Pub Date : 2024-05-18eCollection Date: 2024-01-01DOI: 10.1093/nc/niae017
Benjamin Kozuch
Recent years have seen the rise of several theories saying that the prefrontal cortex (PFC) is a neural correlate of visual consciousness (NCC). Especially popular here are theories saying that the PFC is the 'content NCC' for vision, i.e. it contains those brain areas that are not only necessary for consciousness, but also determine 'what' it is that we visually experience (e.g. whether we experience green or red). This article points out how this "upper-deck" form of PFC theory is at odds with the character of visual experience: on the one hand, visual consciousness appears to contain copious amounts of content, with many properties (such as object, shape, or color) being simultaneously represented in many parts of the visual field. On the other hand, the functions that the PFC carries out (e.g. attention and working memory) are each dedicated to processing only a relatively small subset of available visual stimuli. In short, the PFC probably does not produce enough or the right kind of visual representations for it to supply all of the content found in visual experience, in which case the idea that the PFC is the content NCC for vision is probably false. This article also discusses data thought to undercut the idea that visual experience is informationally rich (inattentional blindness, etc.), along with theories of vision according to which "ensemble statistics" are used to represent features in the periphery of the visual field. I'll argue that these lines of evidence fail to close the apparently vast gap between the amount of visual content represented in the visual experience and the amount represented in the PFC.
{"title":"An embarrassment of richnesses: the PFC isn't the content NCC.","authors":"Benjamin Kozuch","doi":"10.1093/nc/niae017","DOIUrl":"https://doi.org/10.1093/nc/niae017","url":null,"abstract":"<p><p>Recent years have seen the rise of several theories saying that the prefrontal cortex (PFC) is a neural correlate of visual consciousness (NCC). Especially popular here are theories saying that the PFC is the 'content NCC' for vision, i.e. it contains those brain areas that are not only necessary for consciousness, but also determine 'what' it is that we visually experience (e.g. whether we experience green or red). This article points out how this \"upper-deck\" form of PFC theory is at odds with the character of visual experience: on the one hand, visual consciousness appears to contain copious amounts of content, with many properties (such as object, shape, or color) being simultaneously represented in many parts of the visual field. On the other hand, the functions that the PFC carries out (e.g. attention and working memory) are each dedicated to processing only a relatively small subset of available visual stimuli. In short, the PFC probably does not produce enough or the right kind of visual representations for it to supply all of the content found in visual experience, in which case the idea that the PFC is the content NCC for vision is probably false. This article also discusses data thought to undercut the idea that visual experience is informationally rich (inattentional blindness, etc.), along with theories of vision according to which \"ensemble statistics\" are used to represent features in the periphery of the visual field. I'll argue that these lines of evidence fail to close the apparently vast gap between the amount of visual content represented in the visual experience and the amount represented in the PFC.</p>","PeriodicalId":52242,"journal":{"name":"Neuroscience of Consciousness","volume":"2024 1","pages":"niae017"},"PeriodicalIF":3.1,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11210398/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141472442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16eCollection Date: 2024-01-01DOI: 10.1093/nc/niae019
Kate Pickard, Matthew J Davidson, Sujin Kim, David Alais
Attributing a visual motion signal to its correct source-be that external object motion, self-motion, or some combination of both-seems effortless, and yet often involves disentangling a complex web of motion signals. Existing literature focuses on either translational motion (heading) or eye movements, leaving much to be learnt about the influence of a wider range of self-motions, such as active head rotations, on visual motion perception. This study investigated how active head rotations affect visual motion detection thresholds, comparing conditions where visual motion and head-turn direction were either congruent or incongruent. Participants judged the direction of a visual motion stimulus while rotating their head or remaining stationary, using a fixation-locked Virtual Reality display with integrated head-movement recordings. Thresholds to perceive visual motion were higher in both active-head rotation conditions compared to stationary, though no differences were found between congruent or incongruent conditions. Participants also showed a significant bias to report seeing visual motion travelling in the same direction as the head rotation. Together, these results demonstrate active head rotations increase visual motion perceptual thresholds, particularly in cases of incongruent visual and active vestibular stimulation.
