more efficient than fully-quantum methods for the many situations where the quantum statistics of the microwaves are not needed. Further, our approach does not require any reformulations when the transmission line system is modified. In the future, our method can be used to rapidly explore broader design spaces to search for more effective control and measurement protocols for superconducting qubits.
在超导电路量子信息技术中,经典微波脉冲用于控制和测量量子比特状态。目前,这些微波脉冲的设计采用简单的理论或数值模型,无法解释量子比特状态如何改变所应用的微波脉冲的自洽相互作用。在这项工作中,我们提出了半经典麦克斯韦-薛定谔方法的公式和有限元时域离散化,用于描述超导量子比特电容耦合到一般传输线网络的自洽动力学。我们通过描述与可进行理论分析的系统中传子和通子量子比特的常见控制和测量方法相关的关键效应,验证了所提出的方法。我们的数值结果还凸显了包含自洽相互作用至关重要的情况。通过对微波进行经典处理,在许多不需要微波量子统计的情况下,我们的方法比全量子方法更有效。此外,当传输线系统被修改时,我们的方法不需要任何重新计算。未来,我们的方法可用于快速探索更广阔的设计空间,为超导量子比特寻找更有效的控制和测量协议。
{"title":"Maxwell-Schrödinger Modeling of a Superconducting Qubit Coupled to a Transmission Line Network","authors":"Thomas E. Roth;Samuel T. Elkin","doi":"10.1109/JMMCT.2024.3349433","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3349433","url":null,"abstract":"In superconducting circuit quantum information technologies, classical microwave pulses are applied to control and measure the qubit states. Currently, the design of these microwave pulses uses simple theoretical or numerical models that do not account for the self-consistent interactions of how the qubit state modifies the applied microwave pulse. In this work, we present the formulation and finite element time domain discretization of a semiclassical Maxwell-Schrödinger method for describing these self-consistent dynamics for the case of a superconducting qubit capacitively coupled to a general transmission line network. We validate the proposed method by characterizing key effects related to common control and measurement approaches for transmon and fluxonium qubits in systems that are amenable to theoretical analysis. Our numerical results also highlight scenarios where including the self-consistent interactions is essential. By treating the microwaves classically, our method is substantially more efficient than fully-quantum methods for the many situations where the quantum statistics of the microwaves are not needed. Further, our approach does not require any reformulations when the transmission line system is modified. In the future, our method can be used to rapidly explore broader design spaces to search for more effective control and measurement protocols for superconducting qubits.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"9 ","pages":"61-74"},"PeriodicalIF":2.3,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139473800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PIFON-EPT: MR-Based Electrical Property Tomography Using Physics-Informed Fourier Networks PIFON-EPT:利用物理信息傅立叶网络进行基于磁共振的电特性断层扫描
IF 2.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-12-22 DOI: 10.1109/JMMCT.2023.3345798
Xinling Yu;José E. C. Serrallés;Ilias I. Giannakopoulos;Ziyue Liu;Luca Daniel;Riccardo Lattanzi;Zheng Zhang
We propose Physics-Informed Fourier Networks for Electrical Properties (EP) Tomography (PIFON-EPT), a novel deep learning-based method for EP reconstruction using noisy and/or incomplete magnetic resonance (MR) measurements. Our approach leverages the Helmholtz equation to constrain two networks, responsible for the denoising and completion of the transmit fields, and the estimation of the object's EP, respectively. We embed a random Fourier features mapping into our networks to enable efficient learning of high-frequency details encoded in the transmit fields. We demonstrated the efficacy of PIFON-EPT through several simulated experiments at 3 and 7 T (T) MR imaging, and showed that our method can reconstruct physically consistent EP and transmit fields. Specifically, when only 20% of the noisy measured fields were used as inputs, PIFON-EPT reconstructed the EP of a phantom with $leq 5%$ error, and denoised and completed the measurements with $leq 1%$ error. Additionally, we adapted PIFON-EPT to solve the generalized Helmholtz equation that accounts for gradients of EP between inhomogeneities. This yielded improved results at interfaces between different materials without explicit knowledge of boundary conditions. PIFON-EPT is the first method that can simultaneously reconstruct EP and transmit fields from incomplete noisy MR measurements, providing new opportunities for EPT research.
