Pub Date : 2024-09-14DOI: 10.1016/j.cartre.2024.100402
Mostafa M. Omran , Ahmed Galal , Delvin Aman
This study used a scalable process to fabricate activated carbon (AC) supercapacitor electrodes with cornstarch as a green binder. A vital aspect of this study was comparing its performance with synthetic binders like polyvinylidene fluoride (PVDF) and Nafion. The chemical and physical properties of the AC were characterized using Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, and Field Emission Scanning Electron Microscopy (FE-SEM). Water contact angle measurements evaluated the hydrophilicity of AC-based electrodes with different binders. Their electrochemical characteristics were studied using open circuit potential (OCP), cyclic voltammetry (CV), galvanic charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS) in 1 M NaSO4 electrolyte, and the charge storage mechanism was discussed in detail. The starch binder significantly facilitated the charge storage mechanism by suppressing diffusion limitations compared to other binders. The fabricated symmetric supercapacitor device of starch-based electrodes exhibited the highest Cs of 120 F/g at a specific current of 1 A g-1 with a high energy density of 135 Wh/kg and an exact power density of 750 W/kg. The starch-based supercapacitor device exhibited a capacitance retention of 104 % and 65.5 % at specific currents of 2 A g-1 and 10 A g-1 after 10,000 cycles of charging/discharging, respectively.
这项研究采用了一种可扩展的工艺,以玉米淀粉作为绿色粘合剂来制造活性炭(AC)超级电容器电极。这项研究的一个重要方面是将其性能与聚偏二氟乙烯(PVDF)和纳菲翁等合成粘合剂进行比较。研究人员使用布鲁瑙尔-艾美特-泰勒(BET)、X 射线衍射(XRD)、傅立叶变换红外光谱(FT-IR)、拉曼光谱和场发射扫描电子显微镜(FE-SEM)对 AC 的化学和物理特性进行了表征。水接触角测量评估了含有不同粘合剂的交流电基电极的亲水性。在 1 M NaSO4 电解液中,使用开路电位 (OCP)、循环伏安 (CV)、电化学充放电 (GCD) 和电化学阻抗谱 (EIS) 研究了它们的电化学特性,并详细讨论了电荷存储机制。与其他粘合剂相比,淀粉粘合剂抑制了扩散限制,从而大大促进了电荷存储机制。所制备的淀粉基电极对称超级电容器装置在比电流为 1 A g-1 时的最高 Cs 值为 120 F/g,能量密度高达 135 Wh/kg,精确功率密度为 750 W/kg。淀粉基超级电容器装置在充电/放电 10,000 次后,在 2 A g-1 和 10 A g-1 的特定电流下,电容保持率分别为 104 % 和 65.5 %。
{"title":"Cornstarch as a green binder in supercapacitors: Understanding the effect of binder on the charge storage mechanism","authors":"Mostafa M. Omran , Ahmed Galal , Delvin Aman","doi":"10.1016/j.cartre.2024.100402","DOIUrl":"10.1016/j.cartre.2024.100402","url":null,"abstract":"<div><p>This study used a scalable process to fabricate activated carbon (AC) supercapacitor electrodes with cornstarch as a green binder. A vital aspect of this study was comparing its performance with synthetic binders like polyvinylidene fluoride (PVDF) and Nafion. The chemical and physical properties of the AC were characterized using Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, and Field Emission Scanning Electron Microscopy (FE-SEM). Water contact angle measurements evaluated the hydrophilicity of AC-based electrodes with different binders. Their electrochemical characteristics were studied using open circuit potential (OCP), cyclic voltammetry (CV), galvanic charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS) in 1 M NaSO4 electrolyte, and the charge storage mechanism was discussed in detail. The starch binder significantly facilitated the charge storage mechanism by suppressing diffusion limitations compared to other binders. The fabricated symmetric supercapacitor device of starch-based electrodes exhibited the highest C<sub>s</sub> of 120 F/g at a specific current of 1 A g<sup>-1</sup> with a high energy density of 135 Wh/kg and an exact power density of 750 W/kg. The starch-based supercapacitor device exhibited a capacitance retention of 104 % and 65.5 % at specific currents of 2 A g<sup>-1</sup> and 10 A g<sup>-1</sup> after 10,000 cycles of charging/discharging, respectively.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"17 ","pages":"Article 100402"},"PeriodicalIF":3.1,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266705692400083X/pdfft?md5=db513413a132bb9b031a0d6d20fc9e27&pid=1-s2.0-S266705692400083X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1016/j.cartre.2024.100401
Eva Kinnertová , Tomáš Zelenka , Gabriela Zelenková , Lucie Kořená , Václav Slovák , Miroslav Almáši
This study explored the impact of pyrolysis heating rates ranging from 1 to 20 K min−1 (final temperature 500 °C) on the porosity of resorcinol-formaldehyde based carbonaceous xerogels soft-templated with Pluronic F-127. We primarily utilized thermoporometry (differential scanning calorimetry technique) and, to a lesser extent, conventional nitrogen adsorption at −196 °C to analyze the porosity of the resulting carbons. Additionally, we examined the effects of particle size and the scale of the pyrolysis experiment, comparing a laboratory furnace with a thermal analyzer. At lower heating rates, particularly in a thermal analyzer, mesopores approximately 7–8 nm in size were observed. An increase in the heating rate resulted in larger mesopores, from 7 to 17 nm, widened pore size distribution (PSD), and a rise in mesopore volume from 0.21 to 0.53 cm3g−1. Higher heating rates (> 5 K min-1) also accelerated the decomposition of the Pluronic F-127, leading to fast gas release, which subsequently caused cracking of the carbon skeleton and widening of the pores. Pyrolysis heating rate had no significant effect on the degree of graphitization in the pyrolyzed samples. Particle size showed minimal influence on porosity when xerogels were pyrolyzed at either the minimal or maximal heating rates in the thermal analyzer. However, experiments conducted in a laboratory furnace at the lowest heating rate demonstrated that imprecise temperature control and fluctuations can lead to the formation of larger mesopores.
