Pub Date : 2021-10-15eCollection Date: 2021-01-01DOI: 10.1093/nc/niab032
Francesco Ellia, Jeremiah Hendren, Matteo Grasso, Csaba Kozma, Garrett Mindt, Jonathan P Lang, Andrew M Haun, Larissa Albantakis, Melanie Boly, Giulio Tononi
Objective correlates-behavioral, functional, and neural-provide essential tools for the scientific study of consciousness. But reliance on these correlates should not lead to the 'fallacy of misplaced objectivity': the assumption that only objective properties should and can be accounted for objectively through science. Instead, what needs to be explained scientifically is what experience is intrinsically-its subjective properties-not just what we can do with it extrinsically. And it must be explained; otherwise the way experience feels would turn out to be magical rather than physical. We argue that it is possible to account for subjective properties objectively once we move beyond cognitive functions and realize what experience is and how it is structured. Drawing on integrated information theory, we show how an objective science of the subjective can account, in strictly physical terms, for both the essential properties of every experience and the specific properties that make particular experiences feel the way they do.
{"title":"Consciousness and the fallacy of misplaced objectivity.","authors":"Francesco Ellia, Jeremiah Hendren, Matteo Grasso, Csaba Kozma, Garrett Mindt, Jonathan P Lang, Andrew M Haun, Larissa Albantakis, Melanie Boly, Giulio Tononi","doi":"10.1093/nc/niab032","DOIUrl":"10.1093/nc/niab032","url":null,"abstract":"<p><p>Objective correlates-behavioral, functional, and neural-provide essential tools for the scientific study of consciousness. But reliance on these correlates should not lead to the 'fallacy of misplaced objectivity': the assumption that only objective properties should and can be accounted for objectively through science. Instead, what needs to be explained scientifically is what experience is intrinsically-its subjective properties-not just what we can do with it extrinsically. And it must be explained; otherwise the way experience feels would turn out to be magical rather than physical. We argue that it is possible to account for subjective properties objectively once we move beyond cognitive functions and realize what experience is and how it is structured. Drawing on integrated information theory, we show how an objective science of the subjective can account, in strictly physical terms, for both the essential properties of every experience and the specific properties that make particular experiences feel the way they do.</p>","PeriodicalId":52242,"journal":{"name":"Neuroscience of Consciousness","volume":"2021 2","pages":"niab032"},"PeriodicalIF":4.1,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8519344/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39532550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-15eCollection Date: 2021-01-01DOI: 10.1093/nc/niab034
Naotsugu Tsuchiya, Hayato Saigo
Characterizing consciousness in and of itself is notoriously difficult. Here, we propose an alternative approach to characterize, and eventually define, consciousness through exhaustive descriptions of consciousness' relationships to all other consciousness. This approach is founded in category theory. Indeed, category theory can prove that two objects A and B in a category can be equivalent if and only if all the relationships that A holds with others in the category are the same as those of B; this proof is called the Yoneda lemma. To introduce the Yoneda lemma, we gradually introduce key concepts of category theory to consciousness researchers. Along the way, we propose several possible definitions of categories of consciousness, both in terms of level and contents, through the usage of simple examples. We propose to use the categorical structure of consciousness as a gold standard to formalize empirical research (e.g. color qualia structure at fovea and periphery) and, especially, the empirical testing of theories of consciousness.
{"title":"A relational approach to consciousness: categories of level and contents of consciousness.","authors":"Naotsugu Tsuchiya, Hayato Saigo","doi":"10.1093/nc/niab034","DOIUrl":"10.1093/nc/niab034","url":null,"abstract":"<p><p>Characterizing consciousness in and of itself is notoriously difficult. Here, we propose an alternative approach to characterize, and eventually define, consciousness through exhaustive descriptions of consciousness' relationships to all other consciousness. This approach is founded in category theory. Indeed, category theory can prove that two objects A and B in a category can be equivalent if and only if all the relationships that A holds with others in the category are the same as those of B; this proof is called the Yoneda lemma. To introduce the Yoneda lemma, we gradually introduce key concepts of category theory to consciousness researchers. Along the way, we propose several possible definitions of categories of consciousness, both in terms of level and contents, through the usage of simple examples. We propose to use the categorical structure of consciousness as a gold standard to formalize empirical research (e.g. color qualia structure at fovea and periphery) and, especially, the empirical testing of theories of consciousness.</p>","PeriodicalId":52242,"journal":{"name":"Neuroscience of Consciousness","volume":"2021 2","pages":"niab034"},"PeriodicalIF":4.1,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8517618/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39526154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The goal of the paper is to review existing work on consciousness within the frameworks of Predictive Processing, Active Inference, and Free Energy Principle. The emphasis is put on the role played by the precision and complexity of the internal generative model. In the light of those proposals, these two properties appear to be the minimal necessary components for the emergence of conscious experience-a Minimal Unifying Model of consciousness.
