首页 > 最新文献

IEEE Journal on Multiscale and Multiphysics Computational Techniques最新文献

英文 中文
Numerical Study of the Optical Response of $text{ITO}$-${text{In}_{{2}}{text O}_{{3}}}$ Core-Shell Nanocrystals for Multispectral Electromagnetic Shielding 多光谱电磁屏蔽中$text{ITO}$-${text{In}_{{2}}{text O}_{{3}}}$核壳纳米晶体光响应的数值研究
IF 2.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-01-10 DOI: 10.1109/JMMCT.2023.3235750
Nicola Curreli;Matteo Bruno Lodi;Michele Ghini;Nicolò Petrini;Andrea Buono;Maurizio Migliaccio;Alessandro Fanti;Ilka Kriegel;Giuseppe Mazzarella
Nowadays, materials to protect equipment from unwanted multispectral electromagnetic waves are needed in a broad range of applications including electronics, medical, military and aerospace. However, the shielding materials currently in use are bulky and work effectively only in a limited frequency range. Therefore, nanostructured materials are under investigation by the relevant scientific community. In this framework, the design of multispectral shielding nanomaterials must be supplemented with proper numerical models that allow dealing with non-linearities and being effective in predicting their absorption spectra. In this study, the electromagnetic response of metal-oxide nanocrystals with multispectral electromagnetic shielding capability has been investigated. A numerical framework was developed to predict energy bands and electron density profiles of a core-shell nanocrystal and to evaluate its optical response at different wavelengths. To this aim, a finite element method software is used to solve a non-linear Poisson's equation. The numerical simulations allowed to model the optical response of $mathbf {ITO}$-$mathbf {In_{2}O_{3}}$ core-shell nanocrystals and can be effectively applied to different nanotopologies to support an enhanced design of nanomaterials with multispectral shielding capabilities.
如今,在电子、医疗、军事和航空航天等广泛应用中,都需要保护设备免受不必要的多光谱电磁波影响的材料。然而,目前使用的屏蔽材料体积庞大,仅在有限的频率范围内有效工作。因此,相关科学界正在对纳米结构材料进行研究。在这一框架下,多光谱屏蔽纳米材料的设计必须辅以适当的数值模型,以处理非线性并有效预测其吸收光谱。在本研究中,研究了具有多光谱电磁屏蔽能力的金属氧化物纳米晶体的电磁响应。开发了一个数值框架来预测核壳纳米晶体的能带和电子密度分布,并评估其在不同波长下的光学响应。为此,使用有限元软件求解非线性泊松方程。数值模拟允许对$mathbf{ITO}$-$mathbf{In的光学响应进行建模_{2}O_{3} }$核壳纳米晶体,可以有效地应用于不同的纳米拓扑结构,以支持具有多光谱屏蔽能力的纳米材料的增强设计。
{"title":"Numerical Study of the Optical Response of $text{ITO}$-${text{In}_{{2}}{text O}_{{3}}}$ Core-Shell Nanocrystals for Multispectral Electromagnetic Shielding","authors":"Nicola Curreli;Matteo Bruno Lodi;Michele Ghini;Nicolò Petrini;Andrea Buono;Maurizio Migliaccio;Alessandro Fanti;Ilka Kriegel;Giuseppe Mazzarella","doi":"10.1109/JMMCT.2023.3235750","DOIUrl":"https://doi.org/10.1109/JMMCT.2023.3235750","url":null,"abstract":"Nowadays, materials to protect equipment from unwanted multispectral electromagnetic waves are needed in a broad range of applications including electronics, medical, military and aerospace. However, the shielding materials currently in use are bulky and work effectively only in a limited frequency range. Therefore, nanostructured materials are under investigation by the relevant scientific community. In this framework, the design of multispectral shielding nanomaterials must be supplemented with proper numerical models that allow dealing with non-linearities and being effective in predicting their absorption spectra. In this study, the electromagnetic response of metal-oxide nanocrystals with multispectral electromagnetic shielding capability has been investigated. A numerical framework was developed to predict energy bands and electron density profiles of a core-shell nanocrystal and to evaluate its optical response at different wavelengths. To this aim, a finite element method software is used to solve a non-linear Poisson's equation. The numerical simulations allowed to model the optical response of \u0000<inline-formula><tex-math>$mathbf {ITO}$</tex-math></inline-formula>\u0000-\u0000<inline-formula><tex-math>$mathbf {In_{2}O_{3}}$</tex-math></inline-formula>\u0000 core-shell nanocrystals and can be effectively applied to different nanotopologies to support an enhanced design of nanomaterials with multispectral shielding capabilities.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"8 ","pages":"60-70"},"PeriodicalIF":2.3,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/7274859/10003074/10013664.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49962821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Systematic Approach to Adaptive Mesh Refinement for Computational Electrodynamics 计算电动力学自适应网格细化的系统方法
