Pub Date : 2024-06-01DOI: 10.1016/j.cartre.2024.100371
Lijun Qu , Haoyu Zhang , Shengwei Huang , Hai Wang , Shihai Yan
As an important intermediate for dual carbon targets, catalytic CO oxidation under mild conditions has received sufficient attention, as the reaction mechanism is directly related to the type of employed catalyst. High performance computing is performed with density functional theory to elucidate the mechanism of CO oxidation catalyzed by sulfur doped fullerene (C60-xSx (x = 1 ∼ 3)). The total activation energy for the first CO oxidation on C59S, C58S2, and C57S3 increases gradually, as implies that the CO oxidation on C59S should be easier than those on the other two dopants. Distinct electrons (0.852 e and 1.479 e) are transferred to oxygen atoms (O2) from C59S with the adsorption of O2 and CO. There is no synergistic effect for the doping S atoms. All elementary reactions on C59S are exothermic processes. This means that C59S is a potential material for addressing environmental protection issues and H2 purification for fuel cell applications.
作为双碳目标的重要中间体,温和条件下催化 CO 氧化反应受到了足够的关注,因为反应机理与所使用催化剂的类型直接相关。我们利用密度泛函理论进行了高性能计算,以阐明掺硫富勒烯(C60-xSx (x = 1 ∼ 3))催化 CO 氧化的机理。C59S、C58S2 和 C57S3 上第一次 CO 氧化的总活化能逐渐增加,这意味着 C59S 上的 CO 氧化比其他两种掺杂物上的 CO 氧化更容易。随着 O2 和 CO 的吸附,不同的电子(0.852 e 和 1.479 e)从 C59S 转移到氧原子(O2)上。掺杂 S 原子不会产生协同效应。C59S 上的所有基本反应都是放热过程。这意味着 C59S 是解决环境保护问题和燃料电池应用中 H2 净化问题的潜在材料。
{"title":"Unveiling the mechanism of CO oxidation catalyzed by sulfur-doped fullerenes with the DFT calculations","authors":"Lijun Qu , Haoyu Zhang , Shengwei Huang , Hai Wang , Shihai Yan","doi":"10.1016/j.cartre.2024.100371","DOIUrl":"https://doi.org/10.1016/j.cartre.2024.100371","url":null,"abstract":"<div><p>As an important intermediate for dual carbon targets, catalytic CO oxidation under mild conditions has received sufficient attention, as the reaction mechanism is directly related to the type of employed catalyst. High performance computing is performed with density functional theory to elucidate the mechanism of CO oxidation catalyzed by sulfur doped fullerene (C<em><sub>60-x</sub></em>S<em><sub>x</sub></em> (<em>x</em> = 1 ∼ 3)). The total activation energy for the first CO oxidation on C<em><sub>59</sub></em>S, C<em><sub>58</sub></em>S<em><sub>2</sub></em>, and C<em><sub>57</sub></em>S<em><sub>3</sub></em> increases gradually, as implies that the CO oxidation on C<em><sub>59</sub></em>S should be easier than those on the other two dopants. Distinct electrons (0.852 <em>e</em> and 1.479 <em>e</em>) are transferred to oxygen atoms (O<sub>2</sub>) from C<em><sub>59</sub></em>S with the adsorption of O<sub>2</sub> and CO. There is no synergistic effect for the doping S atoms. All elementary reactions on C<em><sub>59</sub></em>S are exothermic processes. This means that C<em><sub>59</sub></em>S is a potential material for addressing environmental protection issues and H<sub>2</sub> purification for fuel cell applications.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"15 ","pages":"Article 100371"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266705692400052X/pdfft?md5=54fad390ab8f9b1a7841e3741df6655a&pid=1-s2.0-S266705692400052X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141291952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-19DOI: 10.1016/j.cartre.2024.100368
A.A. Stepashkin , N.Yu. Nikitin
<div><p>High-strength and high-modulus carbon fibers are the basis of many composite materials used in power and automotive engineering as well as other mechanical engineering fields. Superstructural thermoplastic binders—like PPS, PSU, PES, and PEEK—are emerging quickly as a binder material. The mechanical properties of composite materials, especially tensile strength, are improved when high-strength and high-modulus fibers are combined with superstructural thermoplastic binders. However, the type of carbon fiber used, the concentration of thermoplastic binder, and the specifics of the production process all have a significant impact on the final mechanical properties of the composite material. As such, predicting these properties requires both a thorough analysis and a trustworthy mathematical model that predicts mechanical properties (tensile strength).</p><p>The study that is being presented takes a thorough approach to statistical analysis and model building that anticipates the tensile strength of composite material samples made of carbon filaments that have been impregnated with polysulfone (PSU), a thermoplastic polymer.</p><p>PSU thermoplastic polymer was used as a binder, and 817 samples of composite material with high-strength and high-modulus carbon fibers of four different grades were subjected to a thorough statistical analysis of the tensile test findings.</p><p>Nine distinct regression models and four CNN-based models with three distinct neuron activation functions were constructed based on the statistical analysis. The built-in models forecast the composite material's ultimate strength based on the specimen loading circumstances, filler qualities, and composition.</p><p>Significant differences were found in the mechanical properties of carbon fibers of different grades and types (high-strength and high-modulus) based on statistical analysis of the results of tensile tests. The results of Spearman's correlation study indicated a medium positive correlation between ultimate strength and polymer concentration and a weak negative association between ultimate strength and the density of the carbon fiber contained in the composite material. The strain corresponding to the ultimate strength and fiber density were found to have a medium negative correlation, whereas the polymer concentration showed a medium positive correlation. In the composite material, a very slight negative association was discovered between the concentration of polymers and the density of carbon fibers.</p><p>Test results were split into two categories while creating CNN and regression models: 75 % were used for model testing and 25 % were used for training. The CNN model with three layers of hidden parameters produced the best prediction results; the RMSE was 142.948 MPa and the Spearman correlation coefficient between the test strength and the anticipated values was 0.988.</p><p>Regression models' sensitivity analysis revealed that, up to a response variable (tens