{"title":"The effect of pyrolysis heating rate on the mesoporosity of Pluronic F-127 templated carbon xerogels","authors":"Eva Kinnertová , Tomáš Zelenka , Gabriela Zelenková , Lucie Kořená , Václav Slovák , Miroslav Almáši","doi":"10.1016/j.cartre.2024.100401","DOIUrl":"10.1016/j.cartre.2024.100401","url":null,"abstract":"<div><p>This study explored the impact of pyrolysis heating rates ranging from 1 to 20 K min<sup>−1</sup> (final temperature 500 °C) on the porosity of resorcinol-formaldehyde based carbonaceous xerogels soft-templated with Pluronic F-127. We primarily utilized thermoporometry (differential scanning calorimetry technique) and, to a lesser extent, conventional nitrogen adsorption at −196 °C to analyze the porosity of the resulting carbons. Additionally, we examined the effects of particle size and the scale of the pyrolysis experiment, comparing a laboratory furnace with a thermal analyzer. At lower heating rates, particularly in a thermal analyzer, mesopores approximately 7–8 nm in size were observed. An increase in the heating rate resulted in larger mesopores, from 7 to 17 nm, widened pore size distribution (PSD), and a rise in mesopore volume from 0.21 to 0.53 cm<sup>3</sup> <em>g</em><sup>−1</sup>. Higher heating rates (> 5 K min<sup>-1</sup>) also accelerated the decomposition of the Pluronic F-127, leading to fast gas release, which subsequently caused cracking of the carbon skeleton and widening of the pores. Pyrolysis heating rate had no significant effect on the degree of graphitization in the pyrolyzed samples. Particle size showed minimal influence on porosity when xerogels were pyrolyzed at either the minimal or maximal heating rates in the thermal analyzer. However, experiments conducted in a laboratory furnace at the lowest heating rate demonstrated that imprecise temperature control and fluctuations can lead to the formation of larger mesopores.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"17 ","pages":"Article 100401"},"PeriodicalIF":3.1,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000828/pdfft?md5=413bb43cb80c1ed89ec8f07ac1e80f0a&pid=1-s2.0-S2667056924000828-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142244157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nowadays we are extremely dependent on various synthetic plastic materials to maintain the massive demand, therefore, both the industries and mankind have been generating a massive amount of plastic waste which is so hazardous for the total environment due to their nonbiodegradable nature. To solve this problem by replacing the fossil-based plastic materials with ecofriendly biopolymers in this current study we will be described a novel method for producing Crystalline Nano Cellulose (CNC) from the waste sugarcane leaf sheaths (SLSF) fibers as a green reinforcing agent. The waste-to-wealth approach aims to elevate agricultural residues, particularly SLSF, by transforming them into high-quality CNCs for use in a variety of sectors. SLSF was initially washed with detergent to remove impurities, followed by alkali treatment and bleaching operation before CNC manufacture using acid hydrolysis (60% H2SO4). The resulting materials were characterized using Fourier transform infrared (FTIR) spectroscopy, Scanning electron microscopy (SEM), X-ray diffraction (XRD), Thermogravimetric analysis (TGA), Differential thermogravimetry (DTG), and Differential thermal analysis (DTA). FTIR indicates the newly produced CNCs is very much rich with active sites like –OH, -NH, -COOH, -C-O-C-, etc., while SEM revealed the raw fiber surface was rough, whereas the surface of CNCs became smooth even after the removal of lignin, fatty, and waxy compounds. Overall, acid hydrolysis was shown to increase the crystallinity of bleached SLSF while reducing cellulose dimensions to the nanoscale. After analysis it was revealed that most CNC particle size was around 100 nm. The outstanding properties of CNCs, including as high strength, biodegradability, and low environmental impact, make them ideal candidates for reinforcing composites, improving medicine delivery systems, and aiding new electronics. Ongoing research and technology advancements in integrating CNCs into many applications have the potential to alter industries looking for sustainable and high-performance materials.