IF 2.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-01-03 DOI: 10.1109/JMMCT.2022.3233944
Dinshaw S. Balsara;Costas D. Sarris
There is a great need to solve CED problems on adaptive meshes; referred to here as AMR-CED. The problem was deemed to be susceptible to “long-term instability” and parameterized methods have been used to control the instability. In this paper, we present a new class of AMR-CED methods that are free of this instability because they are based on a more careful understanding of the constraints in Maxwell's equations and their preservation on a single control volume. The important building blocks of these new methods are: 1) Timestep sub-cycling of finer child meshes relative to parent meshes. 2) Restriction of fine mesh facial data to coarser meshes when the two meshes are synchronized in time. 3) Divergence constraint-preserving prolongation of the coarse mesh solution to newly built fine meshes or to the ghost zones of pre-existing fine meshes. 4) Electric and magnetic field intensity-correction strategy at fine-coarse interfaces. Using examples, we show that the resulting AMR-CED algorithm is free of “long-term instability”. Unlike previous methods, there are no adjustable parameters. The method is inherently stable because a strict algorithmic consistency is applied at all levels in the AMR mesh hierarchy. We also show that the method preserves order of accuracy, so that high order methods for AMR-CED are indeed possible.
迫切需要在自适应网格上解决CED问题;这里称为AMR-CED。该问题被认为易受“长期不稳定性”的影响,并采用参数化方法来控制不稳定性。在本文中,我们提出了一类新的AMR-CED方法,它们没有这种不稳定性,因为它们基于对麦克斯韦方程中的约束的更仔细的理解以及它们在单个控制体积上的保存。这些新方法的重要组成部分是:1)子网格相对于父网格的时间步子循环。2)当两种网格及时同步时,细网格面部数据限制为粗网格。3)保持散度约束的粗网格解扩展到新建的细网格或已存在的细网格的幽灵区域。4)细粗界面电场和磁场强度校正策略。通过实例,我们证明了所得到的AMR-CED算法没有“长期不稳定性”。与以前的方法不同,没有可调参数。该方法具有固有的稳定性,因为在AMR网格层次结构的所有层次上都采用了严格的算法一致性。我们还证明了该方法保留了阶精度,因此AMR-CED的高阶方法确实是可能的。
{"title":"A Systematic Approach to Adaptive Mesh Refinement for Computational Electrodynamics","authors":"Dinshaw S. Balsara;Costas D. Sarris","doi":"10.1109/JMMCT.2022.3233944","DOIUrl":"https://doi.org/10.1109/JMMCT.2022.3233944","url":null,"abstract":"There is a great need to solve CED problems on adaptive meshes; referred to here as AMR-CED. The problem was deemed to be susceptible to “long-term instability” and parameterized methods have been used to control the instability. In this paper, we present a new class of AMR-CED methods that are free of this instability because they are based on a more careful understanding of the constraints in Maxwell's equations and their preservation on a single control volume. The important building blocks of these new methods are: 1) Timestep sub-cycling of finer child meshes relative to parent meshes. 2) Restriction of fine mesh facial data to coarser meshes when the two meshes are synchronized in time. 3) Divergence constraint-preserving prolongation of the coarse mesh solution to newly built fine meshes or to the ghost zones of pre-existing fine meshes. 4) Electric and magnetic field intensity-correction strategy at fine-coarse interfaces. Using examples, we show that the resulting AMR-CED algorithm is free of “long-term instability”. Unlike previous methods, there are no adjustable parameters. The method is inherently stable because a strict algorithmic consistency is applied at all levels in the AMR mesh hierarchy. We also show that the method preserves order of accuracy, so that high order methods for AMR-CED are indeed possible.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"8 ","pages":"82-96"},"PeriodicalIF":2.3,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49981637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2023 Index IEEE Journal on Multiscale and Multiphysics Computational Techniques Vol. 8 2023 Index IEEE Journal on Multiscale and Multiphysics Computational Techniques Vol.