{"title":"Statistical analysis, regression, and neural network modeling of the tensile strength of thermoplastic unidirectional carbon fiber-polysulfone composites","authors":"A.A. Stepashkin , N.Yu. Nikitin","doi":"10.1016/j.cartre.2024.100368","DOIUrl":"10.1016/j.cartre.2024.100368","url":null,"abstract":"<div><p>High-strength and high-modulus carbon fibers are the basis of many composite materials used in power and automotive engineering as well as other mechanical engineering fields. Superstructural thermoplastic binders—like PPS, PSU, PES, and PEEK—are emerging quickly as a binder material. The mechanical properties of composite materials, especially tensile strength, are improved when high-strength and high-modulus fibers are combined with superstructural thermoplastic binders. However, the type of carbon fiber used, the concentration of thermoplastic binder, and the specifics of the production process all have a significant impact on the final mechanical properties of the composite material. As such, predicting these properties requires both a thorough analysis and a trustworthy mathematical model that predicts mechanical properties (tensile strength).</p><p>The study that is being presented takes a thorough approach to statistical analysis and model building that anticipates the tensile strength of composite material samples made of carbon filaments that have been impregnated with polysulfone (PSU), a thermoplastic polymer.</p><p>PSU thermoplastic polymer was used as a binder, and 817 samples of composite material with high-strength and high-modulus carbon fibers of four different grades were subjected to a thorough statistical analysis of the tensile test findings.</p><p>Nine distinct regression models and four CNN-based models with three distinct neuron activation functions were constructed based on the statistical analysis. The built-in models forecast the composite material's ultimate strength based on the specimen loading circumstances, filler qualities, and composition.</p><p>Significant differences were found in the mechanical properties of carbon fibers of different grades and types (high-strength and high-modulus) based on statistical analysis of the results of tensile tests. The results of Spearman's correlation study indicated a medium positive correlation between ultimate strength and polymer concentration and a weak negative association between ultimate strength and the density of the carbon fiber contained in the composite material. The strain corresponding to the ultimate strength and fiber density were found to have a medium negative correlation, whereas the polymer concentration showed a medium positive correlation. In the composite material, a very slight negative association was discovered between the concentration of polymers and the density of carbon fibers.</p><p>Test results were split into two categories while creating CNN and regression models: 75 % were used for model testing and 25 % were used for training. The CNN model with three layers of hidden parameters produced the best prediction results; the RMSE was 142.948 MPa and the Spearman correlation coefficient between the test strength and the anticipated values was 0.988.</p><p>Regression models' sensitivity analysis revealed that, up to a response variable (tens","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"15 ","pages":"Article 100368"},"PeriodicalIF":0.0,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266705692400049X/pdfft?md5=959e6e55b7cd43717c86b632562a995b&pid=1-s2.0-S266705692400049X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141144637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In response to the escalating demand for cleaner energy sources, this study investigates the potential of carefully selected functionalized graphene-based materials for enhancing hydrogen sulphide (H2S) removal in fuel streams, utilizing semi-empirical and density functional theory (DFT) calculations for molecular-level insights. A particular focus is placed on aliphatic methyl (-CH), alcohol (-COH), carboxylate (-COO), carbonyl (-CO), and acid (-COOH) -functionalized graphene, aiming to bridge gaps between desulphurization methods and graphene applications, specifically targeting H2S removal. Through extensive computational analyses, the research unravels the intricate interactions between chosen functionalized graphene materials and sulfur compounds like H2S, emphasizing mechanisms contributing to improved desulphurization efficiency. Our study's analysis highlights the superior performance of carboxylate (-COO)-functionalized graphene, mainly through dissociative adsorption mechanisms. The study systematically evaluates the influence of selected functional groups on adsorption activity, emphasizing the significance of dissociation. Overall, this research advances desulphurization strategies and underscores the potential of functionalized graphene in sustainable energy solutions.