{"title":"Extraction, and characterization of CNC from waste sugarcane leaf sheath as a reinforcement of multifunctional bio-nanocomposite material: A waste to wealth approach","authors":"Md. Mahafujul Hassan , Md. Mahmudur Rahman , Bijoy Chandra Ghos , Md. Ismail Hossain , Md. Al Amin , Md. Khalid Al Zuhanee","doi":"10.1016/j.cartre.2024.100400","DOIUrl":"10.1016/j.cartre.2024.100400","url":null,"abstract":"<div><p>Nowadays we are extremely dependent on various synthetic plastic materials to maintain the massive demand, therefore, both the industries and mankind have been generating a massive amount of plastic waste which is so hazardous for the total environment due to their nonbiodegradable nature. To solve this problem by replacing the fossil-based plastic materials with ecofriendly biopolymers in this current study we will be described a novel method for producing Crystalline Nano Cellulose (CNC) from the waste sugarcane leaf sheaths (SLSF) fibers as a green reinforcing agent. The waste-to-wealth approach aims to elevate agricultural residues, particularly SLSF, by transforming them into high-quality CNCs for use in a variety of sectors. SLSF was initially washed with detergent to remove impurities, followed by alkali treatment and bleaching operation before CNC manufacture using acid hydrolysis (60% H<sub>2</sub>SO<sub>4</sub>). The resulting materials were characterized using Fourier transform infrared (FTIR) spectroscopy, Scanning electron microscopy (SEM), X-ray diffraction (XRD), Thermogravimetric analysis (TGA), Differential thermogravimetry (DTG), and Differential thermal analysis (DTA). FTIR indicates the newly produced CNCs is very much rich with active sites like –OH, -NH, -COOH, -C-O-C-, etc., while SEM revealed the raw fiber surface was rough, whereas the surface of CNCs became smooth even after the removal of lignin, fatty, and waxy compounds. Overall, acid hydrolysis was shown to increase the crystallinity of bleached SLSF while reducing cellulose dimensions to the nanoscale. After analysis it was revealed that most CNC particle size was around 100 nm. The outstanding properties of CNCs, including as high strength, biodegradability, and low environmental impact, make them ideal candidates for reinforcing composites, improving medicine delivery systems, and aiding new electronics. Ongoing research and technology advancements in integrating CNCs into many applications have the potential to alter industries looking for sustainable and high-performance materials.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"17 ","pages":"Article 100400"},"PeriodicalIF":3.1,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000816/pdfft?md5=bb5d352ce458e1f2a90e2f4d968e012d&pid=1-s2.0-S2667056924000816-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Activated carbons (ACs) derived from waste rice husk ash (RHA) exhibit remarkable potential for selective oxygen adsorption. The pore morphology of the prepared materials was characterized utilizing BET measurement, t-plot, and BJH-plot suggesting a linear relation between activation temperature and mesopore volume, whereas, micropore volume decreases at activation beyond 550 °C. FT-IR spectroscopy confirms their non-polar surface. Notably, AC-600 achieves an outstanding O2/N2 (0.21/0.78) of 152.7 at 0.01 bar at 25 °C, owing to the non-polar nature of the surface, favouring oxygen adsorption due to its low quadrupole moment. Additionally, the mixed micro and mesoporous structure of AC-600 significantly enhance the oxygen adsorption, showing an ∼18.4% (or 1.2-fold) increase compared to AC-500. However, a ∼32.3% decrease in oxygen uptake was observed for AC-800 due to excessive “burn-off”. Adsorption selectivity, assessed with Ideal Adsorption Solution Theory (IAST) and fitted to the Freundlich isotherm model, and adsorption kinetics, analysed using the pseudo-second-order Lagergren and Webber-Morris intraparticle diffusion models, highlighted the impact of activation temperature on the porosity of the material. Understanding the surface chemistry and pore morphology of activated carbon offers deeper insights to enhance oxygen uptake capacity, advancing the development of sustainable, industrially viable materials for oxygen production.