IF 2.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-01-01 DOI: 10.1109/JMMCT.2024.3355900
{"title":"2023 Index IEEE Journal on Multiscale and Multiphysics Computational Techniques Vol. 8","authors":"","doi":"10.1109/JMMCT.2024.3355900","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3355900","url":null,"abstract":"","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"8 ","pages":"382-391"},"PeriodicalIF":2.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10405364","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139494253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial The Year of the Impact Factor 社论 影响因子年
IF 2.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-01-01 DOI: 10.1109/JMMCT.2023.3346472
Costas Sarris
In July 2023, the IEEE Journal on Multiphysics and Multiscale Computational Techniques (J-MMCT) reached an important milestone, obtaining its first Impact Factor (2.3). The Impact Factor confirmed the position of the Journal as one of the leading publications dedicated to the latest advances in computational electromagnetics with an emphasis on methods for multiscale and multiphysics problems. This is the result of hard work and consistent efforts of everyone involved with J-MMCT, from founding Editor-in-Chief Prof. Qing-Huo Liu to all Editorial Board and Steering Committee members to date.
2023 年 7 月,《电气和电子工程师学会多物理场和多尺度计算技术期刊》(J-MMCT)达到了一个重要的里程碑,获得了第一个影响因子(2.3)。该影响因子证实了《电磁学多物理场与多尺度计算技术期刊》的地位,它是专门报道计算电磁学最新进展的领先刊物之一,重点关注多尺度和多物理场问题的方法。这是《J-MMCT》从创刊主编刘庆和教授到迄今为止所有编委会和指导委员会成员辛勤工作和不懈努力的结果。
{"title":"Editorial The Year of the Impact Factor","authors":"Costas Sarris","doi":"10.1109/JMMCT.2023.3346472","DOIUrl":"https://doi.org/10.1109/JMMCT.2023.3346472","url":null,"abstract":"In July 2023, the \u0000<sc>IEEE Journal on Multiphysics and Multiscale Computational Techniques</small>\u0000 (J-MMCT) reached an important milestone, obtaining its first Impact Factor (2.3). The Impact Factor confirmed the position of the Journal as one of the leading publications dedicated to the latest advances in computational electromagnetics with an emphasis on methods for multiscale and multiphysics problems. This is the result of hard work and consistent efforts of everyone involved with J-MMCT, from founding Editor-in-Chief Prof. Qing-Huo Liu to all Editorial Board and Steering Committee members to date.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"8 ","pages":"iii-iv"},"PeriodicalIF":2.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10399976","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139473656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An A-$Phi$ Formulation Solver in Electromagnetics Based on Discrete Exterior Calculus 电磁学中基于离散外微积分的A-$Phi$公式求解器
IF 2.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-12-20 DOI: 10.1109/JMMCT.2022.3230732
Boyuan Zhang;Dong-Yeop Na;Dan Jiao;Weng Cho Chew
An efficient numerical solver for the A-$Phi$ formulation in electromagnetics based on discrete exterior calculus (DEC) is proposed in this paper. The A-$Phi$ formulation is immune to low-frequency breakdown and ideal for broadband and multi-scale analysis. The generalized Lorenz gauge is used in this paper, which decouples the A equation and the $Phi$ equation. The A-$Phi$ formulation is discretized by using the DEC, which is the discretized version of exterior calculus in differential geometry. In general, DEC can be viewed as a generalized version of the finite difference method, where Stokes' theorem and Gauss's theorem are naturally preserved. Furthermore, compared with finite difference method, where rectangular grids are applied, DEC can be implemented with unstructured mesh schemes, such as tetrahedral meshes. Thus, the proposed DEC A-$Phi$ solver is inherently stable, free of spurious solutions and can capture highly complex structures efficiently. In this paper, the background knowledge about the A-$Phi$ formulation and DEC is introduced, as well as technical details in implementing the DEC A-$Phi$ solver with different boundary conditions. Numerical examples are provided for validation purposes as well.
