首页 > 最新文献

aBIOTECH最新文献

英文 中文
In maize, co-expression of GAT and GR79-EPSPS provides high glyphosate resistance, along with low glyphosate residues 在玉米中,GAT 和 GR79-EPSPS 的共同表达提供了高草甘膦抗性和低草甘膦残留。
IF 4.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-09-01 DOI: 10.1007/s42994-023-00114-8
Shengyan Li, Pengcheng Li, Xiangyin Li, Ning Wen, Yinxiao Wang, Wei Lu, Min Lin, Zhihong Lang

Herbicide tolerance has been the dominant trait introduced during the global commercialization of genetically modified (GM) crops. Herbicide-tolerant crops, especially glyphosate-resistant crops, offer great advantages for weed management; however, despite these benefits, glyphosate-resistant maize (Zea mays L.) has not yet been commercially deployed in China. To develop a new bio-breeding resource for glyphosate-resistant maize, we introduced a codon-optimized glyphosate N-acetyltransferase gene, gat, and the enolpyruvyl-shikimate-3-phosphate synthase gene, gr79-epsps, into the maize variety B104. We selected a genetically stable high glyphosate resistance (GR) transgenic event, designated GG2, from the transgenic maize population through screening with high doses of glyphosate. A molecular analysis demonstrated that single copy of gat and gr79-epsps were integrated into the maize genome, and these two genes were stably transcribed and translated. Field trials showed that the transgenic event GG2 could tolerate 9000 g acid equivalent (a.e.) glyphosate per ha with no effect on phenotype or yield. A gas chromatography-mass spectrometry (GC–MS) analysis revealed that, shortly after glyphosate application, the glyphosate (PMG) and aminomethylphosphonic acid (AMPA) residues in GG2 leaves decreased by more than 90% compared to their levels in HGK60 transgenic plants, which only harbored the epsps gene. Additionally, PMG and its metabolic residues (AMPA and N-acetyl-PMG) were not detected in the silage or seeds of GG2, even when far more than the recommended agricultural dose of glyphosate was applied. The co-expression of gat and gr79-epsps, therefore, confers GG2 with high GR and a low risk of herbicide residue accumulation, making this germplasm a valuable GR event in herbicide-tolerant maize breeding.