{"title":"Bayesian theories of consciousness: a review in search for a minimal unifying model.","authors":"Wiktor Rorot","doi":"10.1093/nc/niab038","DOIUrl":"10.1093/nc/niab038","url":null,"abstract":"<p><p>The goal of the paper is to review existing work on consciousness within the frameworks of Predictive Processing, Active Inference, and Free Energy Principle. The emphasis is put on the role played by the precision and complexity of the internal generative model. In the light of those proposals, these two properties appear to be the minimal necessary components for the emergence of conscious experience-a Minimal Unifying Model of consciousness.</p>","PeriodicalId":52242,"journal":{"name":"Neuroscience of Consciousness","volume":"2021 2","pages":"niab038"},"PeriodicalIF":4.1,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512254/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39519111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-13eCollection Date: 2021-01-01DOI: 10.1093/nc/niab036
Tomáš Marvan, Michal Polák, Talis Bachmann, William A Phillips
We present a theoretical view of the cellular foundations for network-level processes involved in producing our conscious experience. Inputs to apical synapses in layer 1 of a large subset of neocortical cells are summed at an integration zone near the top of their apical trunk. These inputs come from diverse sources and provide a context within which the transmission of information abstracted from sensory input to their basal and perisomatic synapses can be amplified when relevant. We argue that apical amplification enables conscious perceptual experience and makes it more flexible, and thus more adaptive, by being sensitive to context. Apical amplification provides a possible mechanism for recurrent processing theory that avoids strong loops. It makes the broadcasting hypothesized by global neuronal workspace theories feasible while preserving the distinct contributions of the individual cells receiving the broadcast. It also provides mechanisms that contribute to the holistic aspects of integrated information theory. As apical amplification is highly dependent on cholinergic, aminergic, and other neuromodulators, it relates the specific contents of conscious experience to global mental states and to fluctuations in arousal when awake. We conclude that apical dendrites provide a cellular mechanism for the context-sensitive selective amplification that is a cardinal prerequisite of conscious perception.
{"title":"Apical amplification-a cellular mechanism of conscious perception?","authors":"Tomáš Marvan, Michal Polák, Talis Bachmann, William A Phillips","doi":"10.1093/nc/niab036","DOIUrl":"https://doi.org/10.1093/nc/niab036","url":null,"abstract":"<p><p>We present a theoretical view of the cellular foundations for network-level processes involved in producing our conscious experience. Inputs to apical synapses in layer 1 of a large subset of neocortical cells are summed at an integration zone near the top of their apical trunk. These inputs come from diverse sources and provide a context within which the transmission of information abstracted from sensory input to their basal and perisomatic synapses can be amplified when relevant. We argue that apical amplification enables conscious perceptual experience and makes it more flexible, and thus more adaptive, by being sensitive to context. Apical amplification provides a possible mechanism for recurrent processing theory that avoids strong loops. It makes the broadcasting hypothesized by global neuronal workspace theories feasible while preserving the distinct contributions of the individual cells receiving the broadcast. It also provides mechanisms that contribute to the holistic aspects of integrated information theory. As apical amplification is highly dependent on cholinergic, aminergic, and other neuromodulators, it relates the specific contents of conscious experience to global mental states and to fluctuations in arousal when awake. We conclude that apical dendrites provide a cellular mechanism for the context-sensitive selective amplification that is a cardinal prerequisite of conscious perception.