本文提出了一种基于离散外部微积分(DEC)的电磁学A$Phi$公式的高效数值求解器。A$Phi$公式不受低频击穿的影响,非常适合宽带和多尺度分析。本文采用广义洛伦兹规范对A方程和$Phi$方程进行解耦。A$Phi$公式通过使用DEC进行离散化,DEC是微分几何中外部微积分的离散化版本。一般来说,DEC可以被视为有限差分法的一个广义版本,其中斯托克斯定理和高斯定理自然保留。此外,与应用矩形网格的有限差分方法相比,DEC可以用非结构化网格格式来实现,例如四面体网格。因此,所提出的DEC A-$Phi$求解器本质上是稳定的,没有伪解,并且可以有效地捕获高度复杂的结构。本文介绍了A-$Phi$公式和DEC的背景知识,以及在不同边界条件下实现DEC A-$Pi$求解器的技术细节。数值示例也用于验证目的。
{"title":"An A-$Phi$ Formulation Solver in Electromagnetics Based on Discrete Exterior Calculus","authors":"Boyuan Zhang;Dong-Yeop Na;Dan Jiao;Weng Cho Chew","doi":"10.1109/JMMCT.2022.3230732","DOIUrl":"https://doi.org/10.1109/JMMCT.2022.3230732","url":null,"abstract":"An efficient numerical solver for the \u0000<bold>A</b>\u0000-\u0000<inline-formula><tex-math>$Phi$</tex-math></inline-formula>\u0000 formulation in electromagnetics based on discrete exterior calculus (DEC) is proposed in this paper. The \u0000<bold>A</b>\u0000-\u0000<inline-formula><tex-math>$Phi$</tex-math></inline-formula>\u0000 formulation is immune to low-frequency breakdown and ideal for broadband and multi-scale analysis. The generalized Lorenz gauge is used in this paper, which decouples the \u0000<bold>A</b>\u0000 equation and the \u0000<inline-formula><tex-math>$Phi$</tex-math></inline-formula>\u0000 equation. The \u0000<bold>A</b>\u0000-\u0000<inline-formula><tex-math>$Phi$</tex-math></inline-formula>\u0000 formulation is discretized by using the DEC, which is the discretized version of exterior calculus in differential geometry. In general, DEC can be viewed as a generalized version of the finite difference method, where Stokes' theorem and Gauss's theorem are naturally preserved. Furthermore, compared with finite difference method, where rectangular grids are applied, DEC can be implemented with unstructured mesh schemes, such as tetrahedral meshes. Thus, the proposed DEC \u0000<bold>A</b>\u0000-\u0000<inline-formula><tex-math>$Phi$</tex-math></inline-formula>\u0000 solver is inherently stable, free of spurious solutions and can capture highly complex structures efficiently. In this paper, the background knowledge about the \u0000<bold>A</b>\u0000-\u0000<inline-formula><tex-math>$Phi$</tex-math></inline-formula>\u0000 formulation and DEC is introduced, as well as technical details in implementing the DEC \u0000<bold>A</b>\u0000-\u0000<inline-formula><tex-math>$Phi$</tex-math></inline-formula>\u0000 solver with different boundary conditions. Numerical examples are provided for validation purposes as well.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"8 ","pages":"11-21"},"PeriodicalIF":2.3,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49962816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Boundary Integral Equation Method for Electrostatic Field Prediction in Piecewise-Homogeneous Electrolytes 分段均质电解质中静电场预测的边界积分方程法
IF 2.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-12-20 DOI: 10.1109/JMMCT.2022.3230664
Christopher K. Pratt;John C. Young;Robert J. Adams;Stephen D. Gedney
This article presents a boundary integral equation formulation for the prediction of electrostatic fields, potentials, and currents in regions comprising piecewise-homogeneous electrolytes. The integral equation is formulated in terms of the boundary electric potentials and normal electric current densities and is discretized using the locally corrected Nyström method. The method is validated by comparison to analytic solution data for both linear and nonlinear canonical problems. Solution convergence is investigated with respect to mesh discretization and basis order.
