The analysis method proposed by Ruland et al. is widely used to analyze the void lengths in carbon fibers, but it could not apply to mesophase pitch-based carbon fibers. We thought that the reason for the inability to analyze pitch-based carbon fibers was the length distribution of voids that Ruland neglected. We investigated an analytical method that considers the length distribution of voids in carbon fibers. The proposed new method could be applied to various carbon fibers from polyacrylonitrile and mesophase pitch. The analysis results revealed that the average length of voids in mesophase pitch-based carbon fibers is not only long but also widely distributed. On the other hand, the voids of carbon fibers tend to be longer as the crystallite length is longer in both polyacrylonitrile-based and mesophase-based carbon fibers. It suggests that the growth of void length is strongly influenced by the growth of crystallites in the plane direction.
{"title":"Small-angle x-ray scattering analysis of carbon fiber voids considering void length distribution","authors":"Daisuke Kimura , Masahiko Demura , Kenji Nagata , Toshihira Irisawa , Yoshiki Sugimoto , Wataru Takarada , Masatoshi Shioya","doi":"10.1016/j.cartre.2024.100346","DOIUrl":"https://doi.org/10.1016/j.cartre.2024.100346","url":null,"abstract":"<div><p>The analysis method proposed by Ruland et al. is widely used to analyze the void lengths in carbon fibers, but it could not apply to mesophase pitch-based carbon fibers. We thought that the reason for the inability to analyze pitch-based carbon fibers was the length distribution of voids that Ruland neglected. We investigated an analytical method that considers the length distribution of voids in carbon fibers. The proposed new method could be applied to various carbon fibers from polyacrylonitrile and mesophase pitch. The analysis results revealed that the average length of voids in mesophase pitch-based carbon fibers is not only long but also widely distributed. On the other hand, the voids of carbon fibers tend to be longer as the crystallite length is longer in both polyacrylonitrile-based and mesophase-based carbon fibers. It suggests that the growth of void length is strongly influenced by the growth of crystallites in the plane direction.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"15 ","pages":"Article 100346"},"PeriodicalIF":0.0,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000270/pdfft?md5=2ed0023ba4c6ba8440beb2a449266f0a&pid=1-s2.0-S2667056924000270-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140209409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-17DOI: 10.1016/j.cartre.2024.100343
Kate Stokes , Yiwei Sun , Haowei Zhang , Paolo Passaretti , Henry White , Pola Goldberg Oppeneheimer
The self-assembly of graphene oxide (GO) and M13 bacteriophage results in the formation of micro-porous structures, known as GraPhage13 aerogels (GPA). Given the limited applications of aerogels in industry due to their nanomechanical properties, along with the previously observed temperature-dependent characteristics in graphene-based nanocomposites, a thorough exploration of the thermosensitive nanomechanical properties of GPA is essential. Herein, a comprehensive characterisation of the morphology, composition, and spectroscopic analysis of the GPA for a range of temperatures has been conducted and correlated with its nanomechanical properties. Elevated temperatures have been found to lead to gradual removal of oxygen-containing functional groups (OCFGs) from GPA, resulting in increased structural defects and reduced stiffness. Notably, unique nanomechanical behaviours of GPA have been further identified, where the thermal expansion of sp3 bonds exceeds that of a crystalline sp3 structure, while the thermal contraction of sp2 bonds in GPA is found to be between graphite and GO. This underscores the impact of GO functionalisation on the thermal expansion behaviour of GPA. The obtained insights enhance the overall comprehension of the temperature annealing impact on GPA and highlight the tunability of its nanomechanical properties, showcasing a broad potential of this novel nanocomposite across a diverse range of applications.