</p>","PeriodicalId":52242,"journal":{"name":"Neuroscience of Consciousness","volume":"2021 2","pages":"niab036"},"PeriodicalIF":4.1,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8511476/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39519112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Consciousness is multi-dimensional but is most often portrayed with a two-dimensional (2D) map that has global levels or states on one axis and phenomenal contents on the other. On this map, awareness is conflated either with general alertness or with phenomenal content. This contributes to ongoing difficulties in the scientific understanding of consciousness. Previously, I have proposed that consciousness as such or nondual awareness-a basic non-conceptual, non-propositional awareness in itself free of subject-object fragmentation-is a unique kind that cannot be adequately specified by this 2D map of states and contents. Here, I propose an implicit-explicit gradient of nondual awareness to be added as the z-axis to the existing 2D map of consciousness. This gradient informs about the degree to which nondual awareness is manifest in any experience, independent of the specifics of global state or local content. Alternatively, within the multi-dimensional state space model of consciousness, nondual awareness can be specified by several vectors, each representing one of its properties. In the first part, I outline nondual awareness or consciousness as such in terms of its phenomenal description, its function and its neural correlates. In the second part, I explore the implicit-explicit gradient of nondual awareness and how including it as an additional axis clarifies certain features of everyday dualistic experiences and is especially relevant for understanding the unitary and nondual experiences accessed via different contemplative methods, mind-altering substances or spontaneously.
{"title":"Implicit-explicit gradient of nondual awareness or consciousness as such.","authors":"Zoran Josipovic","doi":"10.1093/nc/niab031","DOIUrl":"10.1093/nc/niab031","url":null,"abstract":"<p><p>Consciousness is multi-dimensional but is most often portrayed with a two-dimensional (2D) map that has global levels or states on one axis and phenomenal contents on the other. On this map, awareness is conflated either with general alertness or with phenomenal content. This contributes to ongoing difficulties in the scientific understanding of consciousness. Previously, I have proposed that consciousness as such or nondual awareness-a basic non-conceptual, non-propositional awareness in itself free of subject-object fragmentation-is a unique kind that cannot be adequately specified by this 2D map of states and contents. Here, I propose an implicit-explicit gradient of nondual awareness to be added as the z-axis to the existing 2D map of consciousness. This gradient informs about the degree to which nondual awareness is manifest in any experience, independent of the specifics of global state or local content. Alternatively, within the multi-dimensional state space model of consciousness, nondual awareness can be specified by several vectors, each representing one of its properties. In the first part, I outline nondual awareness or consciousness as such in terms of its phenomenal description, its function and its neural correlates. In the second part, I explore the implicit-explicit gradient of nondual awareness and how including it as an additional axis clarifies certain features of everyday dualistic experiences and is especially relevant for understanding the unitary and nondual experiences accessed via different contemplative methods, mind-altering substances or spontaneously.</p>","PeriodicalId":52242,"journal":{"name":"Neuroscience of Consciousness","volume":"2021 2","pages":"niab031"},"PeriodicalIF":4.1,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8500298/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39515730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-07eCollection Date: 2021-01-01DOI: 10.1093/nc/niab030
Vaibhav Tripathi, Pallavi Bharadwaj
Yoga as a practice and philosophy of life has been followed for more than 4500 years with known evidence of yogic practices in the Indus Valley Civilization. The last few decades have seen a resurgence in the utility of yoga and meditation as a practice with growing scientific evidence behind it. Significant scientific literature has been published, illustrating the benefits of yogic practices including 'asana', 'pranayama' and 'dhyana' on mental and physical well-being. Electrophysiological and recent functional magnetic resonance imaging (fMRI) studies have found explicit neural signatures for yogic practices. In this article, we present a review of the philosophy of yoga, based on the dualistic 'Sankhya' school, as applied to consciousness summarized by Patanjali in his yoga sutras followed by a discussion on the five 'vritti' (modulations of mind), the practice of 'pratyahara', 'dharana', 'dhyana', different states of 'samadhi', and 'samapatti'. We formulate the yogic theory of consciousness (YTC), a cohesive theory that can model both external modulations and internal states of the mind. We propose that attention, sleep and mind wandering should be understood as unique modulatory states of the mind. YTC allows us to model the external states, internal states of meditation, 'samadhi' and even the disorders of consciousness. Furthermore, we list some testable neuroscientific hypotheses that could be answered using YTC and analyse the benefits, outcomes and possible limitations.