耐除草剂性是全球转基因作物商业化过程中引入的主要性状。耐除草剂作物,尤其是耐草甘膦作物,在杂草管理方面具有巨大优势;然而,尽管具有这些优势,耐草甘膦玉米(Zea mays L.)在中国尚未实现商业化应用。为了开发新的抗草甘膦玉米生物育种资源,我们在玉米品种B104中引入了密码子优化的草甘膦N-乙酰转移酶基因gat和烯醇丙酮酰-莽草酸-3-磷酸合成酶基因gr79-epsps。我们通过高剂量草甘膦筛选,从转基因玉米群体中选出了一个遗传稳定的高草甘膦抗性(GR)转基因事件,命名为 GG2。分子分析表明,gat 和 gr79-epsps 的单拷贝整合到了玉米基因组中,并且这两个基因被稳定地转录和翻译。田间试验表明,转基因品种 GG2 每公顷可耐受 9000 克酸当量(a.e. )草甘膦,对表型和产量没有影响。气相色谱-质谱(GC-MS)分析表明,施用草甘膦后不久,GG2叶片中的草甘膦(PMG)和氨甲基膦酸(AMPA)残留量与只携带epsps基因的HGK60转基因植株相比减少了90%以上。此外,在 GG2 的青贮饲料或种子中未检测到 PMG 及其代谢残留物(AMPA 和 N-乙酰基-PMG),即使施用的草甘膦剂量远远超过推荐的农业剂量。因此,GAT 和 gr79-epsps 的共同表达赋予了 GG2 高 GR 值和低除草剂残留积累风险,使该种质成为耐除草剂玉米育种中一个有价值的 GR 事件:在线版本包含补充材料,可查阅 10.1007/s42994-023-00114-8。
{"title":"In maize, co-expression of GAT and GR79-EPSPS provides high glyphosate resistance, along with low glyphosate residues","authors":"Shengyan Li,&nbsp;Pengcheng Li,&nbsp;Xiangyin Li,&nbsp;Ning Wen,&nbsp;Yinxiao Wang,&nbsp;Wei Lu,&nbsp;Min Lin,&nbsp;Zhihong Lang","doi":"10.1007/s42994-023-00114-8","DOIUrl":"10.1007/s42994-023-00114-8","url":null,"abstract":"<div><p>Herbicide tolerance has been the dominant trait introduced during the global commercialization of genetically modified (GM) crops. Herbicide-tolerant crops, especially glyphosate-resistant crops, offer great advantages for weed management; however, despite these benefits, glyphosate-resistant maize (<i>Zea mays</i> L.) has not yet been commercially deployed in China. To develop a new bio-breeding resource for glyphosate-resistant maize, we introduced a codon-optimized glyphosate N-acetyltransferase gene, <i>gat</i>, and the enolpyruvyl-shikimate-3-phosphate synthase gene, <i>gr79-epsps</i>, into the maize variety B104. We selected a genetically stable high glyphosate resistance (GR) transgenic event, designated GG2, from the transgenic maize population through screening with high doses of glyphosate. A molecular analysis demonstrated that single copy of <i>gat</i> and <i>gr79-epsps</i> were integrated into the maize genome, and these two genes were stably transcribed and translated. Field trials showed that the transgenic event GG2 could tolerate 9000 g acid equivalent (a.e.) glyphosate per ha with no effect on phenotype or yield. A gas chromatography-mass spectrometry (GC–MS) analysis revealed that, shortly after glyphosate application, the glyphosate (PMG) and aminomethylphosphonic acid (AMPA) residues in GG2 leaves decreased by more than 90% compared to their levels in HGK60 transgenic plants, which only harbored the <i>epsps</i> gene. Additionally, PMG and its metabolic residues (AMPA and N-acetyl-PMG) were not detected in the silage or seeds of GG2, even when far more than the recommended agricultural dose of glyphosate was applied. The co-expression of <i>gat</i> and <i>gr79-epsps</i>, therefore, confers GG2 with high GR and a low risk of herbicide residue accumulation, making this germplasm a valuable GR event in herbicide-tolerant maize breeding.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"4 4","pages":"277 - 290"},"PeriodicalIF":4.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10721750/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81852192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing nanobodies to expand the recognition spectrum of plant NLRs for diverse pathogens 利用纳米体扩展植物NLRs对不同病原体的识别光谱
IF 3.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-08-16 DOI: 10.1007/s42994-023-00111-x
Ruyi Wang, Guo-Liang Wang, Yuese Ning

The strategy to expand the recognition spectrum of plant nucleotide-binding domain leucine-rich repeat (NLR) proteins by modifying their recognition sequences is generally limited and often unsuccessful. Kourelis et al. introduced a groundbreaking approach for generating a customized immune receptor, called Pikobody. This method involves integrating a nanobody domain of a fluorescent protein (FP) into a plant NLR. Their research demonstrates that the resulting Pikobody successfully initiates an immune response against diverse pathogens when exposed to the corresponding FP.

通过修改植物核苷结合域富亮氨酸重复序列(NLR)蛋白的识别序列来扩大其识别谱的策略通常是有限的,而且往往不成功。Kourelis等人介绍了一种突破性的方法来产生定制的免疫受体,称为Pikobody。该方法涉及将荧光蛋白(FP)的纳米体结构域整合到植物NLR中。他们的研究表明,当暴露于相应的FP时,由此产生的Pikobody成功地启动了针对多种病原体的免疫反应。
{"title":"Harnessing nanobodies to expand the recognition spectrum of plant NLRs for diverse pathogens","authors":"Ruyi Wang,&nbsp;Guo-Liang Wang,&nbsp;Yuese Ning","doi":"10.1007/s42994-023-00111-x","DOIUrl":"10.1007/s42994-023-00111-x","url":null,"abstract":"<div><p>The strategy to expand the recognition spectrum of plant nucleotide-binding domain leucine-rich repeat (NLR) proteins by modifying their recognition sequences is generally limited and often unsuccessful. Kourelis et al. introduced a groundbreaking approach for generating a customized immune receptor, called Pikobody. This method involves integrating a nanobody domain of a fluorescent protein (FP) into a plant NLR. Their research demonstrates that the resulting Pikobody successfully initiates an immune response against diverse pathogens when exposed to the corresponding FP.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"4 3","pages":"272 - 276"},"PeriodicalIF":3.6,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77135469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlikely heroes on the long and winding road to potato inbreeding 在漫长而曲折的马铃薯近亲繁殖道路上,不太可能成为英雄。
IF 3.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-07-18 DOI: 10.1007/s42994-023-00109-5
Luca Comai