{"title":"Enhancing hydrogen sulphide removal efficiency: A DFT study on selected functionalized graphene-based materials","authors":"Toyese Oyegoke , Adnan Aliyu , Maryann I. Uzochuwu , Yahweh Hassan","doi":"10.1016/j.cartre.2024.100362","DOIUrl":"10.1016/j.cartre.2024.100362","url":null,"abstract":"<div><p>In response to the escalating demand for cleaner energy sources, this study investigates the potential of carefully selected functionalized graphene-based materials for enhancing hydrogen sulphide (H<sub>2</sub>S) removal in fuel streams, utilizing semi-empirical and density functional theory (DFT) calculations for molecular-level insights. A particular focus is placed on aliphatic methyl (-CH), alcohol (-COH), carboxylate (-COO), carbonyl (-CO), and acid (-COOH) -functionalized graphene, aiming to bridge gaps between desulphurization methods and graphene applications, specifically targeting H<sub>2</sub>S removal. Through extensive computational analyses, the research unravels the intricate interactions between chosen functionalized graphene materials and sulfur compounds like H<sub>2</sub>S, emphasizing mechanisms contributing to improved desulphurization efficiency. Our study's analysis highlights the superior performance of carboxylate (-COO)-functionalized graphene, mainly through dissociative adsorption mechanisms. The study systematically evaluates the influence of selected functional groups on adsorption activity, emphasizing the significance of dissociation. Overall, this research advances desulphurization strategies and underscores the potential of functionalized graphene in sustainable energy solutions.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"15 ","pages":"Article 100362"},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000439/pdfft?md5=6abc0f172c7b391a603bca7fe8906b27&pid=1-s2.0-S2667056924000439-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141049376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-09DOI: 10.1016/j.cartre.2024.100361
Amirhosein Riahi , Ethan Heggem , Mario Caccia , Richard LaDouceur
Due to the excessive consumption of fossil fuels, which leads to significant greenhouse gas emissions and rapid climate change, it is crucial to develop various carbon capture and sequestration strategies. CO2 sequestration in solid, porous adsorbents like low-cost biochar has emerged as a promising approach to achieve this goal. However, slow adsorption kinetics are one of the issues that limit the widespread use of this approach. While the characteristics of the biochar are important and impact CO2 adsorption, the conditions under which adsorption occurs are equally critical. In this work, a novel strategy is proposed to accelerate the CO2 uptake rate on carbon adsorbents by utilizing Low-Frequency High Amplitude resonant vibratory mixing during the adsorption process. With this approach, the rate of adsorption (characterized by the adsorption rate constant) exhibits an increase of 46.6% and 91.3%, as calculated by two different kinetic models: the Weber and Morris model, and the Pseudo-First-Order model. Experimental observations indicate that adsorption kinetics have a mixed control between external/internal diffusion and the physisorption process. Resonant vibrations enhance system energy, promoting collisions between CO2 molecules and carbon surfaces, subsequently improving CO2 transport and surface/gas interactions, facilitating the adsorption process and thus leading to enhanced kinetic rates. Furthermore, an analysis of variance determined the sensitivity of CO2 uptake to several operating parameters associated with the resonant vibrations. This analysis indicated that the adsorption of CO2 is most sensitive to the level of fill of the adsorption vessel and the time exposed to resonant vibrations.