{"title":"Thermonanomechanics of graphene oxide-M13 bacteriophage nanocomposites -towards graphene-based nanodevices","authors":"Kate Stokes , Yiwei Sun , Haowei Zhang , Paolo Passaretti , Henry White , Pola Goldberg Oppeneheimer","doi":"10.1016/j.cartre.2024.100343","DOIUrl":"https://doi.org/10.1016/j.cartre.2024.100343","url":null,"abstract":"<div><p>The self-assembly of graphene oxide (GO) and M13 bacteriophage results in the formation of micro-porous structures, known as GraPhage13 aerogels (GPA). Given the limited applications of aerogels in industry due to their nanomechanical properties, along with the previously observed temperature-dependent characteristics in graphene-based nanocomposites, a thorough exploration of the thermosensitive nanomechanical properties of GPA is essential. Herein, a comprehensive characterisation of the morphology, composition, and spectroscopic analysis of the GPA for a range of temperatures has been conducted and correlated with its nanomechanical properties. Elevated temperatures have been found to lead to gradual removal of oxygen-containing functional groups (OCFGs) from GPA, resulting in increased structural defects and reduced stiffness. Notably, unique nanomechanical behaviours of GPA have been further identified, where the thermal expansion of <em>sp<sup>3</sup></em> bonds exceeds that of a crystalline <em>sp<sup>3</sup></em> structure, while the thermal contraction of <em>sp<sup>2</sup></em> bonds in GPA is found to be between graphite and GO. This underscores the impact of GO functionalisation on the thermal expansion behaviour of GPA. The obtained insights enhance the overall comprehension of the temperature annealing impact on GPA and highlight the tunability of its nanomechanical properties, showcasing a broad potential of this novel nanocomposite across a diverse range of applications.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"15 ","pages":"Article 100343"},"PeriodicalIF":0.0,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000245/pdfft?md5=61c20b5d412f4a7ffc4a839c695cc48e&pid=1-s2.0-S2667056924000245-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140187718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study used experimental methods to investigate the impact of nitrogen-doped reduced graphene oxide particles (ND-RGOP) reinforcement on thermal and mechanical properties of unidirectional carbon fiber/ epoxy composites (CFRP). In the results, storage modulus and loss modulus significantly increase with the ND-RGOP addition. Besides, glass transition temperature is enhanced with the addition of 0.4 wt% ND-RGOP. In tensile mode, when compared to the baseline (0 weight% ND-RGOP) composites, the elastic modulus in the 0° direction (E1) enhanced by 8.25 % and 11.39 % with 0.4 (0.4 weight%) and 0.8 (0.8 weight%) ND-RGOP addition, respectively. Besides, the ultimate tensile strength of the 0.4 ND-RGOP/CFRP composites significantly reduced by 16.33 % and 53.08 % in both 0° and 90° directions, respectively, as a result of the fracture mechanism changing from fiber pull out and fiber cracking to fiber breakage which was confirmed by SEM investigations. Furthermore, both the compressive modulus and the shear modulus increased with ND-RGOP reinforcement over 10 %, although the ultimate compressive strength decreases with low ND-RGOP reinforcement. In conclusion, low concentrations of ND-RGOP addition improves the thermal and mechanical properties of CFRP laminates in elastic region, although high concentrations of ND-RGOP decreases the thermal properties.