我们提出了用于电特性(EP)断层扫描的物理信息傅立叶网络(PIFON-EPT),这是一种基于深度学习的新方法,用于利用有噪声和/或不完整的磁共振(MR)测量结果重建电特性。我们的方法利用亥姆霍兹方程来约束两个网络,分别负责传输场的去噪和补全,以及对象 EP 的估计。我们在网络中嵌入了随机傅立叶特征映射,以便高效学习发射场中的高频细节编码。我们通过 3 T 和 7 T 磁共振成像的几个模拟实验证明了 PIFON-EPT 的功效,并表明我们的方法可以重建物理上一致的 EP 和发射场。具体来说,当只有20%的噪声测量场被用作输入时,PIFON-EPT重建的幻影EP误差为5%,去噪并完成测量的误差为1%。此外,我们对 PIFON-EPT 进行了调整,以求解广义亥姆霍兹方程,该方程考虑了非均质间 EP 的梯度。这改进了不同材料界面的结果,而无需明确了解边界条件。PIFON-EPT 是第一种能从不完整的噪声磁共振测量中同时重建 EP 和透射场的方法,为 EPT 研究提供了新的机遇。
{"title":"PIFON-EPT: MR-Based Electrical Property Tomography Using Physics-Informed Fourier Networks","authors":"Xinling Yu;José E. C. Serrallés;Ilias I. Giannakopoulos;Ziyue Liu;Luca Daniel;Riccardo Lattanzi;Zheng Zhang","doi":"10.1109/JMMCT.2023.3345798","DOIUrl":"https://doi.org/10.1109/JMMCT.2023.3345798","url":null,"abstract":"We propose Physics-Informed Fourier Networks for Electrical Properties (EP) Tomography (PIFON-EPT), a novel deep learning-based method for EP reconstruction using noisy and/or incomplete magnetic resonance (MR) measurements. Our approach leverages the Helmholtz equation to constrain two networks, responsible for the denoising and completion of the transmit fields, and the estimation of the object's EP, respectively. We embed a random Fourier features mapping into our networks to enable efficient learning of high-frequency details encoded in the transmit fields. We demonstrated the efficacy of PIFON-EPT through several simulated experiments at 3 and 7 T (T) MR imaging, and showed that our method can reconstruct physically consistent EP and transmit fields. Specifically, when only 20% of the noisy measured fields were used as inputs, PIFON-EPT reconstructed the EP of a phantom with \u0000<inline-formula><tex-math>$leq 5%$</tex-math></inline-formula>\u0000 error, and denoised and completed the measurements with \u0000<inline-formula><tex-math>$leq 1%$</tex-math></inline-formula>\u0000 error. Additionally, we adapted PIFON-EPT to solve the generalized Helmholtz equation that accounts for gradients of EP between inhomogeneities. This yielded improved results at interfaces between different materials without explicit knowledge of boundary conditions. PIFON-EPT is the first method that can simultaneously reconstruct EP and transmit fields from incomplete noisy MR measurements, providing new opportunities for EPT research.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"9 ","pages":"49-60"},"PeriodicalIF":2.3,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139399804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Thermodynamic Modeling of Converter Transformer Influenced by DC Bias 受直流偏置影响的变流器变压器的强化热力学建模
IF 2.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-11-20 DOI: 10.1109/JMMCT.2023.3334563
Suman Yadav;Gourav Kumar Suman;Ram Krishna Mehta
DC bias in high-voltage DC transformers, arising from converter operations and DC transmission, poses significant challenges to their performance. The detrimental effects of DC bias primarily manifest in increased temperature, jeopardizing the safe operation of the transformers. This article presents a novel approach by extending the utilization of the Thermal Equivalent Circuit (TEC) to accurately predict temperatures at different elements of a converter transformer under DC bias conditions. Specifically designed for a 240 MVA converter transformer, the TEC incorporates capacitances and dynamic resistances as model parameters. Additionally, an electro-thermal finite element model is implemented to comprehensively analyze the transformer's behavior under varying levels of DC bias. To estimate the TEC parameters, a hybrid GWO-CS (Grey Wolf Optimization – Cuckoo Search) algorithm is employed based on measured values. Furthermore, the paper highlights the impact of DC bias on the converter transformer's life expectancy, considering the aging acceleration factor.