{"title":"Enhancement of CO2 Adsorption Kinetics onto Carbon by Low-Frequency High Amplitude Resonant Vibrations","authors":"Amirhosein Riahi , Ethan Heggem , Mario Caccia , Richard LaDouceur","doi":"10.1016/j.cartre.2024.100361","DOIUrl":"https://doi.org/10.1016/j.cartre.2024.100361","url":null,"abstract":"<div><p>Due to the excessive consumption of fossil fuels, which leads to significant greenhouse gas emissions and rapid climate change, it is crucial to develop various carbon capture and sequestration strategies. CO<sub>2</sub> sequestration in solid, porous adsorbents like low-cost biochar has emerged as a promising approach to achieve this goal. However, slow adsorption kinetics are one of the issues that limit the widespread use of this approach. While the characteristics of the biochar are important and impact CO<sub>2</sub> adsorption, the conditions under which adsorption occurs are equally critical. In this work, a novel strategy is proposed to accelerate the CO<sub>2</sub> uptake rate on carbon adsorbents by utilizing Low-Frequency High Amplitude resonant vibratory mixing during the adsorption process. With this approach, the rate of adsorption (characterized by the adsorption rate constant) exhibits an increase of 46.6% and 91.3%, as calculated by two different kinetic models: the Weber and Morris model, and the Pseudo-First-Order model. Experimental observations indicate that adsorption kinetics have a mixed control between external/internal diffusion and the physisorption process. Resonant vibrations enhance system energy, promoting collisions between CO<sub>2</sub> molecules and carbon surfaces, subsequently improving CO<sub>2</sub> transport and surface/gas interactions, facilitating the adsorption process and thus leading to enhanced kinetic rates. Furthermore, an analysis of variance determined the sensitivity of CO<sub>2</sub> uptake to several operating parameters associated with the resonant vibrations. This analysis indicated that the adsorption of CO<sub>2</sub> is most sensitive to the level of fill of the adsorption vessel and the time exposed to resonant vibrations.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"15 ","pages":"Article 100361"},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000427/pdfft?md5=84a407f558efb99d306a37840dfadc5c&pid=1-s2.0-S2667056924000427-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140914456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07DOI: 10.1016/j.cartre.2024.100360
Samuel Escobar Veras , Ernesto Espada , Solimar Collazo , Marcel Grau , Rajesh Katiyar , Vladimir I. Makarov , Brad R. Weiner , Gerardo Morell
Octadecylphosphonic acid self-assembled monolayers were used as a combined carbon and hydrogen source to grow graphene films on sapphire substrates via hot filament chemical vapor deposition. The functionalized substrates were sealed with a thin Cu film and heated to 950°C under Ar flow. After synthesis, the Cu was etched away. The graphene samples then underwent a hydrogenation treatment in the same reactor setup, exposed to a CH4/H2 gas mixture at 820°C for 2 hours. The structure and properties of the graphene films before and after hydrogenation were characterized. Raman spectroscopy was employed to probe the defect-related bands and C-H bonding. X-ray diffraction provided insights into the crystalline structure and interlayer spacing. The ferromagnetic response was measured using a PPMS system across a range of temperatures and magnetic fields. XPS was used to assess the chemical composition and bonding. This multi-step process enabled a detailed evaluation of the novel synthesis protocol and its effects on the resulting hydrogenated graphene material.
{"title":"Hydrogenated graphene systems: A novel growth and hydrogenation process","authors":"Samuel Escobar Veras , Ernesto Espada , Solimar Collazo , Marcel Grau , Rajesh Katiyar , Vladimir I. Makarov , Brad R. Weiner , Gerardo Morell","doi":"10.1016/j.cartre.2024.100360","DOIUrl":"https://doi.org/10.1016/j.cartre.2024.100360","url":null,"abstract":"<div><p>Octadecylphosphonic acid self-assembled monolayers were used as a combined carbon and hydrogen source to grow graphene films on sapphire substrates via hot filament chemical vapor deposition. The functionalized substrates were sealed with a thin Cu film and heated to 950°C under Ar flow. After synthesis, the Cu was etched away. The graphene samples then underwent a hydrogenation treatment in the same reactor setup, exposed to a CH<sub>4</sub>/H<sub>2</sub> gas mixture at 820°C for 2 hours. The structure and properties of the graphene films before and after hydrogenation were characterized. Raman spectroscopy was employed to probe the defect-related bands and C-H bonding. X-ray diffraction provided insights into the crystalline structure and interlayer spacing. The ferromagnetic response was measured using a PPMS system across a range of temperatures and magnetic fields. XPS was used to assess the chemical composition and bonding. This multi-step process enabled a detailed evaluation of the novel synthesis protocol and its effects on the resulting hydrogenated graphene material.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"15 ","pages":"Article 100360"},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000415/pdfft?md5=f0c52cad96fc046310457d1ccb58b371&pid=1-s2.0-S2667056924000415-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140914455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, the electrochemical properties of bioderived activated carbon-based electrodes for supercapacitors formed using a sintered ceramic binder were investigated. Activated carbon derived from Jack wood tree (Artocarpus heterophyllus) with variable amounts of TiO2 nanoparticles as a binder, were used as electrodes in order to get good, activated carbon films on FTO substrates. No other binders were used in this study since most conventional binders devastate the electrical conductivity in the films. Furthermore, TiO2 has higher temperature tolerance compared to polymeric binders thus the electrode prepared can be used in wider applications. A series of electrochemical double-layer capacitors were fabricated and characterized by cyclic voltammetry and galvanostatic charge-discharge measurements. The supercapacitors prepared showed double-layer capacitive behavior. The electrodes that contain 90 % activated carbon and 10 % TiO2 show optimum performance along with an impressive specific capacitance of 147 F g−1 at 2 mV s−1 scan rate. This supercapacitor exhibits a power density of 68.5 W kg−1 while the energy density is 8.02 Wh kg−1. When the power density is as high as 1186.51 W kg−1 the energy density drops to 5.71 Wh kg−1. According to cyclic voltammetry measurements taken for 1000 cycles, the supercapacitor shows excellent cycle stability without any traces of capacitance drop.