本文提出了一个边界积分方程公式,用于预测分段均质电解质区域内的静电场、电位和电流。积分方程用边界电位和法向电流密度表示,并用局部校正Nyström方法进行离散化。通过与线性和非线性正则问题解析解数据的比较,验证了该方法的有效性。研究了该方法在网格离散化和基阶方面的收敛性。
{"title":"Boundary Integral Equation Method for Electrostatic Field Prediction in Piecewise-Homogeneous Electrolytes","authors":"Christopher K. Pratt;John C. Young;Robert J. Adams;Stephen D. Gedney","doi":"10.1109/JMMCT.2022.3230664","DOIUrl":"https://doi.org/10.1109/JMMCT.2022.3230664","url":null,"abstract":"This article presents a boundary integral equation formulation for the prediction of electrostatic fields, potentials, and currents in regions comprising piecewise-homogeneous electrolytes. The integral equation is formulated in terms of the boundary electric potentials and normal electric current densities and is discretized using the locally corrected Nyström method. The method is validated by comparison to analytic solution data for both linear and nonlinear canonical problems. Solution convergence is investigated with respect to mesh discretization and basis order.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"8 ","pages":"22-30"},"PeriodicalIF":2.3,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49962817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Electromagnetic-Thermal Modeling of Nonlinear Magnetic Materials 非线性磁性材料的电磁-热建模
IF 2.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-12-16 DOI: 10.1109/JMMCT.2022.3229963
Hongliang Li;Philip T. Krein;Jian-Ming Jin
A nonlinear electromagnetic (EM)-thermal coupled solver is developed for modeling ferromagnetic materials widely used in electric motors. To accurately predict machine performance, the time-domain finite element method is employed to solve this multiphysics problem. By adopting the nonlinear B-H models to account for hysteresis effects, magnetic core losses are computed as the major sources of power dissipation for magnetic materials. The resulting temperature change is then obtained and its effect on the magnetic properties is subsequently evaluated. Due to different time scales of EM field variations and heat transfer processes, different time step sizes are adopted to enhance the simulation speed. During thermal time marching, the EM solver is invoked adaptively based on material property changes, and EM losses are calculated and updated through extrapolation, resulting in an efficient EM-thermal coupling scheme. Numerical examples are presented to validate the accuracy and capabilities of the proposed EM-thermal co-simulation framework.
开发了一种非线性电磁(EM)-热耦合求解器,用于对电机中广泛使用的铁磁材料进行建模。为了准确预测机器性能,采用时域有限元方法来解决这一多物理问题。通过采用非线性B-H模型来考虑磁滞效应,计算了磁芯损耗作为磁性材料功耗的主要来源。然后获得所产生的温度变化,并随后评估其对磁性能的影响。由于电磁场变化和传热过程的时间尺度不同,采用了不同的时间步长来提高模拟速度。在热时间推进过程中,根据材料特性变化自适应调用EM求解器,并通过外推计算和更新EM损耗,从而形成有效的EM热耦合方案。通过数值算例验证了所提出的EM热协同仿真框架的准确性和能力。
{"title":"Electromagnetic-Thermal Modeling of Nonlinear Magnetic Materials","authors":"Hongliang Li;Philip T. Krein;Jian-Ming Jin","doi":"10.1109/JMMCT.2022.3229963","DOIUrl":"https://doi.org/10.1109/JMMCT.2022.3229963","url":null,"abstract":"A nonlinear electromagnetic (EM)-thermal coupled solver is developed for modeling ferromagnetic materials widely used in electric motors. To accurately predict machine performance, the time-domain finite element method is employed to solve this multiphysics problem. By adopting the nonlinear B-H models to account for hysteresis effects, magnetic core losses are computed as the major sources of power dissipation for magnetic materials. The resulting temperature change is then obtained and its effect on the magnetic properties is subsequently evaluated. Due to different time scales of EM field variations and heat transfer processes, different time step sizes are adopted to enhance the simulation speed. During thermal time marching, the EM solver is invoked adaptively based on material property changes, and EM losses are calculated and updated through extrapolation, resulting in an efficient EM-thermal coupling scheme. Numerical examples are presented to validate the accuracy and capabilities of the proposed EM-thermal co-simulation framework.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"8 ","pages":"1-10"},"PeriodicalIF":2.3,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49962815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Characterization of Transmission Lines in Microelectronic Circuits Using the ARTEMIS Solver 利用ARTEMIS求解器表征微电子电路中的传输线