{"title":"Incongruent active head rotations increase visual motion detection thresholds.","authors":"Kate Pickard, Matthew J Davidson, Sujin Kim, David Alais","doi":"10.1093/nc/niae019","DOIUrl":"https://doi.org/10.1093/nc/niae019","url":null,"abstract":"<p><p>Attributing a visual motion signal to its correct source-be that external object motion, self-motion, or some combination of both-seems effortless, and yet often involves disentangling a complex web of motion signals. Existing literature focuses on either translational motion (heading) or eye movements, leaving much to be learnt about the influence of a wider range of self-motions, such as active head rotations, on visual motion perception. This study investigated how active head rotations affect visual motion detection thresholds, comparing conditions where visual motion and head-turn direction were either congruent or incongruent. Participants judged the direction of a visual motion stimulus while rotating their head or remaining stationary, using a fixation-locked Virtual Reality display with integrated head-movement recordings. Thresholds to perceive visual motion were higher in both active-head rotation conditions compared to stationary, though no differences were found between congruent or incongruent conditions. Participants also showed a significant bias to report seeing visual motion travelling in the same direction as the head rotation. Together, these results demonstrate active head rotations increase visual motion perceptual thresholds, particularly in cases of incongruent visual and active vestibular stimulation.</p>","PeriodicalId":52242,"journal":{"name":"Neuroscience of Consciousness","volume":"2024 1","pages":"niae019"},"PeriodicalIF":4.1,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11097904/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140960878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16eCollection Date: 2024-01-01DOI: 10.1093/nc/niae021
André Sevenius Nilsen, Alessandro Arena, Johan F Storm
To investigate mechanisms underlying loss of consciousness, it is important to extend methods established in humans to rodents as well. Perturbational complexity index (PCI) is a promising metric of "capacity for consciousness" and is based on a perturbational approach that allows inferring a system's capacity for causal integration and differentiation of information. These properties have been proposed as necessary for conscious systems. Measures based on spontaneous electroencephalography recordings, however, may be more practical for certain clinical purposes and may better reflect ongoing dynamics. Here, we compare PCI (using electrical stimulation for perturbing cortical activity) to several spontaneous electroencephalography-based measures of signal diversity and integrated information in rats undergoing propofol, sevoflurane, and ketamine anesthesia. We find that, along with PCI, the spontaneous electroencephalography-based measures, Lempel-Ziv complexity (LZ) and geometric integrated information (ΦG), were best able to distinguish between awake and propofol and sevoflurane anesthesia. However, PCI was anti-correlated with spontaneous measures of integrated information, which generally increased during propofol and sevoflurane anesthesia, contrary to expectations. Together with an observed divergence in network properties estimated from directed functional connectivity (current results) and effective connectivity (earlier results), the perturbation-based results seem to suggest that anesthesia disrupts global cortico-cortical information transfer, whereas spontaneous activity suggests the opposite. We speculate that these seemingly diverging results may be because of suppressed encoding specificity of information or driving subcortical projections from, e.g., the thalamus. We conclude that certain perturbation-based measures (PCI) and spontaneous measures (LZ and ΦG) may be complementary and mutually informative when studying altered states of consciousness.