{"title":"Neuroscience of the yogic theory of consciousness.","authors":"Vaibhav Tripathi, Pallavi Bharadwaj","doi":"10.1093/nc/niab030","DOIUrl":"10.1093/nc/niab030","url":null,"abstract":"<p><p>Yoga as a practice and philosophy of life has been followed for more than 4500 years with known evidence of yogic practices in the Indus Valley Civilization. The last few decades have seen a resurgence in the utility of yoga and meditation as a practice with growing scientific evidence behind it. Significant scientific literature has been published, illustrating the benefits of yogic practices including 'asana', 'pranayama' and 'dhyana' on mental and physical well-being. Electrophysiological and recent functional magnetic resonance imaging (fMRI) studies have found explicit neural signatures for yogic practices. In this article, we present a review of the philosophy of yoga, based on the dualistic 'Sankhya' school, as applied to consciousness summarized by Patanjali in his yoga sutras followed by a discussion on the five 'vritti' (modulations of mind), the practice of 'pratyahara', 'dharana', 'dhyana', different states of 'samadhi', and 'samapatti'. We formulate the yogic theory of consciousness (YTC), a cohesive theory that can model both external modulations and internal states of the mind. We propose that attention, sleep and mind wandering should be understood as unique modulatory states of the mind. YTC allows us to model the external states, internal states of meditation, 'samadhi' and even the disorders of consciousness. Furthermore, we list some testable neuroscientific hypotheses that could be answered using YTC and analyse the benefits, outcomes and possible limitations.</p>","PeriodicalId":52242,"journal":{"name":"Neuroscience of Consciousness","volume":"2021 2","pages":"niab030"},"PeriodicalIF":4.1,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d8/03/niab030.PMC8675243.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39739491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-21eCollection Date: 2021-01-01DOI: 10.1093/nc/niab022
Matteo Grasso, Andrew M Haun, Giulio Tononi
Neuroscience has made remarkable advances in accounting for how the brain performs its various functions. Consciousness, too, is usually approached in functional terms: the goal is to understand how the brain represents information, accesses that information, and acts on it. While useful for prediction, this functional, information-processing approach leaves out the subjective structure of experience: it does not account for how experience feels. Here, we consider a simple model of how a "grid-like" network meant to resemble posterior cortical areas can represent spatial information and act on it to perform a simple "fixation" function. Using standard neuroscience tools, we show how the model represents topographically the retinal position of a stimulus and triggers eye muscles to fixate or follow it. Encoding, decoding, and tuning functions of model units illustrate the working of the model in a way that fully explains what the model does. However, these functional properties have nothing to say about the fact that a human fixating a stimulus would also "see" it-experience it at a location in space. Using the tools of Integrated Information Theory, we then show how the subjective properties of experienced space-its extendedness-can be accounted for in objective, neuroscientific terms by the "cause-effect structure" specified by the grid-like cortical area. By contrast, a "map-like" network without lateral connections, meant to resemble a pretectal circuit, is functionally equivalent to the grid-like system with respect to representation, action, and fixation but cannot account for the phenomenal properties of space.