{"title":"The impact of nitrogen-doped reduced graphene oxide reinforcement on the thermal and mechanical properties of CFRP","authors":"Tahir Soyugüzel , Hülya Kaftelen-Odabaşı , Zahit Mecitoğlu","doi":"10.1016/j.cartre.2024.100344","DOIUrl":"https://doi.org/10.1016/j.cartre.2024.100344","url":null,"abstract":"<div><p>This study used experimental methods to investigate the impact of nitrogen-doped reduced graphene oxide particles (ND-RGOP) reinforcement on thermal and mechanical properties of unidirectional carbon fiber/ epoxy composites (CFRP). In the results, storage modulus and loss modulus significantly increase with the ND-RGOP addition. Besides, glass transition temperature is enhanced with the addition of 0.4 wt% ND-RGOP. In tensile mode, when compared to the baseline (0 weight% ND-RGOP) composites, the elastic modulus in the 0° direction (E<sub>1</sub>) enhanced by 8.25 % and 11.39 % with 0.4 (0.4 weight%) and 0.8 (0.8 weight%) ND-RGOP addition, respectively. Besides, the ultimate tensile strength of the 0.4 ND-RGOP/CFRP composites significantly reduced by 16.33 % and 53.08 % in both 0° and 90° directions, respectively, as a result of the fracture mechanism changing from fiber pull out and fiber cracking to fiber breakage which was confirmed by SEM investigations. Furthermore, both the compressive modulus and the shear modulus increased with ND-RGOP reinforcement over 10 %, although the ultimate compressive strength decreases with low ND-RGOP reinforcement. In conclusion, low concentrations of ND-RGOP addition improves the thermal and mechanical properties of CFRP laminates in elastic region, although high concentrations of ND-RGOP decreases the thermal properties.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"15 ","pages":"Article 100344"},"PeriodicalIF":0.0,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000257/pdfft?md5=5e86c456267e51fbf1bc301a00a23f7e&pid=1-s2.0-S2667056924000257-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140187717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-16DOI: 10.1016/j.cartre.2024.100338
Assiya Nuraly , Alibek Mutushev , Aigul Tuleibayeva , Juan Maria Gonzalez-Leal
In the present investigation, carbonized rice husk (CRH) were used as a feedstock for obtaining experimental samples of a carbon monolith. The choice of carbonized rice husk is due to environmental friendliness and availability, optimal physico-chemical and structural features. CRH was obtained by carbonization of rice husks in steam at 900–950 °C, followed by demineralization of 2–15 % nitric acid. The article is devoted to the study of carbon material for use in medicine. In this work, 9 samples of a carbon monolith with different ratios of components were obtained. The samples were obtained on the basis of CRH and plastic mass, which were used as binders. A sample with optimal characteristics was determined: sorption capacity 75.6 %, specific surface according to the multi-current BET method 360.56 m2, sorption of ethyl alcohol in biological media 50 %. Sorption capacity was determined using methylene blue dye, which simulates medium molecular weight toxicants. The specific surface area was measured on a sorbtometer using the multiprecision BET method, and the sorption of ethyl alcohol in biological media was determined on a chromatograph. It has been established that the carbon-silicon composition of the sorbent has the mildest sorption compared to the pure carbon composition. Sample No. 8 has a high specific surface area and sorption capacity, which will allow it to absorb a wide range of toxins of various origins, including biological fluids
在本研究中,碳化稻壳(CRH)被用作获得碳单质实验样品的原料。选择碳化稻壳的原因在于其环保性和可用性,以及最佳的物理化学和结构特征。在 900-950 °C 的蒸汽中对稻壳进行碳化,然后用 2-15 % 的硝酸进行脱盐处理,即可获得 CRH。这篇文章专门研究了用于医药的碳材料。在这项工作中,获得了 9 个具有不同成分比例的碳单质样品。这些样品是在 CRH 和塑料块(用作粘合剂)的基础上获得的。确定了具有最佳特性的样品:吸附能力 75.6%,根据多流 BET 法测定的比表面 360.56 m2,生物介质中乙醇的吸附率 50%。吸附能力是用亚甲蓝染料测定的,亚甲蓝染料模拟中等分子量的有毒物质。比表面积在吸附仪上用多精度 BET 法测定,乙醇在生物介质中的吸附量在色谱仪上测定。结果表明,与纯碳成分相比,碳硅成分的吸附剂具有最温和的吸附性。8 号样品具有较高的比表面积和吸附能力,可吸附各种来源的毒素,包括生物液