{"title":"Exploring effects of anesthesia on complexity, differentiation, and integrated information in rat EEG.","authors":"André Sevenius Nilsen, Alessandro Arena, Johan F Storm","doi":"10.1093/nc/niae021","DOIUrl":"https://doi.org/10.1093/nc/niae021","url":null,"abstract":"<p><p>To investigate mechanisms underlying loss of consciousness, it is important to extend methods established in humans to rodents as well. Perturbational complexity index (PCI) is a promising metric of \"capacity for consciousness\" and is based on a perturbational approach that allows inferring a system's capacity for causal integration and differentiation of information. These properties have been proposed as necessary for conscious systems. Measures based on spontaneous electroencephalography recordings, however, may be more practical for certain clinical purposes and may better reflect ongoing dynamics. Here, we compare PCI (using electrical stimulation for perturbing cortical activity) to several spontaneous electroencephalography-based measures of signal diversity and integrated information in rats undergoing propofol, sevoflurane, and ketamine anesthesia. We find that, along with PCI, the spontaneous electroencephalography-based measures, Lempel-Ziv complexity (LZ) and geometric integrated information (Φ<sup><b>G</b></sup>), were best able to distinguish between awake and propofol and sevoflurane anesthesia. However, PCI was anti-correlated with spontaneous measures of integrated information, which generally increased during propofol and sevoflurane anesthesia, contrary to expectations. Together with an observed divergence in network properties estimated from directed functional connectivity (current results) and effective connectivity (earlier results), the perturbation-based results seem to suggest that anesthesia disrupts global cortico-cortical information transfer, whereas spontaneous activity suggests the opposite. We speculate that these seemingly diverging results may be because of suppressed encoding specificity of information or driving subcortical projections from, e.g., the thalamus. We conclude that certain perturbation-based measures (PCI) and spontaneous measures (LZ and Φ<sup><b>G</b></sup>) may be complementary and mutually informative when studying altered states of consciousness.</p>","PeriodicalId":52242,"journal":{"name":"Neuroscience of Consciousness","volume":"2024 1","pages":"niae021"},"PeriodicalIF":4.1,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11097907/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140960861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07eCollection Date: 2024-01-01DOI: 10.1093/nc/niae018
Rémi Sanchez, Anne-Catherine Tomei, Pascal Mamassian, Manuel Vidal, Andrea Desantis
Perceptual confidence reflects the ability to evaluate the evidence that supports perceptual decisions. It is thought to play a critical role in guiding decision-making. However, only a few empirical studies have actually investigated the function of perceptual confidence. To address this issue, we designed a perceptual task in which participants provided a confidence judgment on the accuracy of their perceptual decision. Then, they viewed the response of a machine or human partner, and they were instructed to decide whether to keep or change their initial response. We observed that confidence predicted participants' changes of mind more than task difficulty and perceptual accuracy. Additionally, interacting with a machine, compared to a human, decreased confidence and increased participants tendency to change their initial decision, suggesting that both confidence and changes of mind are influenced by contextual factors, such as the identity of a partner. Finally, variations in confidence judgments but not change of mind were correlated with pre-response pupil dynamics, indicating that arousal changes are linked to confidence computations. This study contributes to our understanding of the factors influencing confidence and changes of mind and also evaluates the possibility of using pupil dynamics as a proxy of confidence.