{"title":"Waste biomass-derived activated carbons for selective oxygen adsorption","authors":"Harshal Kulkarni , Chandresh Bari , Sagnik Mukherjee , Prayag Gajera , Govind Sethia","doi":"10.1016/j.cartre.2024.100398","DOIUrl":"10.1016/j.cartre.2024.100398","url":null,"abstract":"<div><p>Activated carbons (ACs) derived from waste rice husk ash (RHA) exhibit remarkable potential for selective oxygen adsorption. The pore morphology of the prepared materials was characterized utilizing BET measurement, t-plot, and BJH-plot suggesting a linear relation between activation temperature and mesopore volume, whereas, micropore volume decreases at activation beyond 550 °C. FT-IR spectroscopy confirms their non-polar surface. Notably, AC-600 achieves an outstanding O<sub>2</sub>/N<sub>2</sub> (0.21/0.78) of 152.7 at 0.01 bar at 25 °C, owing to the non-polar nature of the surface, favouring oxygen adsorption due to its low quadrupole moment. Additionally, the mixed micro and mesoporous structure of AC-600 significantly enhance the oxygen adsorption, showing an ∼18.4% (or 1.2-fold) increase compared to AC-500. However, a ∼32.3% decrease in oxygen uptake was observed for AC-800 due to excessive “burn-off”. Adsorption selectivity, assessed with Ideal Adsorption Solution Theory (IAST) and fitted to the Freundlich isotherm model, and adsorption kinetics, analysed using the pseudo-second-order Lagergren and Webber-Morris intraparticle diffusion models, highlighted the impact of activation temperature on the porosity of the material. Understanding the surface chemistry and pore morphology of activated carbon offers deeper insights to enhance oxygen uptake capacity, advancing the development of sustainable, industrially viable materials for oxygen production.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"17 ","pages":"Article 100398"},"PeriodicalIF":3.1,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000798/pdfft?md5=41ab86f9ba94c97c8682d9667ec4fc93&pid=1-s2.0-S2667056924000798-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142229689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.cartre.2024.100397
Xuan Li , Binbin Fan , Zhongde Wang , Guoqing Guan
Free-standing electrode materials provide many desirable properties for electrochemical energy storage devices due to their light weight, good conductive capacity, excellent mechanical strength, high energy/power density and extraordinary electrochemical stability. Particularly, carbonaceous matrix nanomaterials, such as graphene materials, carbon nanotubes, carbon nanofibers, carbon papers and carbon cloths, play important roles in the free-standing electrodes, including serving as conducting network skeleton, loading electrochemically active material, enhancing mechanical toughness and flexibility, and preventing the structural damage during charge/discharge processes. In this review, we give a systematic overview of the state-of-the-art research progress on carbonaceous matrixes-based free-standing electrode materials for electrochemical energy storage, from synthesis methods, structural design, to important applications in flexible energy storage devices including lithium-ion batteries, lithium-sulfur batteries, sodium-ion batteries, lithium-oxygen batteries, and supercapacitors for each class of matrix-based electrode materials. In particular, the structure design strategies utilizing the advantages of free-standing matrixes to address the existing issues and improve the electrochemical and mechanical performance of energy storage devices are discussed in detail. At the end, we also discuss the challenges and demonstrate the prospective for the future development of such materials for advanced flexible energy storage devices.