高压直流变压器中的直流偏压是由变流器运行和直流输电引起的,这对变压器的性能提出了重大挑战。直流偏压的有害影响主要表现为温度升高,危及变压器的安全运行。本文通过扩展热等效电路 (TEC) 的使用范围,提出了一种新方法,以准确预测直流偏置条件下换流器变压器不同元件的温度。热等效电路专为 240 MVA 变流器变压器设计,将电容和动态电阻作为模型参数。此外,还采用了电热有限元模型,以全面分析变压器在不同直流偏置水平下的行为。为了估算 TEC 参数,采用了基于测量值的混合 GWO-CS(灰狼优化-布谷鸟搜索)算法。此外,考虑到老化加速因素,本文还强调了直流偏压对转换变压器预期寿命的影响。
{"title":"Enhanced Thermodynamic Modeling of Converter Transformer Influenced by DC Bias","authors":"Suman Yadav;Gourav Kumar Suman;Ram Krishna Mehta","doi":"10.1109/JMMCT.2023.3334563","DOIUrl":"https://doi.org/10.1109/JMMCT.2023.3334563","url":null,"abstract":"DC bias in high-voltage DC transformers, arising from converter operations and DC transmission, poses significant challenges to their performance. The detrimental effects of DC bias primarily manifest in increased temperature, jeopardizing the safe operation of the transformers. This article presents a novel approach by extending the utilization of the Thermal Equivalent Circuit (TEC) to accurately predict temperatures at different elements of a converter transformer under DC bias conditions. Specifically designed for a 240 MVA converter transformer, the TEC incorporates capacitances and dynamic resistances as model parameters. Additionally, an electro-thermal finite element model is implemented to comprehensively analyze the transformer's behavior under varying levels of DC bias. To estimate the TEC parameters, a hybrid GWO-CS (Grey Wolf Optimization – Cuckoo Search) algorithm is employed based on measured values. Furthermore, the paper highlights the impact of DC bias on the converter transformer's life expectancy, considering the aging acceleration factor.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"9 ","pages":"36-48"},"PeriodicalIF":2.3,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138822201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiphysics Analysis of a High-Speed Eddy Current Brake 高速涡流制动器的多物理场分析
IF 2.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-11-16 DOI: 10.1109/JMMCT.2023.3333386
Sandeep Mohan Nayak;Mangal Kothari;Abhishek Sarkar;Soumya Ranjan Sahoo
This paper presents the analytical-cum-numerical-based mathematical model for the multiphysics simulation of a high-speed unipolar axial eddy current brake (ECB). The operating principle and the necessary multiphysics simulation for an ECB are introduced. An analytical method is developed for high-speed ECB operation to search coarse parameters in the preliminary design technique. The model uses the behavior of the eddy currents on the plate during high-speed operation. A radial multiplier is incorporated to satisfy electromagnetic physics. The axisymmetric property of the disk reduces the disk geometry to an equivalent 2D domain where the estimated loss is defined. The ohmic loss from the analytical model is transferred to the numerical thermal model to evaluate temperature distribution. The convective heat transfer coefficient, which is a crucial variable in boundary conditions, is defined using the correlations between the Nusselt and Reynolds numbers. The steady-state heat diffusion equation is solved in the domain for three different speeds. The results show that the ohmic loss on the disk saturates and the temperature of the disk reduces during high-speed operations.
