Self-esteem, the evaluation of one's own worth or value, is a critical aspect of psychological well-being and mental health. In this paper, we propose an active inference account of self-esteem, casting it as a sociometer or an inferential capacity to interpret one's standing within a social group. This approach allows us to explore the interaction between an individual's self-perception and the expectations of their social environment.When there is a mismatch between these perceptions and expectations, the individual needs to adjust their actions or update their self-perception to better align with their current experiences. We also consider this hypothesis in relation with recent research on affective inference, suggesting that self-esteem enables the individual to track and respond to this discrepancy through affective states such as anxiety or positive affect. By acting as an inferential sociometer, self-esteem allows individuals to navigate and adapt to their social environment, ultimately impacting their psychological well-being and mental health.
Psychedelic therapy has seen a resurgence of interest in the last decade, with promising clinical outcomes for the treatment of a variety of psychopathologies. In response to this success, several theoretical models have been proposed to account for the positive therapeutic effects of psychedelics. One of the more prominent models is "RElaxed Beliefs Under pSychedelics," which proposes that psychedelics act therapeutically by relaxing the strength of maladaptive high-level beliefs encoded in the brain. The more recent "CANAL" model of psychopathology builds on the explanatory framework of RElaxed Beliefs Under pSychedelics by proposing that canalization (the development of overly rigid belief landscapes) may be a primary factor in psychopathology. Here, we make use of learning theory in deep neural networks to develop a series of refinements to the original CANAL model. Our primary theoretical contribution is to disambiguate two separate optimization landscapes underlying belief representation in the brain and describe the unique pathologies which can arise from the canalization of each. Along each dimension, we identify pathologies of either too much or too little canalization, implying that the construct of canalization does not have a simple linear correlation with the presentation of psychopathology. In this expanded paradigm, we demonstrate the ability to make novel predictions regarding what aspects of psychopathology may be amenable to psychedelic therapy, as well as what forms of psychedelic therapy may ultimately be most beneficial for a given individual.
Here we build on recent findings which show that greater alignment between our subjective experiences (how we feel) and physiological states (measurable changes in our body) plays a pivotal role in the overall psychological well-being. Specifically, we propose that the alignment or 'coherence' between affective arousal (e.g. how excited we 'feel') and autonomic arousal (e.g. heart rate or pupil dilation) may be key for maintaining up-to-date uncertainty representations in dynamic environments. Drawing on recent advances in interoceptive and affective inference, we also propose that arousal coherence reflects interoceptive integration, facilitates adaptive belief updating, and impacts our capacity to adapt to changes in uncertainty, with downstream consequences to well-being. We also highlight the role of meta-awareness of arousal, a third level of inference, which may permit conscious awareness, learning about, and intentional regulation of lower-order sources of arousal. Practices emphasizing meta-awareness of arousal (like meditation) may therefore elicit some of their known benefits via improved arousal coherence. We suggest that arousal coherence is also likely to be associated with markers of adaptive functioning (like emotional awareness and self-regulatory capacities) and discuss mind-body practices that may increase coherence.
Foremost in our experience is the intuition that we possess a unified conscious experience. However, many observations run counter to this intuition: we experience paralyzing indecision when faced with two appealing behavioral choices, we simultaneously hold contradictory beliefs, and the content of our thought is often characterized by an internal debate. Here, we propose the Nested Observer Windows (NOW) Model, a framework for hierarchical consciousness wherein information processed across many spatiotemporal scales of the brain feeds into subjective experience. The model likens the mind to a hierarchy of nested mosaic tiles-where an image is composed of mosaic tiles, and each of these tiles is itself an image composed of mosaic tiles. Unitary consciousness exists at the apex of this nested hierarchy where perceptual constructs become fully integrated and complex behaviors are initiated via abstract commands. We define an observer window as a spatially and temporally constrained system within which information is integrated, e.g. in functional brain regions and neurons. Three principles from the signal analysis of electrical activity describe the nested hierarchy and generate testable predictions. First, nested observer windows disseminate information across spatiotemporal scales with cross-frequency coupling. Second, observer windows are characterized by a high degree of internal synchrony (with zero phase lag). Third, observer windows at the same spatiotemporal level share information with each other through coherence (with non-zero phase lag). The theoretical framework of the NOW Model accounts for a wide range of subjective experiences and a novel approach for integrating prominent theories of consciousness.
Social media is implicated today in an array of mental health concerns. While concerns around social media have become mainstream, little is known about the specific cognitive mechanisms underlying the correlations seen in these studies or why we find it so hard to stop engaging with these platforms when things obviously begin to deteriorate for us. New advances in computational neuroscience, however, are now poised to shed light on this matter. In this paper, we approach the phenomenon of social media addiction through the lens of the active inference framework. According to this framework, predictive agents like us use a 'generative model' of the world to predict our own incoming sense data and act to minimize any discrepancy between the prediction and incoming signal (prediction error). In order to live well and be able to act effectively to minimize prediction error, it is vital that agents like us have a generative model, which not only accurately reflects the regularities of our complex environment but is also flexible and dynamic and able to stay accurate in volatile and turbulent circumstances. In this paper, we propose that some social media platforms are a spectacularly effective way of warping an agent's generative model and of arresting the model's ability to flexibly track and adapt to changes in the environment. We go on to investigate cases of digital tech, which do not have these adverse effects and suggest-based on the active inference framework-some ways to understand why some forms of digital technology pose these risks, while others do not.