{"title":"Experimental research on optimizing carbon materials for filtration applications in medicine","authors":"Assiya Nuraly , Alibek Mutushev , Aigul Tuleibayeva , Juan Maria Gonzalez-Leal","doi":"10.1016/j.cartre.2024.100338","DOIUrl":"https://doi.org/10.1016/j.cartre.2024.100338","url":null,"abstract":"<div><p>In the present investigation, carbonized rice husk (CRH) were used as a feedstock for obtaining experimental samples of a carbon monolith. The choice of carbonized rice husk is due to environmental friendliness and availability, optimal physico-chemical and structural features. CRH was obtained by carbonization of rice husks in steam at 900–950 °C, followed by demineralization of 2–15 % nitric acid. The article is devoted to the study of carbon material for use in medicine. In this work, 9 samples of a carbon monolith with different ratios of components were obtained. The samples were obtained on the basis of CRH and plastic mass, which were used as binders. A sample with optimal characteristics was determined: sorption capacity 75.6 %, specific surface according to the multi-current BET method 360.56 m<sup>2</sup>, sorption of ethyl alcohol in biological media 50 %. Sorption capacity was determined using methylene blue dye, which simulates medium molecular weight toxicants. The specific surface area was measured on a sorbtometer using the multiprecision BET method, and the sorption of ethyl alcohol in biological media was determined on a chromatograph. It has been established that the carbon-silicon composition of the sorbent has the mildest sorption compared to the pure carbon composition. Sample No. 8 has a high specific surface area and sorption capacity, which will allow it to absorb a wide range of toxins of various origins, including biological fluids</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"15 ","pages":"Article 100338"},"PeriodicalIF":0.0,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000191/pdfft?md5=4a4d5de1cc831f1facf60f1a79c379c1&pid=1-s2.0-S2667056924000191-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140160901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-16DOI: 10.1016/j.cartre.2024.100339
L.S. Mokoena, J.P. Mofokeng
The synthesis and characterization of graphene oxide (GO) for water related applications has become an increasing area of research. GO was prepared via Hummer's method, and analysed for structure, morphology, thermal stability, and the ability to remove heavy lead ions from solution. In FTIR analyses, hydroxyl, carboxyl and ester groups were found to be on the structure of GO. XRD showed the interlayer spacing to have increased from graphite to graphene oxide, whereby the average crystallite size of GO was 16.13. Then SEM confirmed the morphology of GO to be exfoliated and wrinkled, with stacked layers. In TGA, EG degraded in a single step, while GO degraded in three distinct steps. When using AAS to analyse the Pb (II) ion intake properties of GO, it showed a maximum adsorption of 98.1% for 600 ppm lead ion solution. The Freundlich isotherm model was consistent with this adsorption, meaning that adsorption took place on a heterogenous surface, on a multilayer basis. The value of n for this isotherm was 0.1474, implying a dominant chemical adsorption. A significant contribution was done to the structure of GO, with its metal adsorption properties clearly portrayed.
用于水相关应用的氧化石墨烯(GO)的合成和表征已成为一个日益重要的研究领域。通过 Hummer 方法制备了 GO,并对其结构、形态、热稳定性以及从溶液中去除重铅离子的能力进行了分析。傅立叶变换红外光谱分析发现,GO 的结构中含有羟基、羧基和酯基。XRD 显示,层间距从石墨增加到了氧化石墨烯,因此 GO 的平均结晶尺寸为 16.13。然后,扫描电子显微镜(SEM)证实 GO 的形态为剥离和皱褶,层层堆叠。在热重分析中,EG 的降解过程只有一步,而 GO 的降解过程则有三个不同的步骤。当使用 AAS 分析 GO 的铅(II)离子吸附特性时,它对 600 ppm 铅离子溶液的最大吸附率为 98.1%。Freundlich 等温线模型与这种吸附相一致,这意味着吸附是在多层的异质表面上进行的。该等温线的 n 值为 0.1474,意味着化学吸附占主导地位。这对 GO 的结构做出了重大贡献,其金属吸附特性清晰可见。
{"title":"Synthesis and characterization of graphene oxide (GO) for the removal of lead ions in water","authors":"L.S. Mokoena, J.P. Mofokeng","doi":"10.1016/j.cartre.2024.100339","DOIUrl":"https://doi.org/10.1016/j.cartre.2024.100339","url":null,"abstract":"<div><p>The synthesis and characterization of graphene oxide (GO) for water related applications has become an increasing area of research. GO was prepared via Hummer's method, and analysed for structure, morphology, thermal stability, and the ability to remove heavy lead ions from solution. In FTIR analyses, hydroxyl, carboxyl and ester groups were found to be on the structure of GO. XRD showed the interlayer spacing to have increased from graphite to graphene oxide, whereby the average crystallite size of GO was 16.13. Then SEM confirmed the morphology of GO to be exfoliated and wrinkled, with stacked layers. In TGA, EG degraded in a single step, while GO degraded in three distinct steps. When using AAS to analyse the Pb (II) ion intake properties of GO, it showed a maximum adsorption of 98.1% for 600 ppm lead ion solution. The Freundlich isotherm model was consistent with this adsorption, meaning that adsorption took place on a heterogenous surface, on a multilayer basis. The value of n for this isotherm was 0.1474, implying a dominant chemical adsorption. A significant contribution was done to the structure of GO, with its metal adsorption properties clearly portrayed.