{"title":"Of maps and grids.","authors":"Matteo Grasso, Andrew M Haun, Giulio Tononi","doi":"10.1093/nc/niab022","DOIUrl":"10.1093/nc/niab022","url":null,"abstract":"<p><p>Neuroscience has made remarkable advances in accounting for how the brain performs its various functions. Consciousness, too, is usually approached in functional terms: the goal is to understand how the brain represents information, accesses that information, and acts on it. While useful for prediction, this functional, information-processing approach leaves out the subjective structure of experience: it does not account for how experience feels. Here, we consider a simple model of how a \"grid-like\" network meant to resemble posterior cortical areas can represent spatial information and act on it to perform a simple \"fixation\" function. Using standard neuroscience tools, we show how the model represents topographically the retinal position of a stimulus and triggers eye muscles to fixate or follow it. Encoding, decoding, and tuning functions of model units illustrate the working of the model in a way that fully explains what the model does. However, these functional properties have nothing to say about the fact that a human fixating a stimulus would also \"see\" it-experience it at a location in space. Using the tools of Integrated Information Theory, we then show how the subjective properties of experienced space-its extendedness-can be accounted for in objective, neuroscientific terms by the \"cause-effect structure\" specified by the grid-like cortical area. By contrast, a \"map-like\" network without lateral connections, meant to resemble a pretectal circuit, is functionally equivalent to the grid-like system with respect to representation, action, and fixation but cannot account for the phenomenal properties of space.</p>","PeriodicalId":52242,"journal":{"name":"Neuroscience of Consciousness","volume":"2021 2","pages":"niab022"},"PeriodicalIF":4.1,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452603/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39444071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Sandved-Smith, C. Hesp, J. Mattout, K. Friston, A. Lutz, M. Ramstead
Meta-awareness refers to the capacity to explicitly notice the current content of consciousness and has been identified as a key component for the successful control of cognitive states, such as the deliberate direction of attention. This paper proposes a formal model of meta-awareness and attentional control using hierarchical active inference. To do so, we cast mental action as policy selection over higher-level cognitive states and add a further hierarchical level to model meta-awareness states that modulate the expected confidence (precision) in the mapping between observations and hidden cognitive states. We simulate the example of mind-wandering and its regulation during a task involving sustained selective attention on a perceptual object. This provides a computational case study for an inferential architecture that is apt to enable the emergence of these central components of human phenomenology, namely, the ability to access and control cognitive states. We propose that this approach can be generalized to other cognitive states, and hence, this paper provides the first steps towards the development of a computational phenomenology of mental action and more broadly of our ability to monitor and control our own cognitive states. Future steps of this work will focus on fitting the model with qualitative, behavioural, and neural data.
{"title":"Publisher’s note to: towards a computational phenomenology of mental action: modelling meta-awareness and attentional control with deep parametric active inference","authors":"L. Sandved-Smith, C. Hesp, J. Mattout, K. Friston, A. Lutz, M. Ramstead","doi":"10.1093/nc/niab035","DOIUrl":"https://doi.org/10.1093/nc/niab035","url":null,"abstract":"Meta-awareness refers to the capacity to explicitly notice the current content of consciousness and has been identified as a key component for the successful control of cognitive states, such as the deliberate direction of attention. This paper proposes a formal model of meta-awareness and attentional control using hierarchical active inference. To do so, we cast mental action as policy selection over higher-level cognitive states and add a further hierarchical level to model meta-awareness states that modulate the expected confidence (precision) in the mapping between observations and hidden cognitive states. We simulate the example of mind-wandering and its regulation during a task involving sustained selective attention on a perceptual object. This provides a computational case study for an inferential architecture that is apt to enable the emergence of these central components of human phenomenology, namely, the ability to access and control cognitive states. We propose that this approach can be generalized to other cognitive states, and hence, this paper provides the first steps towards the development of a computational phenomenology of mental action and more broadly of our ability to monitor and control our own cognitive states. Future steps of this work will focus on fitting the model with qualitative, behavioural, and neural data.","PeriodicalId":52242,"journal":{"name":"Neuroscience of Consciousness","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41824652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-14eCollection Date: 2021-01-01DOI: 10.1093/nc/niab017
Paul Linton
We typically distinguish between V1 as an egocentric perceptual map and the hippocampus as an allocentric cognitive map. In this article, we argue that V1 also functions as a post-perceptual egocentric cognitive map. We argue that three well-documented functions of V1, namely (i) the estimation of distance, (ii) the estimation of size, and (iii) multisensory integration, are better understood as post-perceptual cognitive inferences. This argument has two important implications. First, we argue that V1 must function as the neural correlates of the visual perception/cognition distinction and suggest how this can be accommodated by V1's laminar structure. Second, we use this insight to propose a low-level account of visual consciousness in contrast to mid-level accounts (recurrent processing theory; integrated information theory) and higher-level accounts (higher-order thought; global workspace theory). Detection thresholds have been traditionally used to rule out such an approach, but we explain why it is a mistake to equate visibility (and therefore the presence/absence of visual experience) with detection thresholds.