本文建立了高速单极轴向涡流制动器多物理场仿真的解析与数值相结合的数学模型。介绍了ECB的工作原理和必要的多物理场仿真。在初步设计技术中,提出了一种用于高速ECB运行的粗参数搜索的解析方法。该模型采用了高速运行时板上涡流的行为。采用径向乘法器满足电磁物理要求。磁盘的轴对称特性将磁盘几何形状降低到等效的二维域,其中定义了估计损耗。将解析模型的欧姆损耗转换为数值热模型来计算温度分布。对流换热系数是边界条件下的一个重要变量,利用努塞尔数和雷诺数之间的相关性来定义对流换热系数。在三种不同速度下,求解了稳态热扩散方程。结果表明,在高速运行时,磁盘上的欧姆损耗趋于饱和,磁盘温度降低。
{"title":"Multiphysics Analysis of a High-Speed Eddy Current Brake","authors":"Sandeep Mohan Nayak;Mangal Kothari;Abhishek Sarkar;Soumya Ranjan Sahoo","doi":"10.1109/JMMCT.2023.3333386","DOIUrl":"https://doi.org/10.1109/JMMCT.2023.3333386","url":null,"abstract":"This paper presents the analytical-cum-numerical-based mathematical model for the multiphysics simulation of a high-speed unipolar axial eddy current brake (ECB). The operating principle and the necessary multiphysics simulation for an ECB are introduced. An analytical method is developed for high-speed ECB operation to search coarse parameters in the preliminary design technique. The model uses the behavior of the eddy currents on the plate during high-speed operation. A radial multiplier is incorporated to satisfy electromagnetic physics. The axisymmetric property of the disk reduces the disk geometry to an equivalent 2D domain where the estimated loss is defined. The ohmic loss from the analytical model is transferred to the numerical thermal model to evaluate temperature distribution. The convective heat transfer coefficient, which is a crucial variable in boundary conditions, is defined using the correlations between the Nusselt and Reynolds numbers. The steady-state heat diffusion equation is solved in the domain for three different speeds. The results show that the ohmic loss on the disk saturates and the temperature of the disk reduces during high-speed operations.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"9 ","pages":"27-35"},"PeriodicalIF":2.3,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138468117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing Curl-Conforming Bases for Pyramid Cells 评估金字塔细胞的卷发符合基
IF 2.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-11-16 DOI: 10.1109/JMMCT.2023.3333563
Roberto D. Graglia;Paolo Petrini
Successful three-dimensional finite element codes for Maxwell's equations must include and deal with all four types of geometrical shapes: tetrahedra, bricks, prisms, and quadrangular-based pyramids. However, pyramidal elements have so far been used very rarely because the basis functions associated with them have complicated expression, are complex in derivation, and have never been comprehensively validated. We recently published a simpler procedure for constructing higher-order vector bases for pyramid elements, so here we fill a gap by discussing a whole set of test case results that not only validate our new curl-conforming bases for pyramids, but which enable validation of other codes that use pyramidal elements for finite element method applications. The solutions of the various test cases are obtained using either higher order elements or multipyramidal meshes or both. Furthermore, the results are always compared with the solutions obtained with classical tetrahedral meshes using higher order bases. This allows us to verify that purely pyramidal meshes and elements give numerical results of comparable accuracy to those obtained with multitetrahedral meshes that use elements of the same order, essentially requiring the same number of degrees of freedom. The various results provided here also show that higher order vector bases always guarantee a superior convergence of the numerical results as the number of degrees of freedom increases.