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"15 ","pages":"Article 100339"},"PeriodicalIF":0.0,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000208/pdfft?md5=3de1232414504818313b3642332f0619&pid=1-s2.0-S2667056924000208-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140187715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-15DOI: 10.1016/j.cartre.2024.100340
S.A. Votyakov , A.V. Osadchy , E.D. Obraztsova
The volume-localized electronic states (SAMOs) with a maximum of their electron wave functions located in the cavity of nanomaterials have been experimentally and theoretically demonstrated in a fullerene. The existence of SAMOs in single-wall carbon nanotubes (SWCNTs) was also predicted theoretically. In the present paper, these volume states in semiconductor SWCNTs were theoretically investigated using numerical quantum modeling based on density functional theory (DFT). It is shown that the well appears in the center of the tube, whose depth increases with increasing positive charge, since the total potential of a positively charged structure can be represented as the sum of the Coulomb potential and the potential of the atoms of the tube wall. In this context, in addition to the well-studied surface-localized states, states localized in the volume of the cylinder also occur. Using the components of the electric transition dipole moment, the lifetime of the volume states was preliminarily estimated in comparison to the lifetime of the ordinary surface states.
在富勒烯中,体积定位电子态(SAMOs)的电子波函数最大值位于纳米材料的空腔中,这一点已在实验和理论上得到证实。理论上也预测了单壁碳纳米管(SWCNT)中 SAMO 的存在。本文利用基于密度泛函理论(DFT)的数值量子建模对半导体 SWCNT 中的这些体积态进行了理论研究。研究表明,由于正电结构的总电势可以表示为库仑电势和管壁原子电势之和,因此井出现在管的中心,其深度随着正电荷的增加而增加。在这种情况下,除了已被充分研究的表面局域态之外,圆柱体体积内的局域态也会出现。通过电转换偶极矩的分量,我们初步估算出了体积态的寿命,并与普通表面态的寿命进行了比较。
{"title":"System of metastable volume-localized electronic states in positively charged semiconductor single-wall carbon nanotubes","authors":"S.A. Votyakov , A.V. Osadchy , E.D. Obraztsova","doi":"10.1016/j.cartre.2024.100340","DOIUrl":"10.1016/j.cartre.2024.100340","url":null,"abstract":"<div><p>The volume-localized electronic states (SAMOs) with a maximum of their electron wave functions located in the cavity of nanomaterials have been experimentally and theoretically demonstrated in a fullerene. The existence of SAMOs in single-wall carbon nanotubes (SWCNTs) was also predicted theoretically. In the present paper, these volume states in semiconductor SWCNTs were theoretically investigated using numerical quantum modeling based on density functional theory (DFT). It is shown that the well appears in the center of the tube, whose depth increases with increasing positive charge, since the total potential of a positively charged structure can be represented as the sum of the Coulomb potential and the potential of the atoms of the tube wall. In this context, in addition to the well-studied surface-localized states, states localized in the volume of the cylinder also occur. Using the components of the electric transition dipole moment, the lifetime of the volume states was preliminarily estimated in comparison to the lifetime of the ordinary surface states.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"15 ","pages":"Article 100340"},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266705692400021X/pdfft?md5=2aa395d8517f2e841af7717981ea12bd&pid=1-s2.0-S266705692400021X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140280860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This is a theoretical study of boron-doped single-walled carbon nanotubes. The same topology of primitive nanodomains, located at different positions on single-walled carbon nanotubes, leads to different electronic band structures. We propose a ϕ term. Density functional theory was corrected for van der Waals interactions and used to carry out the periodic boundary condition geometry optimization, where boron formed the topologies of primitive nanodomains. The calculated bulk structure and local structure spectroscopic parameters can be used for comparison with experimental results to confirm the theoretical models.