{"title":"What the eyes, confidence, and partner's identity can tell about change of mind.","authors":"Rémi Sanchez, Anne-Catherine Tomei, Pascal Mamassian, Manuel Vidal, Andrea Desantis","doi":"10.1093/nc/niae018","DOIUrl":"10.1093/nc/niae018","url":null,"abstract":"<p><p><b>Perceptual confidence reflects the ability to evaluate the evidence that supports perceptual decisions. It is thought to play a critical role in guiding decision-making. However, only a few empirical studies have actually investigated the function of perceptual confidence. To address this issue, we designed a perceptual task in which participants provided a confidence judgment on the accuracy of their perceptual decision. Then, they viewed the response of a machine or human partner, and they were instructed to decide whether to keep or change their initial response. We observed that confidence predicted participants' changes of mind more than task difficulty and perceptual accuracy. Additionally, interacting with a machine, compared to a human, decreased confidence and increased participants tendency to change their initial decision, suggesting that both confidence and changes of mind are influenced by contextual factors, such as the identity of a partner. Finally, variations in confidence judgments but not change of mind were correlated with pre-response pupil dynamics, indicating that arousal changes are linked to confidence computations. This study contributes to our understanding of the factors influencing confidence and changes of mind and also evaluates the possibility of using pupil dynamics as a proxy of confidence</b>.</p>","PeriodicalId":52242,"journal":{"name":"Neuroscience of Consciousness","volume":"2024 1","pages":"niae018"},"PeriodicalIF":3.1,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11077902/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140892813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anna Ciaunica, Adam Safron, Jonathan Delafield-Butt
Most theoretical and empirical discussions about the nature of consciousness are typically couched in a way that endorses a tacit adult-centric and vision-based perspective. This paper defends the idea that consciousness science may be put on a fruitful track for its next phase by examining the nature of subjective experiences through a bottom-up developmental lens. We draw attention to the intrinsic link between consciousness, experiences and experiencing subjects, which are first and foremost embodied and situated organisms essentially concerned with self-preservation within a precarious environment. Our paper suggests that in order to understand what consciousness ‘is’, one should first tackle the fundamental question: how do embodied experiences ‘arise’ from square one? We then highlight one key yet overlooked aspect of human consciousness studies, namely that the earliest and closest environment of an embodied experiencing subject is the body of another human experiencing subject. We present evidence speaking in favour of fairly sophisticated forms of early sensorimotor integration of bodily signals and self-generated actions already being established in utero. We conclude that these primitive and fundamentally relational and co-embodied roots of our early experiences may have a crucial impact on the way human beings consciously experience the self, body and the world across their lifespan.
{"title":"Back to square one: the bodily roots of conscious experiences in early life","authors":"Anna Ciaunica, Adam Safron, Jonathan Delafield-Butt","doi":"10.1093/nc/niab037","DOIUrl":"https://doi.org/10.1093/nc/niab037","url":null,"abstract":"Most theoretical and empirical discussions about the nature of consciousness are typically couched in a way that endorses a tacit adult-centric and vision-based perspective. This paper defends the idea that consciousness science may be put on a fruitful track for its next phase by examining the nature of subjective experiences through a bottom-up developmental lens. We draw attention to the intrinsic link between consciousness, experiences and experiencing subjects, which are first and foremost embodied and situated organisms essentially concerned with self-preservation within a precarious environment. Our paper suggests that in order to understand what consciousness ‘is’, one should first tackle the fundamental question: how do embodied experiences ‘arise’ from square one? We then highlight one key yet overlooked aspect of human consciousness studies, namely that the earliest and closest environment of an embodied experiencing subject is the body of another human experiencing subject. We present evidence speaking in favour of fairly sophisticated forms of early sensorimotor integration of bodily signals and self-generated actions already being established in utero. We conclude that these primitive and fundamentally relational and co-embodied roots of our early experiences may have a crucial impact on the way human beings consciously experience the self, body and the world across their lifespan.","PeriodicalId":52242,"journal":{"name":"Neuroscience of Consciousness","volume":"99 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140616836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nuria Campora, Juan Pablo Princich, Alejandro Nasimbera, Santiago Cordisco, Manuela Villanueva, Silvia Oddo, Brenda Giagante, Silvia Kochen