{"title":"Activated carbon synthesized from Jack wood biochar for high performing biomass derived composite double layer supercapacitors","authors":"T.M.W.J. Bandara , A.M.B.S. Alahakoon , B.-E. Mellander , I. Albinsson","doi":"10.1016/j.cartre.2024.100359","DOIUrl":"https://doi.org/10.1016/j.cartre.2024.100359","url":null,"abstract":"<div><p>In this study, the electrochemical properties of bioderived activated carbon-based electrodes for supercapacitors formed using a sintered ceramic binder were investigated. Activated carbon derived from Jack wood tree (<em>Artocarpus heterophyllus</em>) with variable amounts of TiO<sub>2</sub> nanoparticles as a binder, were used as electrodes in order to get good, activated carbon films on FTO substrates. No other binders were used in this study since most conventional binders devastate the electrical conductivity in the films. Furthermore, TiO<sub>2</sub> has higher temperature tolerance compared to polymeric binders thus the electrode prepared can be used in wider applications. A series of electrochemical double-layer capacitors were fabricated and characterized by cyclic voltammetry and galvanostatic charge-discharge measurements. The supercapacitors prepared showed double-layer capacitive behavior. The electrodes that contain 90 % activated carbon and 10 % TiO<sub>2</sub> show optimum performance along with an impressive specific capacitance of 147 F g<sup>−1</sup> at 2 mV s<sup>−1</sup> scan rate. This supercapacitor exhibits a power density of 68.5 W kg<sup>−1</sup> while the energy density is 8.02 Wh kg<sup>−1</sup>. When the power density is as high as 1186.51 W kg<sup>−1</sup> the energy density drops to 5.71 Wh kg<sup>−1</sup>. According to cyclic voltammetry measurements taken for 1000 cycles, the supercapacitor shows excellent cycle stability without any traces of capacitance drop.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"15 ","pages":"Article 100359"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000403/pdfft?md5=087abb28222a21382885b36f98cb089e&pid=1-s2.0-S2667056924000403-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140824204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present work focuses on the synthesis of hybrid La2CoCrO6/Co3O4/rGO composite via solvothermal technique for supercapacitor application. X-ray diffraction, field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller (BET), and Barrett-Joyner-Halenda analyses are employed to assess phase structure, morphology, chemical state, surface area, and porosity of synthesized materials, respectively. The formation of mesoporous spheres is confirmed through FESEM and BET analysis. The inclusion of redox additive KMnO4 in KOH electrolyte enhances the accessibility of electrochemical sites in the mesoporous spheres of the La2CoCrO6/Co3O4/rGO electrode, resulting in excellent charge storage. Electrochemical analysis of the La2CoCrO6/Co3O4 exhibits specific capacitance of 633.2 F/g at 2 A/g in a redox electrolyte (6 M KOH + 0.05 M KMnO4) with capacitive retention of approximately 81 % over 5000 cycles. Furthermore, the addition of rGO improves the overall performance of La2CoCrO6/Co3O4/rGO composite (763.9 F/g at 2 A/g with capacitive retention of approximately 86 %). The electrochemical analysis of hybrid La2CoCrO6/Co3O4/rGO composite showed improved performance, owing to the synergy of double perovskite (La2CoCrO6), cobalt oxide (Co3O4), and reduced graphene oxide (rGO). These findings suggest promising applications for the material in advanced energy storage devices.