{"title":"Carbonaceous matrixes-based free-standing electrode materials for energy storage","authors":"Xuan Li , Binbin Fan , Zhongde Wang , Guoqing Guan","doi":"10.1016/j.cartre.2024.100397","DOIUrl":"10.1016/j.cartre.2024.100397","url":null,"abstract":"<div><p>Free-standing electrode materials provide many desirable properties for electrochemical energy storage devices due to their light weight, good conductive capacity, excellent mechanical strength, high energy/power density and extraordinary electrochemical stability. Particularly, carbonaceous matrix nanomaterials, such as graphene materials, carbon nanotubes, carbon nanofibers, carbon papers and carbon cloths, play important roles in the free-standing electrodes, including serving as conducting network skeleton, loading electrochemically active material, enhancing mechanical toughness and flexibility, and preventing the structural damage during charge/discharge processes. In this review, we give a systematic overview of the state-of-the-art research progress on carbonaceous matrixes-based free-standing electrode materials for electrochemical energy storage, from synthesis methods, structural design, to important applications in flexible energy storage devices including lithium-ion batteries, lithium-sulfur batteries, sodium-ion batteries, lithium-oxygen batteries, and supercapacitors for each class of matrix-based electrode materials. In particular, the structure design strategies utilizing the advantages of free-standing matrixes to address the existing issues and improve the electrochemical and mechanical performance of energy storage devices are discussed in detail. At the end, we also discuss the challenges and demonstrate the prospective for the future development of such materials for advanced flexible energy storage devices.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"16 ","pages":"Article 100397"},"PeriodicalIF":3.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000786/pdfft?md5=cffdc26b09b44b86cf29377183e2de88&pid=1-s2.0-S2667056924000786-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.cartre.2024.100395
Anderson Gomes Vieira , Marcelo Lopes Pereira Júnior , Vincent Meunier , Eduardo Costa Girão
A rectangular graphyne sheet is composed of units similar to phenyl rings that are linked by acetylenic chains, as in hexagonal -graphyne. This system is organized over a rectangular lattice similar to that of the recently synthesized biphenylene network. We investigate the stability of this layered material from different perspectives and study its electronic structure. Rectangular graphyne is a semiconducting system in its pristine form. It features a pair of highly localized states. These characteristics are correlated with the structural anisotropy of the system, since its frontier states behave like quasi-1D states embedded in the 2D lattice. We further consider modified systems in which longer acetylenic links are introduced. We discuss how a strategic choice of the position of these longer bridges leads to specific changes of the electronic structure of the rectangular graphyne sheet.
{"title":"Electronic properties of two-dimensional rectangular graphyne based on phenyl-like building blocks","authors":"Anderson Gomes Vieira , Marcelo Lopes Pereira Júnior , Vincent Meunier , Eduardo Costa Girão","doi":"10.1016/j.cartre.2024.100395","DOIUrl":"10.1016/j.cartre.2024.100395","url":null,"abstract":"<div><p>A rectangular graphyne sheet is composed of units similar to phenyl rings that are linked by acetylenic chains, as in hexagonal <span><math><mi>γ</mi></math></span>-graphyne. This system is organized over a rectangular lattice similar to that of the recently synthesized biphenylene network. We investigate the stability of this layered material from different perspectives and study its electronic structure. Rectangular graphyne is a semiconducting system in its pristine form. It features a pair of highly localized states. These characteristics are correlated with the structural anisotropy of the system, since its frontier states behave like quasi-1D states embedded in the 2D lattice. We further consider modified systems in which longer acetylenic links are introduced. We discuss how a strategic choice of the position of these longer bridges leads to specific changes of the electronic structure of the rectangular graphyne sheet.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"16 ","pages":"Article 100395"},"PeriodicalIF":3.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000762/pdfft?md5=dd06661e84df7d0aa6b776407dcd7a5c&pid=1-s2.0-S2667056924000762-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-19DOI: 10.1016/j.cartre.2024.100396
Aika Yamaguchi, Chihiro Miyazaki, Yunosuke Takezawa, Goichiro Seo, Yuki Saito, Ryosuke Ohnuki, Shinya Yoshioka, Kaname Kanai
Poly(heptazine imide) (PHI), a carbon nitride polymer, is a highly efficient visible-light-driven photocatalytic material. We aimed to improve its photocatalytic performance for CO2 conversion. We prepared M-PHIs by encapsulating different metals (M = K, Li, Rb, and Na) and H-PHIs, in which the metal of each M-PHI was ion-exchanged with a proton. We evaluated their photocatalytic activities for CO2 conversion and found that Na-PHI and H-PHI, prepared from Na-PHI (H-PHI(NaCl)), showed more than twice the CO production efficiency of melon and other PHIs.
The high CO production efficiency of Na-PHI and H-PHI(NaCl) was attributed to their extremely smaller particle size compared with those of the other PHIs. By closely examining the synthesis conditions of Na-PHI, we have identified a method to intentionally synthesize M-PHI with small particle size. These results provide a new strategy for highly efficient CO2 conversion using PHI.