IF 2.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-12-12 DOI: 10.1109/JMMCT.2022.3228281
Saurabh S. Sawant;Zhi Yao;Revathi Jambunathan;Andrew Nonaka
Modeling and characterization of electromagnetic wave interactions with microelectronic devices to derive network parameters has been a widely used practice in the electronic industry. However, as these devices become increasingly miniaturized with finer-scale geometric features, computational tools must make use of manycore/GPU architectures to efficiently resolve length and time scales of interest. This has been the focus of our open-source solver, ARTEMIS (Adaptive mesh Refinement Time-domain ElectrodynaMIcs Solver), which is performant on modern GPU-based supercomputing architectures while being amenable to additional physics coupling. This work demonstrates its use for characterizing network parameters of transmission lines using established techniques. A rigorous verification and validation of the workflow is carried out, followed by its application for analyzing a transmission line on a CMOS chip designed for a photon-detector application. Simulations are performed for millions of timesteps on state-of-the-art GPU resources to resolve nanoscale features at gigahertz frequencies. The network parameters are used to obtain phase delay and characteristic impedance that serve as inputs to SPICE models. The code is demonstrated to exhibit ideal weak scaling efficiency up to 1024 GPUs and 84% efficiency for 2048 GPUs, which underscores its use for network analysis of larger, more complex circuit devices in the future.
电磁波与微电子器件相互作用的建模和表征以导出网络参数已在电子工业中得到广泛应用。然而,随着这些设备越来越小型化,具有更精细的几何特征,计算工具必须利用许多核心/GPU架构来有效地解决感兴趣的长度和时间尺度。这一直是我们开源解算器ARTEMIS(自适应网格细化时域电动力解算器)的重点,该解算器在现代基于GPU的超级计算架构上具有性能,同时可接受额外的物理耦合。这项工作展示了它在使用既定技术表征输电线路网络参数方面的用途。对该工作流程进行了严格的验证和验证,然后将其应用于分析为光子探测器应用而设计的CMOS芯片上的传输线。在最先进的GPU资源上进行数百万个时间步长的模拟,以解决千兆赫频率下的纳米级特征。网络参数用于获得作为SPICE模型输入的相位延迟和特性阻抗。该代码显示出理想的弱缩放效率,最高可达1024 GPU,2048 GPU的效率为84%,这突出了它在未来用于更大、更复杂电路设备的网络分析。
{"title":"Characterization of Transmission Lines in Microelectronic Circuits Using the ARTEMIS Solver","authors":"Saurabh S. Sawant;Zhi Yao;Revathi Jambunathan;Andrew Nonaka","doi":"10.1109/JMMCT.2022.3228281","DOIUrl":"https://doi.org/10.1109/JMMCT.2022.3228281","url":null,"abstract":"Modeling and characterization of electromagnetic wave interactions with microelectronic devices to derive network parameters has been a widely used practice in the electronic industry. However, as these devices become increasingly miniaturized with finer-scale geometric features, computational tools must make use of manycore/GPU architectures to efficiently resolve length and time scales of interest. This has been the focus of our open-source solver, ARTEMIS (Adaptive mesh Refinement Time-domain ElectrodynaMIcs Solver), which is performant on modern GPU-based supercomputing architectures while being amenable to additional physics coupling. This work demonstrates its use for characterizing network parameters of transmission lines using established techniques. A rigorous verification and validation of the workflow is carried out, followed by its application for analyzing a transmission line on a CMOS chip designed for a photon-detector application. Simulations are performed for millions of timesteps on state-of-the-art GPU resources to resolve nanoscale features at gigahertz frequencies. The network parameters are used to obtain phase delay and characteristic impedance that serve as inputs to SPICE models. The code is demonstrated to exhibit ideal weak scaling efficiency up to 1024 GPUs and 84% efficiency for 2048 GPUs, which underscores its use for network analysis of larger, more complex circuit devices in the future.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"8 ","pages":"31-39"},"PeriodicalIF":2.3,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49962818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Finite Element-Boundary Element Method Based Simulations of Electromagnetic Railgun in Augmented Configurations 基于有限元-边界元法的电磁轨道炮增强构型仿真