麦克斯韦方程组的成功三维有限元代码必须包括并处理所有四种几何形状:四面体、砖块、棱镜和四边形金字塔。然而,由于与之相关的基函数表达式复杂,推导过程复杂,而且尚未得到全面的验证,金字塔元迄今很少被使用。我们最近发布了一个为金字塔单元构建高阶向量基的更简单的过程,因此在这里我们通过讨论一整套测试用例结果来填补空白,这些结果不仅验证了我们新的符合螺旋形的金字塔基,而且还验证了其他使用金字塔单元进行有限元方法应用的代码。各种测试用例的解可采用高阶元或多锥体网格,或两者兼而有之。此外,结果总是与使用高阶基的经典四面体网格的解进行比较。这使我们能够验证,纯锥体网格和单元给出的数值结果与使用相同顺序的元素的多四面体网格获得的结果相当,基本上需要相同数量的自由度。这里提供的各种结果也表明,随着自由度的增加,高阶向量基总是保证数值结果的优越收敛性。
{"title":"Assessing Curl-Conforming Bases for Pyramid Cells","authors":"Roberto D. Graglia;Paolo Petrini","doi":"10.1109/JMMCT.2023.3333563","DOIUrl":"https://doi.org/10.1109/JMMCT.2023.3333563","url":null,"abstract":"Successful three-dimensional finite element codes for Maxwell's equations must include and deal with all four types of geometrical shapes: tetrahedra, bricks, prisms, and quadrangular-based pyramids. However, pyramidal elements have so far been used very rarely because the basis functions associated with them have complicated expression, are complex in derivation, and have never been comprehensively validated. We recently published a simpler procedure for constructing higher-order vector bases for pyramid elements, so here we fill a gap by discussing a whole set of test case results that not only validate our new curl-conforming bases for pyramids, but which enable validation of other codes that use pyramidal elements for finite element method applications. The solutions of the various test cases are obtained using either higher order elements or multipyramidal meshes or both. Furthermore, the results are always compared with the solutions obtained with classical tetrahedral meshes using higher order bases. This allows us to verify that purely pyramidal meshes and elements give numerical results of comparable accuracy to those obtained with multitetrahedral meshes that use elements of the same order, essentially requiring the same number of degrees of freedom. The various results provided here also show that higher order vector bases always guarantee a superior convergence of the numerical results as the number of degrees of freedom increases.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"9 ","pages":"20-26"},"PeriodicalIF":2.3,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10319679","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138435637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Algebraic and Fast Nested Construction Method for Generating Rank-Minimized ${mathcal H}^{2}$-Matrix for Solving Electrically Large Surface Integral Equations 求解电大曲面积分方程生成秩最小化${数学H}^{2}$-矩阵的代数快速嵌套构造方法
IF 2.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-10-23 DOI: 10.1109/JMMCT.2023.3326774
Chang Yang;Dan Jiao
In this work, we develop a kernel-independent and purely algebraic method, Nested Construction Method, which can construct a rank-minimized ${mathcal H}^{2}$-matrix with low complexity based on prescribed accuracy. The time cost of this method in generating each cluster basis and coupling matrix is of $O(k n log {n})$, while the memory consumption scales as $O(k^{2})$, where $k$ is the rank of the cluster basis, and $n$ is cluster size. The accuracy and efficiency of the proposed method are demonstrated by extensive numerical experiments. In addition to surface integral equations, the proposed algorithms can also be applied to solving other electrically large integral equations.