{"title":"Topology of boron substitutional defects in single-walled carbon nanotubes: A first-principles study","authors":"Wutthisak Prachamon , Oruethai Jaiboon , Sittipong Komin , Chesta Ruttanapun , Sukit Limpijumnong","doi":"10.1016/j.cartre.2024.100337","DOIUrl":"https://doi.org/10.1016/j.cartre.2024.100337","url":null,"abstract":"<div><p>This is a theoretical study of boron-doped single-walled carbon nanotubes. The same topology of primitive nanodomains, located at different positions on single-walled carbon nanotubes, leads to different electronic band structures. We propose a <em>ϕ</em> term. Density functional theory was corrected for van der Waals interactions and used to carry out the periodic boundary condition geometry optimization, where boron formed the topologies of primitive nanodomains. The calculated bulk structure and local structure spectroscopic parameters can be used for comparison with experimental results to confirm the theoretical models.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"15 ","pages":"Article 100337"},"PeriodicalIF":0.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266705692400018X/pdfft?md5=91665dae1f78cb5f3b238438dd5c7d2f&pid=1-s2.0-S266705692400018X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140160900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The recently observed helicity-sensitive response, occurring in graphene based field-effect transistors (FETs) is interpreted as a result of the intrinsic phase asymmetry of these devices and interference of plasmons in the FET channel. The graphene-based plasmonic interferometers presented in this work enable the room temperature detection of THz radiation as well as allows us to distinguish between the rotation direction of circular polarized waves. To illustrate the broadband nurture of the observed effects, similar measurements were carried out at both THz and mid-infrared frequencies. The precise control of the carriers type and their concentration throughout the channel length allows us to demonstrate the helicity-sensitive response over a wide range of the gate potentials (from negative to positive values). We experimentally show that the formation of p–n junction inside the graphene channel leads to additional scattering of excited plasma waves, resulting in the suppression of their interference and consequent reduction of the helicity-sensitive contribution.
{"title":"Suppression of plasmonic interference in helicity sensitive broadband terahertz detectors","authors":"Ilya Mazurenko , Dmitriy Vovk , Yakov Matyushkin , Alesia Paddubskaya , Maxim Rybin , Elena Obraztsova","doi":"10.1016/j.cartre.2024.100331","DOIUrl":"https://doi.org/10.1016/j.cartre.2024.100331","url":null,"abstract":"<div><p>The recently observed helicity-sensitive response, occurring in graphene based field-effect transistors (FETs) is interpreted as a result of the intrinsic phase asymmetry of these devices and interference of plasmons in the FET channel. The graphene-based plasmonic interferometers presented in this work enable the room temperature detection of THz radiation as well as allows us to distinguish between the rotation direction of circular polarized waves. To illustrate the broadband nurture of the observed effects, similar measurements were carried out at both THz and mid-infrared frequencies. The precise control of the carriers type and their concentration throughout the channel length allows us to demonstrate the helicity-sensitive response over a wide range of the gate potentials (from negative to positive values). We experimentally show that the formation of <em>p–n</em> junction inside the graphene channel leads to additional scattering of excited plasma waves, resulting in the suppression of their interference and consequent reduction of the helicity-sensitive contribution.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"14 ","pages":"Article 100331"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000129/pdfft?md5=2dedc3489b545f6a0608bd861ae7bc37&pid=1-s2.0-S2667056924000129-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139999119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.1016/j.cartre.2024.100336
Haftom Weldekidan , Amar K. Mohanty , Lawrence T. Drzal , Manjusri Misra
In this paper, we report a method for achieving high-yield graphene-containing biocarbon from burlap waste through a simple two-step carbonization process. The first step involves feedstock carbonization at 600 °C, followed by ball milling and then graphitization at 1200 °C using KOH. A comparative analysis between the obtained bio-graphene and commercial graphene revealed superior graphene properties of the burlap-based graphene. Notably, this bio-based graphene exhibited exceptional characteristics such as a very high BET surface area in the range of 1021 m²/g, low defect-to-graphene ratio of 0.12 in the Raman spectra, and an overall yield of 19% wt. These findings highlight the potential of burlap waste as a sustainable precursor for high-quality graphene synthesis and its potential for various applications.