IF 2.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-11-16 DOI: 10.1109/JMMCT.2022.3222529
S. R. Naga Praneeth;Bhim Singh
When dealing with electromechanical system modelling, numerical challenges are inevitable. Especially when working with moving conductor problems, such as rotational or linear motors, special care needs to be taken for the air-gap region. Railguns air region is one more addition to this modelling problem. The air region necessitates either remeshing or a custom mesh topology. In addition, the production of air mesh for conductors with complicated shapes has its own difficulties. The air mesh requirement may be reduced by using the finite element-boundary element (FE-BE) technique. Boundary elements for air mesh and finite elements for conductors allow for the creation of models with moving conductors and makes model production easier and quicker. This paper investigates the changes observed in the railgun's electrical and mechanical parameters through the finite element-boundary element simulation approach when the geometry of the augmentation rails in a railgun is changed. Tapering and filleting are two geometry changes implemented on the augmenting rails of an electromagnetic railgun. Designed railgun variants are investigated using LS-Dyna software. A new formulation for breech voltage in augmented electromagnetic railguns is derived to calculate barrel efficiency. Four configurations of augmented electromagnetic railguns are analyzed, emphasizing force profile, inductance gradient, and motional-emf ($iL^{prime }v$). One of the new configurations has resulted in an improvement in the force profile during the initial stages of the launch by 8.8%, and the armature's final muzzle velocity has improved by 7%.
在处理机电系统建模时,数值挑战是不可避免的。特别是在处理移动导体问题时,如旋转或线性电机,需要特别注意气隙区域。Railguns空中区域是这个建模问题的又一个补充。空气区域需要重新网格化或自定义网格拓扑。此外,为形状复杂的导体生产空气网也有其自身的困难。可以通过使用有限元边界元(FE-be)技术来减少空气网格需求。空气网格的边界元和导体的有限元允许创建具有移动导体的模型,并使模型制作更容易、更快。本文通过有限元边界元模拟方法,研究了当轨道炮中增加轨道的几何形状发生变化时,轨道炮的电气和机械参数的变化。锥形和圆角是在电磁轨道炮的增强轨道上实现的两种几何变化。使用LS Dyna软件对设计的轨道炮变体进行了研究。为了计算炮管效率,推导了一种新的增程式电磁轨道炮后膛电压公式。分析了增广电磁轨道炮的四种配置,重点是力分布、电感梯度和运动电动势($iL^{prime}v$)。其中一种新的配置使发射初期的力分布提高了8.8%,电枢的最终初速提高了7%。
{"title":"Finite Element-Boundary Element Method Based Simulations of Electromagnetic Railgun in Augmented Configurations","authors":"S. R. Naga Praneeth;Bhim Singh","doi":"10.1109/JMMCT.2022.3222529","DOIUrl":"https://doi.org/10.1109/JMMCT.2022.3222529","url":null,"abstract":"When dealing with electromechanical system modelling, numerical challenges are inevitable. Especially when working with moving conductor problems, such as rotational or linear motors, special care needs to be taken for the air-gap region. Railguns air region is one more addition to this modelling problem. The air region necessitates either remeshing or a custom mesh topology. In addition, the production of air mesh for conductors with complicated shapes has its own difficulties. The air mesh requirement may be reduced by using the finite element-boundary element (FE-BE) technique. Boundary elements for air mesh and finite elements for conductors allow for the creation of models with moving conductors and makes model production easier and quicker. This paper investigates the changes observed in the railgun's electrical and mechanical parameters through the finite element-boundary element simulation approach when the geometry of the augmentation rails in a railgun is changed. Tapering and filleting are two geometry changes implemented on the augmenting rails of an electromagnetic railgun. Designed railgun variants are investigated using LS-Dyna software. A new formulation for breech voltage in augmented electromagnetic railguns is derived to calculate barrel efficiency. Four configurations of augmented electromagnetic railguns are analyzed, emphasizing force profile, inductance gradient, and motional-emf (\u0000<inline-formula><tex-math>$iL^{prime }v$</tex-math></inline-formula>\u0000). One of the new configurations has resulted in an improvement in the force profile during the initial stages of the launch by 8.8%, and the armature's final muzzle velocity has improved by 7%.