{"title":"Photocatalytic performance of metal poly(heptazine imide) for carbon dioxide reduction","authors":"Aika Yamaguchi, Chihiro Miyazaki, Yunosuke Takezawa, Goichiro Seo, Yuki Saito, Ryosuke Ohnuki, Shinya Yoshioka, Kaname Kanai","doi":"10.1016/j.cartre.2024.100396","DOIUrl":"10.1016/j.cartre.2024.100396","url":null,"abstract":"<div><p>Poly(heptazine imide) (PHI), a carbon nitride polymer, is a highly efficient visible-light-driven photocatalytic material. We aimed to improve its photocatalytic performance for CO<sub>2</sub> conversion. We prepared M-PHIs by encapsulating different metals (<em>M</em> = <em>K</em>, Li, Rb, and Na) and H-PHIs, in which the metal of each M-PHI was ion-exchanged with a proton. We evaluated their photocatalytic activities for CO<sub>2</sub> conversion and found that Na-PHI and H-PHI, prepared from Na-PHI (H-PHI(NaCl)), showed more than twice the CO production efficiency of melon and other PHIs.</p><p>The high CO production efficiency of Na-PHI and H-PHI(NaCl) was attributed to their extremely smaller particle size compared with those of the other PHIs. By closely examining the synthesis conditions of Na-PHI, we have identified a method to intentionally synthesize M-PHI with small particle size. These results provide a new strategy for highly efficient CO<sub>2</sub> conversion using PHI.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"16 ","pages":"Article 100396"},"PeriodicalIF":3.1,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000774/pdfft?md5=912a300dfcfc2857fd587780ab6faf3f&pid=1-s2.0-S2667056924000774-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142044644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-18DOI: 10.1016/j.cartre.2024.100394
Faegheh Yahyazadeh, Dadkhoda Ghazanfari, Sayed Ali Ahmadi, Mohammad Reza Akhgar
Nefazodone, a derivative of triazolones, belongs to a group of heterocyclic aromatic compounds. It is used as an antidepressant for treating depression, including major depressive disorder. Unlike other antidepressant groups such as selective serotonin reuptake inhibitors, tricyclic antidepressants, or monoamine oxidase inhibitors, Nefazodone does not share chemical similarities. Recent research has focused on studying the reactivity and chemical structure influenced by Nefazodone's medicinal features in the drug's adsorption process on single-wall Carbon Nanotube (CNT) as an adsorbent in the gas phase using density functional theory (DFT), Becke, 3-parameter, Lee–Yang–Parr (B3LYP) 6-311+G(d,p) basis set (DFT/B3LYP/6-311+G(d,p)). The effect of electronegative atoms and phenyl groups on the adsorption of Nefazodone on CNT has been studied by calculating the adsorption energy for all active sites. On the other hand, thermodynamic values, such as Gibbs free energy (−4873.09 kJ), Enthalpy (−4872.83 kJ), and Entropy (903.09 J/mol.kelvin), as well as thermodynamic capacity (497.45 J/mol.kelvin), were calculated to show the reactivity of Nefazodone. The stability and reactivity were examined through the energies of the highest occupied molecular orbital (HOMO) (−5.53 eV) and lowest unoccupied molecular orbital (LUMO) (−0.58 eV) of Nefazodone, highlighting ten regions with chemical activity, all of which are thermodynamically stable. Some Electronic parameters such as chemical potential (µ), electronegativity (χ), softness (σ), hardness (η), and electrophilicity index (ω) were calculated. The comparison of chemical potential values between Nefazodone(−3.05 eV) and the more stable complex (−3.81 eV) illustrates the more reactivity for the complex. This suggests that Nefazodone can be transferred to biological systems through such an adsorption mechanism.