在本文中,我们报告了一种通过简单的两步碳化工艺从麻布废料中获得高产率含石墨烯生物碳的方法。第一步是在 600 °C 下对原料进行碳化,然后进行球磨,最后在 1200 °C 下使用 KOH 进行石墨化。对所获得的生物石墨烯和商用石墨烯进行比较分析后发现,麻布基石墨烯具有更优越的石墨烯特性。值得注意的是,这种生物基石墨烯表现出非常优异的特性,如 BET 表面积非常高,达到 1021 m²/g,拉曼光谱中缺陷与石墨烯的比率低至 0.12,总体产量达到 19%(重量比)。这些发现凸显了麻布废料作为高质量石墨烯合成的可持续前驱体的潜力及其在各种应用领域的潜力。
{"title":"Graphene-containing biocarbon from burlap waste: Property comparison with commercial grade graphene nanoplatelets","authors":"Haftom Weldekidan , Amar K. Mohanty , Lawrence T. Drzal , Manjusri Misra","doi":"10.1016/j.cartre.2024.100336","DOIUrl":"10.1016/j.cartre.2024.100336","url":null,"abstract":"<div><p>In this paper, we report a method for achieving high-yield graphene-containing biocarbon from burlap waste through a simple two-step carbonization process. The first step involves feedstock carbonization at 600 °C, followed by ball milling and then graphitization at 1200 °C using KOH. A comparative analysis between the obtained bio-graphene and commercial graphene revealed superior graphene properties of the burlap-based graphene. Notably, this bio-based graphene exhibited exceptional characteristics such as a very high BET surface area in the range of 1021 m²/g, low defect-to-graphene ratio of 0.12 in the Raman spectra, and an overall yield of 19% wt. These findings highlight the potential of burlap waste as a sustainable precursor for high-quality graphene synthesis and its potential for various applications.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"15 ","pages":"Article 100336"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000178/pdfft?md5=5bb91e4e21e4b4afdea6f34fcf22b902&pid=1-s2.0-S2667056924000178-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140085561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Graphene has been used as a catalyst to reduce the energy barrier for corannulene inversion. For such a catalytic study, corannulene structures are normally assumed to already be in close proximity to graphene, either in the concave-up or concave-down orientation. Here we use both the Lennard-Jones potential (pair-wise dispersion model) and density functional theory calculations to show that corannulene at a distance further away from graphene can adopt various orientations to optimise its interaction with graphene.
{"title":"Adsorption of corannulene on graphene","authors":"Panyada Sripaturad , Ngamta Thamwattana , Amir Karton , Kyle Stevens , Duangkamon Baowan","doi":"10.1016/j.cartre.2024.100334","DOIUrl":"https://doi.org/10.1016/j.cartre.2024.100334","url":null,"abstract":"<div><p>Graphene has been used as a catalyst to reduce the energy barrier for corannulene inversion. For such a catalytic study, corannulene structures are normally assumed to already be in close proximity to graphene, either in the concave-up or concave-down orientation. Here we use both the Lennard-Jones potential (pair-wise dispersion model) and density functional theory calculations to show that corannulene at a distance further away from graphene can adopt various orientations to optimise its interaction with graphene.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"15 ","pages":"Article 100334"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000154/pdfft?md5=f242af02db43d729115bbd47ad069328&pid=1-s2.0-S2667056924000154-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140067515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}