{"title":"V1 as an egocentric cognitive map.","authors":"Paul Linton","doi":"10.1093/nc/niab017","DOIUrl":"10.1093/nc/niab017","url":null,"abstract":"<p><p>We typically distinguish between V1 as an egocentric perceptual map and the hippocampus as an allocentric cognitive map. In this article, we argue that V1 also functions as a post-perceptual egocentric cognitive map. We argue that three well-documented functions of V1, namely (i) the estimation of distance, (ii) the estimation of size, and (iii) multisensory integration, are better understood as post-perceptual cognitive inferences. This argument has two important implications. First, we argue that V1 must function as the neural correlates of the visual perception/cognition distinction and suggest how this can be accommodated by V1's laminar structure. Second, we use this insight to propose a low-level account of visual consciousness in contrast to mid-level accounts (recurrent processing theory; integrated information theory) and higher-level accounts (higher-order thought; global workspace theory). Detection thresholds have been traditionally used to rule out such an approach, but we explain why it is a mistake to equate visibility (and therefore the presence/absence of visual experience) with detection thresholds.</p>","PeriodicalId":52242,"journal":{"name":"Neuroscience of Consciousness","volume":"2021 2","pages":"niab017"},"PeriodicalIF":3.1,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8439394/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39444471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-03eCollection Date: 2021-01-01DOI: 10.1093/nc/niab028
Rafael Malach
While most theories of consciousness posit some kind of dependence on global network activities, I consider here an alternative, localist perspective-in which localized cortical regions each underlie the emergence of a unique category of conscious experience. Under this perspective, the large-scale activation often found in the cortex is a consequence of the complexity of typical conscious experiences rather than an obligatory condition for the emergence of conscious awareness-which can flexibly shift, depending on the richness of its contents, from local to more global activation patterns. This perspective fits a massive body of human imaging, recordings, lesions and stimulation data but opens a fundamental problem: how can the information, defining each content, be derived locally in each cortical region. Here, I will discuss a solution echoing pioneering structuralist ideas in which the content of a conscious experience is defined by its relationship to all other contents within an experiential category. In neuronal terms, this relationship structure between contents is embodied by the local geometry of similarity distances between cortical activation patterns generated during each conscious experience, likely mediated via networks of local neuronal connections. Thus, in order for any conscious experience to appear in an individual's mind, two central conditions must be met. First, a specific configural pattern ("bar-code") of neuronal activity must appear within a local relational geometry, i.e. a cortical area. Second, the individual neurons underlying the activated pattern must be bound into a unified functional ensemble through a burst of recurrent neuronal firing: local "ignitions".
{"title":"Local neuronal relational structures underlying the contents of human conscious experience.","authors":"Rafael Malach","doi":"10.1093/nc/niab028","DOIUrl":"10.1093/nc/niab028","url":null,"abstract":"<p><p>While most theories of consciousness posit some kind of dependence on global network activities, I consider here an alternative, localist perspective-in which localized cortical regions each underlie the emergence of a unique category of conscious experience. Under this perspective, the large-scale activation often found in the cortex is a consequence of the complexity of typical conscious experiences rather than an obligatory condition for the emergence of conscious awareness-which can flexibly shift, depending on the richness of its contents, from local to more global activation patterns. This perspective fits a massive body of human imaging, recordings, lesions and stimulation data but opens a fundamental problem: how can the information, defining each content, be derived locally in each cortical region. Here, I will discuss a solution echoing pioneering structuralist ideas in which the content of a conscious experience is defined by its relationship to all other contents within an experiential category. In neuronal terms, this relationship structure between contents is embodied by the local geometry of similarity distances between cortical activation patterns generated during each conscious experience, likely mediated via networks of local neuronal connections. Thus, in order for any conscious experience to appear in an individual's mind, two central conditions must be met. First, a specific configural pattern (\"bar-code\") of neuronal activity must appear within a local relational geometry, i.e. a cortical area. Second, the individual neurons underlying the activated pattern must be bound into a unified functional ensemble through a burst of recurrent neuronal firing: local \"ignitions\".</p>","PeriodicalId":52242,"journal":{"name":"Neuroscience of Consciousness","volume":"2021 2","pages":"niab028"},"PeriodicalIF":4.1,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a6/71/niab028.PMC8415036.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39409268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}