{"title":"Adsorption of Nefazodone on single-wall carbon nanotube as an antidepressant drug delivery: A DFT study","authors":"Faegheh Yahyazadeh, Dadkhoda Ghazanfari, Sayed Ali Ahmadi, Mohammad Reza Akhgar","doi":"10.1016/j.cartre.2024.100394","DOIUrl":"10.1016/j.cartre.2024.100394","url":null,"abstract":"<div><p>Nefazodone, a derivative of triazolones, belongs to a group of heterocyclic aromatic compounds. It is used as an antidepressant for treating depression, including major depressive disorder. Unlike other antidepressant groups such as selective serotonin reuptake inhibitors, tricyclic antidepressants, or monoamine oxidase inhibitors, Nefazodone does not share chemical similarities. Recent research has focused on studying the reactivity and chemical structure influenced by Nefazodone's medicinal features in the drug's adsorption process on single-wall Carbon Nanotube (CNT) as an adsorbent in the gas phase using density functional theory (DFT), Becke, 3-parameter, Lee–Yang–Parr (B3LYP) 6-311+<em>G</em>(d,p) basis set (DFT/B3LYP/6-311+<em>G</em>(d,p)). The effect of electronegative atoms and phenyl groups on the adsorption of Nefazodone on CNT has been studied by calculating the adsorption energy for all active sites. On the other hand, thermodynamic values, such as Gibbs free energy (−4873.09 kJ), Enthalpy (−4872.83 kJ), and Entropy (903.09 J/mol.kelvin), as well as thermodynamic capacity (497.45 J/mol.kelvin), were calculated to show the reactivity of Nefazodone. The stability and reactivity were examined through the energies of the highest occupied molecular orbital (HOMO) (−5.53 eV) and lowest unoccupied molecular orbital (LUMO) (−0.58 eV) of Nefazodone, highlighting ten regions with chemical activity, all of which are thermodynamically stable. Some Electronic parameters such as chemical potential (µ), electronegativity (χ), softness (σ), hardness (η), and electrophilicity index (ω) were calculated. The comparison of chemical potential values between Nefazodone(−3.05 eV) and the more stable complex (−3.81 eV) illustrates the more reactivity for the complex. This suggests that Nefazodone can be transferred to biological systems through such an adsorption mechanism.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"16 ","pages":"Article 100394"},"PeriodicalIF":3.1,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000750/pdfft?md5=b6c7475c84cd2c79e83d83fc34fa29da&pid=1-s2.0-S2667056924000750-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142050395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1016/j.cartre.2024.100393
A.G. Kamaha Tchekep , V. Suryanarayanan , Deepak K. Pattanayak
One of the most important concerns around the world nowadays is the drinking water quality. Silver ions (Ag+) are one of the heavy metal ions that can seriously degrade the water quality and therefore, the human health. Hence, the World Health Organization (WHO) fixed the maximum acceptable concentration of these ions in drinking water at approximately 0.93 µM. Thus, the development of cost-effective and efficient techniques and tools that can help to quantify Ag+ ions in drinking water is of great importance. Herein, we used a new, simple, eco-friendly and low-cost synthesis route to synthesize a sustainable hybrid carbon material, namely sulfonated reduced graphene oxide@graphene oxide (S-rGO@GO) that was utilized as electrode material for Ag+ ions electroanalysis in drinking water. The successful synthesis of S-rGO@GO was evidenced by XRD, Raman spectroscopy, XPS, FE-SEM and EDX. The electrochemical characterization of S-rGO@GO revealed its good affinities towards Ag+ and its good electron transport abilities. The sensor prepared from S-rGO@GO (S-rGO@GO/GCE) showed good repeatability and reproducibility. S-rGO@GO/GCE optimization revealed that its best performance is achieved when 5 µL of 1 mg/mL of S-rGO@GO suspension in ultrapure water is used for its fabrication and when the electrodeposition (Ag+ to Ag0) is carried out at -0.1 V vs. SCE for 200 s. The calibration of S-rGO@GO/GCE exhibited a linear relationship in the concentration range of 0.2 to 1.4 µM, with a sensitivity of (0.605 ± 0.015) µA/µM; the statistic LOD was found to be 0.0007 µM. Furthermore, S-rGO@GO/GCE has shown a great potential for real samples analysis.
{"title":"Simultaneous synthesis of sulfonated reduced graphene oxide@graphene oxide hybrid material for efficient electrochemical sensing of silver ions in drinking water","authors":"A.G. Kamaha Tchekep , V. Suryanarayanan , Deepak K. Pattanayak","doi":"10.1016/j.cartre.2024.100393","DOIUrl":"10.1016/j.cartre.2024.100393","url":null,"abstract":"<div><p>One of the most important concerns around the world nowadays is the drinking water quality. Silver ions (Ag<sup>+</sup>) are one of the heavy metal ions that can seriously degrade the water quality and therefore, the human health. Hence, the World Health Organization (WHO) fixed the maximum acceptable concentration of these ions in drinking water at approximately 0.93 µM. Thus, the development of cost-effective and efficient techniques and tools that can help to quantify Ag<sup>+</sup> ions in drinking water is of great importance. Herein, we used a new, simple, eco-friendly and low-cost synthesis