The loss of consciousness (LOC) during seizures is one of the most striking features that significantly impact the quality of life, even though the neuronal network involved is not fully comprehended. We analyzed the intracerebral patterns in patients with focal drug-resistant epilepsy, both with and without LOC. We assessed the localization, lateralization, stereo electroencephalography (SEEG) patterns, seizure duration, and the quantification of contacts exhibiting electrical discharge. The degree of LOC was quantified using the Consciousness Seizure Scale. Thirteen patients (40 seizures) with focal drug-resistant epilepsy underwent SEEG. In cases of temporal lobe epilepsy (TLE, 6 patients and 15 seizures), LOC occurred more frequently in seizures with mesial rather than lateral temporal lobe onset. On the other hand, in cases of frontal lobe epilepsy (7 patients; 25 seizures), LOC was associated with pre-frontal onset, a higher number of contacts with epileptic discharge compared to the onset count and longer seizure durations. Our study revealed distinct characteristics during LOC depending on the epileptogenic zone. For temporal lobe seizures, LOC was associated with mesial seizure onset, whereas in frontal lobe epilepsy, seizure with LOC has a significant increase in contact showing epileptiform discharge and a pre-frontal onset. This phenomenon may be correlated with the broad neural network required to maintain consciousness, which can be affected in different ways, resulting in LOC
癫痫发作时的意识丧失(LOC)是最显著的特征之一,对患者的生活质量有很大影响,尽管其中涉及的神经元网络尚不完全清楚。我们分析了有和没有 LOC 的局灶性耐药性癫痫患者的脑内模式。我们评估了定位、侧位、立体脑电图(SEEG)模式、发作持续时间以及放电触点的量化。LOC 的程度使用意识发作量表进行量化。13 名局灶性耐药性癫痫患者(40 次发作)接受了 SEEG 检查。在颞叶癫痫(TLE,6 名患者,15 次发作)病例中,LOC 更常发生在颞叶中叶而非外侧发病的癫痫发作中。另一方面,在额叶癫痫(7 名患者,25 次发作)病例中,LOC 与额叶前发病、与癫痫放电的接触次数高于发病次数以及发作持续时间较长有关。我们的研究揭示了不同致痫区在 LOC 期间的不同特征。对于颞叶癫痫,LOC 与中叶癫痫发作有关,而在额叶癫痫中,LOC 发作时出现痫样放电的触点显著增加,并在额叶前发病。这种现象可能与维持意识所需的广泛神经网络有关,该网络可能受到不同方式的影响,从而导致 LOC
{"title":"Stereo-EEG features of temporal and frontal lobe seizures with loss of consciousness","authors":"Nuria Campora, Juan Pablo Princich, Alejandro Nasimbera, Santiago Cordisco, Manuela Villanueva, Silvia Oddo, Brenda Giagante, Silvia Kochen","doi":"10.1093/nc/niae003","DOIUrl":"https://doi.org/10.1093/nc/niae003","url":null,"abstract":"The loss of consciousness (LOC) during seizures is one of the most striking features that significantly impact the quality of life, even though the neuronal network involved is not fully comprehended. We analyzed the intracerebral patterns in patients with focal drug-resistant epilepsy, both with and without LOC. We assessed the localization, lateralization, stereo electroencephalography (SEEG) patterns, seizure duration, and the quantification of contacts exhibiting electrical discharge. The degree of LOC was quantified using the Consciousness Seizure Scale. Thirteen patients (40 seizures) with focal drug-resistant epilepsy underwent SEEG. In cases of temporal lobe epilepsy (TLE, 6 patients and 15 seizures), LOC occurred more frequently in seizures with mesial rather than lateral temporal lobe onset. On the other hand, in cases of frontal lobe epilepsy (7 patients; 25 seizures), LOC was associated with pre-frontal onset, a higher number of contacts with epileptic discharge compared to the onset count and longer seizure durations. Our study revealed distinct characteristics during LOC depending on the epileptogenic zone. For temporal lobe seizures, LOC was associated with mesial seizure onset, whereas in frontal lobe epilepsy, seizure with LOC has a significant increase in contact showing epileptiform discharge and a pre-frontal onset. This phenomenon may be correlated with the broad neural network required to maintain consciousness, which can be affected in different ways, resulting in LOC","PeriodicalId":52242,"journal":{"name":"Neuroscience of Consciousness","volume":"11 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140573229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A central project for the neuroscience of consciousness is to reveal the neural basis of consciousness. For the past 20-odd years, this project has been conceptualized in terms of minimal sufficiency. Recently, a number of authors have suggested that the project is better conceived in mechanistic terms as the search for difference-makers. In this paper, I (i) motivate this mechanistic alternative to minimal sufficiency, (ii) develop it further by clarifying debates about the prospects of leveraging mutual manipulability to distinguish constitutive difference-makers from those that are merely causal, and (iii) explore the implications this has for recent debates concerning the status of the prefrontal cortex. I argue that adopting a mechanistic approach to the neuroscience of consciousness suggests that the prefrontal cortex is part of the neural mechanisms underlying consciousness even if it is not strictly speaking a necessary part.