本研究的重点是通过溶热技术合成用于超级电容器的混合 La2CoCrO6/Co3O4/rGO 复合材料。通过 X 射线衍射、场发射扫描电子显微镜(FESEM)、高分辨率透射电子显微镜、X 射线光电子能谱、Brunauer-Emmett-Teller(BET)和 Barrett-Joyner-Halenda 分析,分别评估了合成材料的相结构、形态、化学状态、表面积和孔隙率。FESEM 和 BET 分析证实了介孔球体的形成。在 KOH 电解液中加入氧化还原添加剂 KMnO4 提高了 La2CoCrO6/Co3O4/rGO 电极介孔球体中电化学位点的可及性,从而实现了出色的电荷存储。La2CoCrO6/Co3O4 的电化学分析表明,在氧化还原电解质(6 M KOH + 0.05 M KMnO4)中,2 A/g时的比电容为 633.2 F/g,5000 次循环后的电容保持率约为 81%。此外,添加 rGO 还提高了 La2CoCrO6/Co3O4/rGO 复合材料的整体性能(2 A/g 时为 763.9 F/g,电容保持率约为 86%)。混合 La2CoCrO6/Co3O4/rGO 复合材料的电化学分析表明,由于双过氧化物(La2CoCrO6)、氧化钴(Co3O4)和还原氧化石墨烯(rGO)的协同作用,其性能得到了提高。这些发现表明,这种材料在先进储能设备中的应用前景广阔。
{"title":"Electrochemical evaluation of hybrid La2CoCrO6/Co3O4/rGO composite for enhanced supercapacitor performance","authors":"Deeksha Nagpal , Anup Singh , Ajay Vasishth , Ranbir Singh , Ashok Kumar","doi":"10.1016/j.cartre.2024.100358","DOIUrl":"https://doi.org/10.1016/j.cartre.2024.100358","url":null,"abstract":"<div><p>The present work focuses on the synthesis of hybrid La<sub>2</sub>CoCrO<sub>6</sub>/Co<sub>3</sub>O<sub>4</sub>/rGO composite via solvothermal technique for supercapacitor application. X-ray diffraction, field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller (BET), and Barrett-Joyner-Halenda analyses are employed to assess phase structure, morphology, chemical state, surface area, and porosity of synthesized materials, respectively. The formation of mesoporous spheres is confirmed through FESEM and BET analysis. The inclusion of redox additive KMnO<sub>4</sub> in KOH electrolyte enhances the accessibility of electrochemical sites in the mesoporous spheres of the La<sub>2</sub>CoCrO<sub>6</sub>/Co<sub>3</sub>O<sub>4</sub>/rGO electrode, resulting in excellent charge storage. Electrochemical analysis of the La<sub>2</sub>CoCrO<sub>6</sub>/Co<sub>3</sub>O<sub>4</sub> exhibits specific capacitance of 633.2 F/g at 2 A/g in a redox electrolyte (6 M KOH + 0.05 M KMnO<sub>4</sub>) with capacitive retention of approximately 81 % over 5000 cycles. Furthermore, the addition of rGO improves the overall performance of La<sub>2</sub>CoCrO<sub>6</sub>/Co<sub>3</sub>O<sub>4</sub>/rGO composite (763.9 F/g at 2 A/g with capacitive retention of approximately 86 %). The electrochemical analysis of hybrid La<sub>2</sub>CoCrO<sub>6</sub>/Co<sub>3</sub>O<sub>4</sub>/rGO composite showed improved performance, owing to the synergy of double perovskite (La<sub>2</sub>CoCrO<sub>6</sub>), cobalt oxide (Co<sub>3</sub>O<sub>4</sub>), and reduced graphene oxide (rGO). These findings suggest promising applications for the material in advanced energy storage devices.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"15 ","pages":"Article 100358"},"PeriodicalIF":0.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000397/pdfft?md5=47f22b67660b774f7edb08b0e629ba00&pid=1-s2.0-S2667056924000397-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140816990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Large surface area, excellent electrical conductivity, homogeneous structure, and extended cycling stability are desirable characteristics for energy materials. Carbon-derived structures exhibit porous structure, work well in a wide potential window, and are highly conductive. Hence, they can show enhanced rate capability and cycle life. Despite ongoing efforts, the synthesis of carbons at lower temperatures remains a challenge. In comparison, the high-temperature synthesis protocols lead to a high CO2 footprint. Here, we report the synthesis of unique carbon morphologies, namely capped carbon nanostructures (CCS) and bowl-like carbon structures (BCS). Their performances are either comparable or higher than those conventionally used morphologies of carbon, such as nanospheres, microspheres, nanotubes, graphene oxide, and layered structures. The four-sided opening in BCS particles ensures higher adsorption of electrolyte ions, which is even higher than hierarchical or spherical structures. The cap formation on the CCS acts like an additional layer on top of the sphere. Further, the CCS is arranged in a sequential honeycomb array, which leads to the formation of definitive channels for electrolyte diffusion. The unique carbon morphologies showed nearly ∼ 40 % increment in the specific capacitance values compared to other commonly used carbon structures. The novel morphologies also have a much lower carbon footprint, as shown by the life cycle assessment (LCA) studies.