route to synthesize a sustainable hybrid carbon material, namely sulfonated reduced graphene oxide@graphene oxide (S-rGO@GO) that was utilized as electrode material for Ag<sup>+</sup> ions electroanalysis in drinking water. The successful synthesis of S-rGO@GO was evidenced by XRD, Raman spectroscopy, XPS, FE-SEM and EDX. The electrochemical characterization of S-rGO@GO revealed its good affinities towards Ag<sup>+</sup> and its good electron transport abilities. The sensor prepared from S-rGO@GO (S-rGO@GO/GCE) showed good repeatability and reproducibility. S-rGO@GO/GCE optimization revealed that its best performance is achieved when 5 µL of 1 mg/mL of S-rGO@GO suspension in ultrapure water is used for its fabrication and when the electrodeposition (Ag<sup>+</sup> to Ag<sup>0</sup>) is carried out at -0.1 V vs. SCE for 200 s. The calibration of S-rGO@GO/GCE exhibited a linear relationship in the concentration range of 0.2 to 1.4 µM, with a sensitivity of (0.605 ± 0.015) µA/µM; the statistic LOD was found to be 0.0007 µM. Furthermore, S-rGO@GO/GCE has shown a great potential for real samples analysis.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"16 ","pages":"Article 100393"},"PeriodicalIF":3.1,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000749/pdfft?md5=ce24006dc5ccbc9530bfcab7fd5d8db3&pid=1-s2.0-S2667056924000749-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141985179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Graphene research has developed quite rapidly partially because even a monatomic layer can be visualized with a conventional optical microscope. Although optical properties of multilayer graphene such as optical contrast, reflectance (), and Raman scattering have been well studied, they are studied independently and the thickness dependence is limited to a rather thin region. In this paper, the evolution of optical properties by thickness from monolayer to multilayer graphene up to 107 nm thick is studied comprehensively. The empirically known change of color of multilayer graphene is confirmed from the R, G and B intensities extracted from the optical images. It is also found that, as far as for visible light is concerned, multilayer graphene is not necessarily considered as a layered material, and the refractive index for monolayer graphene is applicable even for the thickest multilayer graphene flake in this study. On the other hand, the layered structure and Raman scattering at each layer are essential to reproduce the G-band intensity of Raman scattering (). Not only the multiple reflection but also the interference of scattered Raman light should be considered for of multilayer graphene thicker than 30 nm.
石墨烯研究发展相当迅速,部分原因是即使是单原子层也能用传统光学显微镜观察到。虽然多层石墨烯的光学特性,如光学对比度、反射率 (R) 和拉曼散射等已经得到了很好的研究,但它们都是独立研究的,而且厚度依赖性仅限于相当薄的区域。本文全面研究了从单层石墨烯到厚度达 107 纳米的多层石墨烯的光学特性随厚度的变化。从光学图像中提取的 R、G 和 B 强度证实了经验上已知的多层石墨烯颜色变化。研究还发现,就可见光的 R 值而言,多层石墨烯并不一定被视为层状材料,单层石墨烯的折射率甚至适用于本研究中最厚的多层石墨烯薄片。另一方面,层状结构和各层的拉曼散射对于重现拉曼散射的 G 波段强度(I(G))至关重要。对于厚度大于 ∼30 nm 的多层石墨烯,不仅要考虑多重反射,还要考虑散射拉曼光的干涉。
{"title":"Comprehensive study of optical contrast, reflectance, and Raman spectroscopy of multilayer graphene","authors":"Masahiro Kamada , Ken-ichi Sasaki , Tomohiro Matsui","doi":"10.1016/j.cartre.2024.100389","DOIUrl":"10.1016/j.cartre.2024.100389","url":null,"abstract":"<div><p>Graphene research has developed quite rapidly partially because even a monatomic layer can be visualized with a conventional optical microscope. Although optical properties of multilayer graphene such as optical contrast, reflectance (<span><math><mi>R</mi></math></span>), and Raman scattering have been well studied, they are studied independently and the thickness dependence is limited to a rather thin region. In this paper, the evolution of optical properties by thickness from monolayer to multilayer graphene up to 107 nm thick is studied comprehensively. The empirically known change of color of multilayer graphene is confirmed from the R, G and B intensities extracted from the optical images. It is also found that, as far as <span><math><mi>R</mi></math></span> for visible light is concerned, multilayer graphene is not necessarily considered as a layered material, and the refractive index for monolayer graphene is applicable even for the thickest multilayer graphene flake in this study. On the other hand, the layered structure and Raman scattering at each layer are essential to reproduce the G-band intensity of Raman scattering (<span><math><msub><mrow><mi>I</mi></mrow><mrow><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></msub></math></span>). Not only the multiple reflection but also the interference of scattered Raman light should be considered for <span><math><msub><mrow><mi>I</mi></mrow><mrow><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></msub></math></span> of multilayer graphene thicker than <span><math><mo>∼</mo></math></span>30 nm.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"16 ","pages":"Article 100389"},"PeriodicalIF":3.1,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000701/pdfft?md5=cfad5c2caada47c47d988f0f9b7841ac&pid=1-s2.0-S2667056924000701-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142001751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}