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"7 ","pages":"320-327"},"PeriodicalIF":2.3,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49950114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Efficient Numerical Approach for Evaluating Sommerfeld Integrals Arising in the Construction of Green's Functions for Layered Media 层状介质中格林函数构造中Sommerfeld积分的一种有效数值计算方法
IF 2.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-11-14 DOI: 10.1109/JMMCT.2022.3221835
Ozlem Ozgun;Raj Mittra;Mustafa Kuzuoglu
This paper presents an approach for evaluating the Sommerfeld integrals in the spectral domain, whose integrands typically show an oscillatory and slowly decaying behavior at high frequencies, e.g., in the mm-wave regime. It is well known that these integrals arise in the representations of the dyadic Green's functions of layered media and efficient computation of these Green's functions is key to rapid CEM modeling of patch antennas and printed circuits designed for 5G applications in the mm-wave range. The underlying concept of the approach is to partition the spectral domain representation of a Green's function into multiple domains and to represent the envelope of the integrand in each domain with a few exponentials such that the integrals in these domains can be evaluated analytically very efficiently and accurately in a numerically stable manner. Additionally, a new interpolation strategy is proposed in this work to decrease the matrix fill time in the MoM solution of the integral equations whose kernels contain Green's functions mentioned above. The performance enhancement realized by using the approaches is demonstrated through several illustrative examples.
本文提出了一种在谱域中评估Sommerfeld积分的方法,其被积函数在高频下(例如在毫米波区域)通常表现出振荡和缓慢衰减的行为。众所周知,这些积分出现在层状介质的并矢格林函数的表示中,这些格林函数的有效计算是为毫米波范围内的5G应用设计的贴片天线和印刷电路的快速CEM建模的关键。该方法的基本概念是将格林函数的谱域表示划分为多个域,并用几个指数表示每个域中被积函数的包络,以便可以以数值稳定的方式非常有效和准确地分析评估这些域中的积分。此外,本文还提出了一种新的插值策略,以减少核包含上述格林函数的积分方程MoM解中的矩阵填充时间。通过几个示例说明了使用这些方法实现的性能增强。
{"title":"An Efficient Numerical Approach for Evaluating Sommerfeld Integrals Arising in the Construction of Green's Functions for Layered Media","authors":"Ozlem Ozgun;Raj Mittra;Mustafa Kuzuoglu","doi":"10.1109/JMMCT.2022.3221835","DOIUrl":"https://doi.org/10.1109/JMMCT.2022.3221835","url":null,"abstract":"This paper presents an approach for evaluating the Sommerfeld integrals in the spectral domain, whose integrands typically show an oscillatory and slowly decaying behavior at high frequencies, e.g., in the mm-wave regime. It is well known that these integrals arise in the representations of the dyadic Green's functions of layered media and efficient computation of these Green's functions is key to rapid CEM modeling of patch antennas and printed circuits designed for 5G applications in the mm-wave range. The underlying concept of the approach is to partition the spectral domain representation of a Green's function into multiple domains and to represent the envelope of the integrand in each domain with a few exponentials such that the integrals in these domains can be evaluated analytically very efficiently and accurately in a numerically stable manner. Additionally, a new interpolation strategy is proposed in this work to decrease the matrix fill time in the MoM solution of the integral equations whose kernels contain Green's functions mentioned above. The performance enhancement realized by using the approaches is demonstrated through several illustrative examples.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"7 ","pages":"328-335"},"PeriodicalIF":2.3,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49950115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Journal on Multiscale and Multiphysics Computational Techniques
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1