{"title":"Novel bowl-like or capped carbon with a low carbon footprint as electrode material in EDLCs","authors":"Satvik Anshu , Rahul R , Surbhi Priya , Alok Kumar Srivastava , Amreesh Chandra","doi":"10.1016/j.cartre.2024.100357","DOIUrl":"10.1016/j.cartre.2024.100357","url":null,"abstract":"<div><p>Large surface area, excellent electrical conductivity, homogeneous structure, and extended cycling stability are desirable characteristics for energy materials. Carbon-derived structures exhibit porous structure, work well in a wide potential window, and are highly conductive. Hence, they can show enhanced rate capability and cycle life. Despite ongoing efforts, the synthesis of carbons at lower temperatures remains a challenge. In comparison, the high-temperature synthesis protocols lead to a high CO<sub>2</sub> footprint. Here, we report the synthesis of unique carbon morphologies, namely capped carbon nanostructures (CCS) and bowl-like carbon structures (BCS). Their performances are either comparable or higher than those conventionally used morphologies of carbon, such as nanospheres, microspheres, nanotubes, graphene oxide, and layered structures. The four-sided opening in BCS particles ensures higher adsorption of electrolyte ions, which is even higher than hierarchical or spherical structures. The cap formation on the CCS acts like an additional layer on top of the sphere. Further, the CCS is arranged in a sequential honeycomb array, which leads to the formation of definitive channels for electrolyte diffusion. The unique carbon morphologies showed nearly ∼ 40 % increment in the specific capacitance values compared to other commonly used carbon structures. The novel morphologies also have a much lower carbon footprint, as shown by the life cycle assessment (LCA) studies.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"15 ","pages":"Article 100357"},"PeriodicalIF":0.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000385/pdfft?md5=0a3d52b71675b75ab1ee0bf896b05704&pid=1-s2.0-S2667056924000385-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140759293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-20DOI: 10.1016/j.cartre.2024.100356
Ramazan Bayat , Neslihan Esra Celik , Merve Akin , Muhammed Bekmezci , Ebru Halvaci , Tugba Simsek , Güray Kaya , Fatih Sen
Green energy systems must be able to provide a significant proportion of the energy needed to meet the ever-increasing demand for energy. Fuel cells are a promising solution to bridge the gap in the green energy transition. This study aims to enhance the energy efficiency of fuel cells by utilizing 2D supported nanocatalysts in the anode compartment. Borophene was synthesized using the liquid phase exfoliation method to be used as a support structure due to its superior properties. To use borophene as a supporting material in methanol fuel cells, a borophene-palladium hybrid structure (Pd@Borophene) was prepared using the chemical reduction method. The scanning electron microscopy (SEM) images showed that the obtained particle had a partially formed layered structure. The electrocatalytic activity of the Pd@Borophene was investigated through anodic reactions in Direct Methanol Alcohol Fuel Cells (DMFC). Electrochemical analyses were conducted to compare the effect of borophene on Pd and Pd@borophene nanocatalysts on the anodic reaction. The anodic peak current value of methanol oxidation for Pd@borophene was found to be 24.3 mA/cm2, which is approximately four times higher than that of unsupported Pd nanoparticles. Additionally, the ratio of forward current (If) to reverse current (Ib), which serves as an indicator of catalyst poisoning, was determined to be 2.27. This study contributes significant findings to the literature by demonstrating that borophene, an advanced 2D material, can be synthesized using a low-cost liquid phase exfoliation method and can be utilized in fuel cell applications for energy generation.