Conversion of potato from a tetraploid, heterozygous, vegetatively propagated crop to a diploid F1 hybrid, propagated via botanical seed, would constitute a considerable advance for global agriculture, but faces multiple challenges. One such challenge is the difficulty in inbreeding potato, which involves purging deleterious alleles from its genome. This commentary discusses possible reasons for this difficulty and highlights a recent sequence-based effort to classify SNP variation, in potato germplasm, according to its deleterious potential. Tools and strategies connected to this database may facilitate development of F1 hybrids.

将马铃薯从四倍体杂合无性繁殖作物转化为通过植物种子繁殖的二倍体F1杂交作物,将是全球农业的一大进步,但面临着多重挑战。其中一个挑战是马铃薯近亲繁殖的困难,这涉及从其基因组中清除有害的等位基因。这篇评论讨论了造成这一困难的可能原因,并强调了最近基于序列的努力,根据其有害潜力对马铃薯种质中的SNP变异进行分类。与该数据库相连接的工具和策略可以促进F1混合动力车的发展。
{"title":"Unlikely heroes on the long and winding road to potato inbreeding","authors":"Luca Comai","doi":"10.1007/s42994-023-00109-5","DOIUrl":"10.1007/s42994-023-00109-5","url":null,"abstract":"<div><p>Conversion of potato from a tetraploid, heterozygous, vegetatively propagated crop to a diploid F1 hybrid, propagated via botanical seed, would constitute a considerable advance for global agriculture, but faces multiple challenges. One such challenge is the difficulty in inbreeding potato, which involves purging deleterious alleles from its genome. This commentary discusses possible reasons for this difficulty and highlights a recent sequence-based effort to classify SNP variation, in potato germplasm, according to its deleterious potential. Tools and strategies connected to this database may facilitate development of F1 hybrids.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"4 3","pages":"267 - 271"},"PeriodicalIF":3.6,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638346/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74189653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Knockout of a gene encoding a Gγ protein boosts alkaline tolerance in cereal crops 敲除一个编码Gγ蛋白的基因可以提高谷物的耐碱性。
IF 3.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-07-02 DOI: 10.1007/s42994-023-00106-8
Peitong Wang, Jian Feng Ma
{"title":"Knockout of a gene encoding a Gγ protein boosts alkaline tolerance in cereal crops","authors":"Peitong Wang,&nbsp;Jian Feng Ma","doi":"10.1007/s42994-023-00106-8","DOIUrl":"10.1007/s42994-023-00106-8","url":null,"abstract":"","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"4 2","pages":"180 - 183"},"PeriodicalIF":3.6,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-023-00106-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10060536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The transcription factor HBF1 directly activates expression of multiple flowering time repressors to delay rice flowering 转录因子HBF1直接激活多个开花时间抑制因子的表达,从而延迟水稻开花。
IF 3.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-06-30 DOI: 10.1007/s42994-023-00107-7
Cong Li, Liya Zhang, Xin Wang, Chunsheng Yu, Tao Zhao, Bin Liu, Hongyu Li, Jun Liu, Chunyu Zhang

Flowering time (or heading date) is an important agronomic trait that determines the environmental adaptability and yield of many crops, including rice (Oryza sativa L.). Hd3a BINDING REPRESSOR FACTOR 1 (HBF1), a basic leucine zipper transcription factor, delays flowering by decreasing the expression of Early heading date 1 (Ehd1), Heading date 3a (Hd3a), and RICE FLOWERING LOCUS T 1 (RFT1), but the underlying molecular mechanisms have not been fully elucidated. Here, we employed the hybrid transcriptional factor (HTF) strategy to enhance the transcriptional activity of HBF1 by fusing it to four copies of the activation domain from Herpes simplex virus VP16. We discovered that transgenic rice lines overexpressing HBF1-VP64 (HBF1V) show significant delays in time to flower, compared to lines overexpressing HBF1-MYC or wild-type plants, via the Ehd1Hd3a/RFT1 pathway, under both long-day and short-day conditions. Transcriptome deep sequencing analysis indicated that 19 WRKY family genes are upregulated in the HBF1V overexpression line. We demonstrate that the previously unknown gene, OsWRKY64, is a direct downstream target of HBF1 and represses flowering in rice, whereas three known flowering repressor genes, Days to heading 7 (DTH7), CONSTANS 3 (OsCO3), and OsWRKY104, are also direct target genes of HBF1 in flowering regulation. Taking these results together, we propose detailed molecular mechanisms by which HBF1 regulates the time to flower in rice.