在这项工作中,我们开发了一种核无关的纯代数方法,即嵌套构造方法,它可以在规定精度的基础上构造一个低复杂度的秩最小化${mathcal H}^{2}$-矩阵。该方法生成每个簇基和耦合矩阵的时间成本为$O(k n log {n})$,而内存消耗为$O(k^{2})$,其中$k$为簇基的秩,$n$为簇大小。大量的数值实验证明了该方法的准确性和有效性。除了曲面积分方程外,所提出的算法也可应用于求解其他大型电积分方程。
{"title":"Algebraic and Fast Nested Construction Method for Generating Rank-Minimized ${mathcal H}^{2}$-Matrix for Solving Electrically Large Surface Integral Equations","authors":"Chang Yang;Dan Jiao","doi":"10.1109/JMMCT.2023.3326774","DOIUrl":"10.1109/JMMCT.2023.3326774","url":null,"abstract":"In this work, we develop a kernel-independent and purely algebraic method, Nested Construction Method, which can construct a rank-minimized \u0000<inline-formula><tex-math>${mathcal H}^{2}$</tex-math></inline-formula>\u0000-matrix with low complexity based on prescribed accuracy. The time cost of this method in generating each cluster basis and coupling matrix is of \u0000<inline-formula><tex-math>$O(k n log {n})$</tex-math></inline-formula>\u0000, while the memory consumption scales as \u0000<inline-formula><tex-math>$O(k^{2})$</tex-math></inline-formula>\u0000, where \u0000<inline-formula><tex-math>$k$</tex-math></inline-formula>\u0000 is the rank of the cluster basis, and \u0000<inline-formula><tex-math>$n$</tex-math></inline-formula>\u0000 is cluster size. The accuracy and efficiency of the proposed method are demonstrated by extensive numerical experiments. In addition to surface integral equations, the proposed algorithms can also be applied to solving other electrically large integral equations.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"9 ","pages":"10-19"},"PeriodicalIF":2.3,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135152772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Excitation of Electromagnetic Field Inside Rotating Spherical Cavity 旋转球腔内电磁场的激发
IF 2.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-10-09 DOI: 10.1109/JMMCT.2023.3321123
Daria E. Titova
Rotating cavities are often used for rotation rate measurement. However, the representation of electromagnetic fields in rotating reference frames is based on simplifying assumptions and approximate solutions. In this article, problem of excitation of electromagnetic field inside a rotating spherical cavity resonator with arbitrary sources of currents and charges is formulated and solved rigorously. The solution is based on the covariant Maxwell's equations. Expressions for the electromagnetic field components are derived using electric and magnetic Debye potentials. Impedance boundary problem of electromagnetic field excitation in a rotating dielectric filled spherical cavity with finite conductivity metal walls is formulated and solved rigorously. In a special case of excitation of the cavity resonator with an elementary electric dipole, the frequency response and the quality factor of the resonator were calculated for different dielectric fillings and metals of the cavity walls. The obtained analytical solutions were verified for the special case of zero rotation rate compared with the simulation of the problem in CAD.
旋转腔通常用于转速测量。然而,旋转参考系中电磁场的表示是基于简化的假设和近似解。本文推导并严格求解了具有任意电流和电荷源的旋转球腔谐振器内电磁场的激励问题。该解基于协变的麦克斯韦方程组。电磁场分量的表达式是使用电和磁德拜势导出的。建立并严格求解了具有有限导电性金属壁的旋转介质填充球形腔中电磁场激励的阻抗边界问题。在用基本电偶极子激励腔谐振器的特殊情况下,计算了不同介质填充物和腔壁金属对谐振器的频率响应和品质因数。将所获得的解析解与CAD中对该问题的模拟进行了比较,验证了零转速特殊情况下的解析解。
{"title":"Excitation of Electromagnetic Field Inside Rotating Spherical Cavity","authors":"Daria E. Titova","doi":"10.1109/JMMCT.2023.3321123","DOIUrl":"https://doi.org/10.1109/JMMCT.2023.3321123","url":null,"abstract":"Rotating cavities are often used for rotation rate measurement. However, the representation of electromagnetic fields in rotating reference frames is based on simplifying assumptions and approximate solutions. In this article, problem of excitation of electromagnetic field inside a rotating spherical cavity resonator with arbitrary sources of currents and charges is formulated and solved rigorously. The solution is based on the covariant Maxwell's equations. Expressions for the electromagnetic field components are derived using electric and magnetic Debye potentials. Impedance boundary problem of electromagnetic field excitation in a rotating dielectric filled spherical cavity with finite conductivity metal walls is formulated and solved rigorously. In a special case of excitation of the cavity resonator with an elementary electric dipole, the frequency response and the quality factor of the resonator were calculated for different dielectric fillings and metals of the cavity walls. The obtained analytical solutions were verified for the special case of zero rotation rate compared with the simulation of the problem in CAD.