{"title":"A mechanistic alternative to minimal sufficiency as the guiding principle for NCC research","authors":"Andy Mckilliam","doi":"10.1093/nc/niae014","DOIUrl":"https://doi.org/10.1093/nc/niae014","url":null,"abstract":"A central project for the neuroscience of consciousness is to reveal the neural basis of consciousness. For the past 20-odd years, this project has been conceptualized in terms of minimal sufficiency. Recently, a number of authors have suggested that the project is better conceived in mechanistic terms as the search for difference-makers. In this paper, I (i) motivate this mechanistic alternative to minimal sufficiency, (ii) develop it further by clarifying debates about the prospects of leveraging mutual manipulability to distinguish constitutive difference-makers from those that are merely causal, and (iii) explore the implications this has for recent debates concerning the status of the prefrontal cortex. I argue that adopting a mechanistic approach to the neuroscience of consciousness suggests that the prefrontal cortex is part of the neural mechanisms underlying consciousness even if it is not strictly speaking a necessary part.","PeriodicalId":52242,"journal":{"name":"Neuroscience of Consciousness","volume":"145 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140573220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Technological advances raise new puzzles and challenges for cognitive science and the study of how humans think about and interact with artificial intelligence (AI). For example, the advent of large language models and their human-like linguistic abilities has raised substantial debate regarding whether or not AI could be conscious. Here, we consider the question of whether AI could have subjective experiences such as feelings and sensations (‘phenomenal consciousness’). While experts from many fields have weighed in on this issue in academic and public discourse, it remains unknown whether and how the general population attributes phenomenal consciousness to AI. We surveyed a sample of US residents (n = 300) and found that a majority of participants were willing to attribute some possibility of phenomenal consciousness to large language models. These attributions were robust, as they predicted attributions of mental states typically associated with phenomenality—but also flexible, as they were sensitive to individual differences such as usage frequency. Overall, these results show how folk intuitions about AI consciousness can diverge from expert intuitions—with potential implications for the legal and ethical status of AI.
{"title":"Folk psychological attributions of consciousness to large language models","authors":"Clara Colombatto, Stephen M Fleming","doi":"10.1093/nc/niae013","DOIUrl":"https://doi.org/10.1093/nc/niae013","url":null,"abstract":"Technological advances raise new puzzles and challenges for cognitive science and the study of how humans think about and interact with artificial intelligence (AI). For example, the advent of large language models and their human-like linguistic abilities has raised substantial debate regarding whether or not AI could be conscious. Here, we consider the question of whether AI could have subjective experiences such as feelings and sensations (‘phenomenal consciousness’). While experts from many fields have weighed in on this issue in academic and public discourse, it remains unknown whether and how the general population attributes phenomenal consciousness to AI. We surveyed a sample of US residents (n = 300) and found that a majority of participants were willing to attribute some possibility of phenomenal consciousness to large language models. These attributions were robust, as they predicted attributions of mental states typically associated with phenomenality—but also flexible, as they were sensitive to individual differences such as usage frequency. Overall, these results show how folk intuitions about AI consciousness can diverge from expert intuitions—with potential implications for the legal and ethical status of AI.","PeriodicalId":52242,"journal":{"name":"Neuroscience of Consciousness","volume":"120 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140573323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Consciousness arguably presents a “hard problem” for scholars. An influential position asserts that the “problem” is rooted in ontology—it arises because consciousness “is” distinct from the physical. “Problem intuitions” are routinely taken as evidence for this view. In so doing, it is assumed that (i) people do not consider consciousness as physical and (ii) their intuitions faithfully reflect what exists (or else, intuitions would not constitute evidence). New experimental results challenge both claims. First, in some scenarios, people demonstrably view consciousness as a physical affair that registers in the body (brain). Second, “problem intuitions” are linked to psychological biases, so they cannot be trusted to reflect what consciousness is. I conclude that the roots of the “hard problem” are partly psychological. Accordingly, its resolution requires careful characterization of the psychological mechanisms that engender “problem intuitions.”