{"title":"Ultrasonic synthesis of borophene as a 2D electrode material with high electrocatalytic activity for use in fuel cell applications","authors":"Ramazan Bayat , Neslihan Esra Celik , Merve Akin , Muhammed Bekmezci , Ebru Halvaci , Tugba Simsek , Güray Kaya , Fatih Sen","doi":"10.1016/j.cartre.2024.100356","DOIUrl":"10.1016/j.cartre.2024.100356","url":null,"abstract":"<div><p>Green energy systems must be able to provide a significant proportion of the energy needed to meet the ever-increasing demand for energy. Fuel cells are a promising solution to bridge the gap in the green energy transition. This study aims to enhance the energy efficiency of fuel cells by utilizing 2D supported nanocatalysts in the anode compartment. Borophene was synthesized using the liquid phase exfoliation method to be used as a support structure due to its superior properties. To use borophene as a supporting material in methanol fuel cells, a borophene-palladium hybrid structure (Pd@Borophene) was prepared using the chemical reduction method. The scanning electron microscopy (SEM) images showed that the obtained particle had a partially formed layered structure. The electrocatalytic activity of the Pd@Borophene was investigated through anodic reactions in Direct Methanol Alcohol Fuel Cells (DMFC). Electrochemical analyses were conducted to compare the effect of borophene on Pd and Pd@borophene nanocatalysts on the anodic reaction. The anodic peak current value of methanol oxidation for Pd@borophene was found to be 24.3 mA/cm<sup>2</sup>, which is approximately four times higher than that of unsupported Pd nanoparticles. Additionally, the ratio of forward current (If) to reverse current (Ib), which serves as an indicator of catalyst poisoning, was determined to be 2.27. This study contributes significant findings to the literature by demonstrating that borophene, an advanced 2D material, can be synthesized using a low-cost liquid phase exfoliation method and can be utilized in fuel cell applications for energy generation.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"15 ","pages":"Article 100356"},"PeriodicalIF":0.0,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000373/pdfft?md5=a2a820c82ac12532075ea3de47d37562&pid=1-s2.0-S2667056924000373-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140775098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-17DOI: 10.1016/j.cartre.2024.100353
J.J. Bennett , S. Mandal , D.J. Morgan , A. Papageorgiou , O.A. Williams , G.M. Klemencic
For large-scale device fabrication, information about film inhomogeneities is crucial for high fabrication yield. In this work, inhomogeneities in two-inch diameter heavily boron-doped nanocrystalline diamond (BNCD) films have been studied. Two BNCD films were grown using chemical vapour deposition (CVD) with different boron-to-carbon (B/C) ratios. Their superconducting properties were measured as a function of distance from the centre of the film. The critical temperature () and critical magnetic field () decreased radially outwards from the centre for both films. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and scanning electron microscopy (SEM) were done on the samples to pinpoint the underlying explanation for the observed behaviour. Raman spectroscopy suggested a reduction in boron concentration and diamond purity over both films while moving radially outwards from the centre. XPS data from both films, however, did not show similar behaviours to that observed from the Raman data for the B/C ratios or diamond content. The AFM scans and SEM analysis showed a decreasing grain size further away from the film centre irrespective of the B/C ratio. This is due to the film being thinner at the edges when compared with the centre of the film. Raman analysis showed that the film with the higher B/C ratio had a higher diamond purity across the film. As expected, the film with a higher B/C ratio showed a more robust superconducting behaviour. The observed reductions in boron concentration, diamond purity, film thickness and decreased grain sizes are responsible for the diminishing superconductivity at the edge of the films.
{"title":"Inhomogeneities across boron-doped nanocrystalline diamond films","authors":"J.J. Bennett , S. Mandal , D.J. Morgan , A. Papageorgiou , O.A. Williams , G.M. Klemencic","doi":"10.1016/j.cartre.2024.100353","DOIUrl":"https://doi.org/10.1016/j.cartre.2024.100353","url":null,"abstract":"<div><p>For large-scale device fabrication, information about film inhomogeneities is crucial for high fabrication yield. In this work, inhomogeneities in two-inch diameter heavily boron-doped nanocrystalline diamond (BNCD) films have been studied. Two BNCD films were grown using chemical vapour deposition (CVD) with different boron-to-carbon (B/C) ratios. Their superconducting properties were measured as a function of distance from the centre of the film. The critical temperature (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>) and critical magnetic field (<span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>c</mi><mn>2</mn></mrow></msub></math></span>) decreased radially outwards from the centre for both films. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and scanning electron microscopy (SEM) were done on the samples to pinpoint the underlying explanation for the observed behaviour. Raman spectroscopy suggested a reduction in boron concentration and diamond purity over both films while moving radially outwards from the centre. XPS data from both films, however, did not show similar behaviours to that observed from the Raman data for the B/C ratios or diamond content. The AFM scans and SEM analysis showed a decreasing grain size further away from the film centre irrespective of the B/C ratio. This is due to the film being thinner at the edges when compared with the centre of the film. Raman analysis showed that the film with the higher B/C ratio had a higher diamond purity across the film. As expected, the film with a higher B/C ratio showed a more robust superconducting behaviour. The observed reductions in boron concentration, diamond purity, film thickness and decreased grain sizes are responsible for the diminishing superconductivity at the edge of the films.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"15 ","pages":"Article 100353"},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000348/pdfft?md5=23d528cf32fda93f6f520d84c70b0da5&pid=1-s2.0-S2667056924000348-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140639037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}