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"9 ","pages":"1-9"},"PeriodicalIF":2.3,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68175802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiphysics Design Methodology for U-Band Temperature-Compensated Bandstop Filters u波段温度补偿带阻滤波器的多物理场设计方法
IF 2.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-09-07 DOI: 10.1109/JMMCT.2023.3312756
Chang Che;Yi Zeng;Ming Yu
This article proposes a novel multiphysics design methodology for a U-band bandstop waveguide filter with temperature compensation (TC). A bimetal TC structure is first implemented to a bandstop filter in such high frequencies for working in a wide temperature range (−20 °C ∼ 70 °C) with little frequency drift. The synthesis and design of the bandstop filter are detailed. The proposed methodology mainly guides the design of the bimetal actuator from geometry, multiphysics, post-production and theoretical promotion. The geometric derivation for the bimetal reactions is elaborated and leads to a simplified equivalent model. Multiphysics analysis, including temperature, thermal stress, and electromagnetic field, is co-elaborated in the design process. Considering the fabrication errors, a post-production adjustment method for the TC structure is designed for practical use. Dimensionless formulae are introduced to provide general design guidelines and rules for filters with different dimensions and TC demands. Finally, a sixth-order temperature-compensated bandstop filter is manufactured and tested in temperature cycles. The measurements have validated the theoretical and simulation results.
本文提出了一种新的带温度补偿的U波段带阻波导滤波器的多物理设计方法。双金属TC结构首先应用于高频带阻滤波器,用于在较宽的温度范围(−20°C~70°C)内工作,频率漂移较小。详细介绍了带阻滤波器的合成与设计。该方法主要从几何、多物理、后期生产和理论推广等方面指导双金属执行器的设计。阐述了双金属反应的几何推导,并导出了简化的等效模型。设计过程中共同阐述了包括温度、热应力和电磁场在内的多物理分析。考虑到制造误差,设计了一种TC结构的生产后调整方法,以供实际使用。引入了无量纲公式,为不同尺寸和TC要求的滤波器提供了通用的设计指南和规则。最后,制作了六阶温度补偿带阻滤波器,并在温度循环中进行了测试。测量结果验证了理论和仿真结果。
{"title":"Multiphysics Design Methodology for U-Band Temperature-Compensated Bandstop Filters","authors":"Chang Che;Yi Zeng;Ming Yu","doi":"10.1109/JMMCT.2023.3312756","DOIUrl":"https://doi.org/10.1109/JMMCT.2023.3312756","url":null,"abstract":"This article proposes a novel multiphysics design methodology for a U-band bandstop waveguide filter with temperature compensation (TC). A bimetal TC structure is first implemented to a bandstop filter in such high frequencies for working in a wide temperature range (−20 °C ∼ 70 °C) with little frequency drift. The synthesis and design of the bandstop filter are detailed. The proposed methodology mainly guides the design of the bimetal actuator from geometry, multiphysics, post-production and theoretical promotion. The geometric derivation for the bimetal reactions is elaborated and leads to a simplified equivalent model. Multiphysics analysis, including temperature, thermal stress, and electromagnetic field, is co-elaborated in the design process. Considering the fabrication errors, a post-production adjustment method for the TC structure is designed for practical use. Dimensionless formulae are introduced to provide general design guidelines and rules for filters with different dimensions and TC demands. Finally, a sixth-order temperature-compensated bandstop filter is manufactured and tested in temperature cycles. The measurements have validated the theoretical and simulation results.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"8 ","pages":"372-381"},"PeriodicalIF":2.3,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49962814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Journal on Multiscale and Multiphysics Computational Techniques
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1