{"title":"Consciousness isn’t “hard”—it’s human psychology that makes it so!","authors":"Iris Berent","doi":"10.1093/nc/niae016","DOIUrl":"https://doi.org/10.1093/nc/niae016","url":null,"abstract":"Consciousness arguably presents a “hard problem” for scholars. An influential position asserts that the “problem” is rooted in ontology—it arises because consciousness “is” distinct from the physical. “Problem intuitions” are routinely taken as evidence for this view. In so doing, it is assumed that (i) people do not consider consciousness as physical and (ii) their intuitions faithfully reflect what exists (or else, intuitions would not constitute evidence). New experimental results challenge both claims. First, in some scenarios, people demonstrably view consciousness as a physical affair that registers in the body (brain). Second, “problem intuitions” are linked to psychological biases, so they cannot be trusted to reflect what consciousness is. I conclude that the roots of the “hard problem” are partly psychological. Accordingly, its resolution requires careful characterization of the psychological mechanisms that engender “problem intuitions.”","PeriodicalId":52242,"journal":{"name":"Neuroscience of Consciousness","volume":"52 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140573337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01eCollection Date: 2024-01-01DOI: 10.1093/nc/niae007
Mahault Albarracin, Gabriel Bouchard-Joly, Zahra Sheikhbahaee, Mark Miller, Riddhi J Pitliya, Pierre Poirier
Self-esteem, the evaluation of one's own worth or value, is a critical aspect of psychological well-being and mental health. In this paper, we propose an active inference account of self-esteem, casting it as a sociometer or an inferential capacity to interpret one's standing within a social group. This approach allows us to explore the interaction between an individual's self-perception and the expectations of their social environment.When there is a mismatch between these perceptions and expectations, the individual needs to adjust their actions or update their self-perception to better align with their current experiences. We also consider this hypothesis in relation with recent research on affective inference, suggesting that self-esteem enables the individual to track and respond to this discrepancy through affective states such as anxiety or positive affect. By acting as an inferential sociometer, self-esteem allows individuals to navigate and adapt to their social environment, ultimately impacting their psychological well-being and mental health.
{"title":"Feeling our place in the world: an active inference account of self-esteem.","authors":"Mahault Albarracin, Gabriel Bouchard-Joly, Zahra Sheikhbahaee, Mark Miller, Riddhi J Pitliya, Pierre Poirier","doi":"10.1093/nc/niae007","DOIUrl":"10.1093/nc/niae007","url":null,"abstract":"<p><p>Self-esteem, the evaluation of one's own worth or value, is a critical aspect of psychological well-being and mental health. In this paper, we propose an active inference account of self-esteem, casting it as a sociometer or an inferential capacity to interpret one's standing within a social group. This approach allows us to explore the interaction between an individual's self-perception and the expectations of their social environment.When there is a mismatch between these perceptions and expectations, the individual needs to adjust their actions or update their self-perception to better align with their current experiences. We also consider this hypothesis in relation with recent research on affective inference, suggesting that self-esteem enables the individual to track and respond to this discrepancy through affective states such as anxiety or positive affect. By acting as an inferential sociometer, self-esteem allows individuals to navigate and adapt to their social environment, ultimately impacting their psychological well-being and mental health.</p>","PeriodicalId":52242,"journal":{"name":"Neuroscience of Consciousness","volume":"2024 1","pages":"niae007"},"PeriodicalIF":3.1,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984624/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140337634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}