开花时间(或抽穗日期)是一项重要的农艺性状,它决定了包括水稻在内的许多作物的环境适应性和产量。Hd3a结合抑制因子1 (HBF1)是一种基本的亮氨酸拉链转录因子,通过降低水稻提早开花日期1 (Ehd1)、提早开花日期3a (Hd3a)和水稻开花位点t1 (RFT1)的表达而延迟开花,但其潜在的分子机制尚未完全阐明。在这里,我们采用杂交转录因子(HTF)策略,通过将HBF1融合到单纯疱疹病毒VP16的四个激活结构域,来增强HBF1的转录活性。我们发现,在长昼和短昼条件下,与过表达HBF1-MYC的水稻或野生型植物相比,通过Ehd1-Hd3a/RFT1途径,过表达HBF1-VP64 (HBF1V)的转基因水稻株系在开花时间上明显延迟。转录组深度测序分析显示,19个WRKY家族基因在HBF1V过表达系中表达上调。我们发现,先前未知的基因OsWRKY64是HBF1的直接下游靶点,抑制水稻开花,而三个已知的开花抑制基因,DTH7, CONSTANS 3和OsWRKY104也是HBF1在开花调控中的直接靶基因。综合这些结果,我们提出了HBF1调控水稻开花时间的详细分子机制。补充资料:在线版本包含补充资料,网址为10.1007/s42994-023-00107-7。
{"title":"The transcription factor HBF1 directly activates expression of multiple flowering time repressors to delay rice flowering","authors":"Cong Li,&nbsp;Liya Zhang,&nbsp;Xin Wang,&nbsp;Chunsheng Yu,&nbsp;Tao Zhao,&nbsp;Bin Liu,&nbsp;Hongyu Li,&nbsp;Jun Liu,&nbsp;Chunyu Zhang","doi":"10.1007/s42994-023-00107-7","DOIUrl":"10.1007/s42994-023-00107-7","url":null,"abstract":"<div><p>Flowering time (or heading date) is an important agronomic trait that determines the environmental adaptability and yield of many crops, including rice (<i>Oryza sativa</i> L.). Hd3a BINDING REPRESSOR FACTOR 1 (HBF1), a basic leucine zipper transcription factor, delays flowering by decreasing the expression of <i>Early heading date 1</i> (<i>Ehd1</i>), <i>Heading date 3a</i> (<i>Hd3a</i>), and <i>RICE FLOWERING LOCUS T 1</i> (<i>RFT1</i>), but the underlying molecular mechanisms have not been fully elucidated. Here, we employed the hybrid transcriptional factor (HTF) strategy to enhance the transcriptional activity of HBF1 by fusing it to four copies of the activation domain from <i>Herpes simplex virus</i> VP16. We discovered that transgenic rice lines overexpressing <i>HBF1-VP64</i> (<i>HBF1V</i>) show significant delays in time to flower, compared to lines overexpressing <i>HBF1-MYC</i> or wild-type plants, via the <i>Ehd1</i>–<i>Hd3a</i>/<i>RFT1</i> pathway, under both long-day and short-day conditions. Transcriptome deep sequencing analysis indicated that 19 <i>WRKY</i> family genes are upregulated in the <i>HBF1V</i> overexpression line. We demonstrate that the previously unknown gene, <i>OsWRKY64</i>, is a direct downstream target of HBF1 and represses flowering in rice, whereas three known flowering repressor genes, <i>Days to heading 7</i> (<i>DTH7</i>), <i>CONSTANS 3</i> (<i>OsCO3</i>), and <i>OsWRKY104</i>, are also direct target genes of HBF1 in flowering regulation. Taking these results together, we propose detailed molecular mechanisms by which HBF1 regulates the time to flower in rice.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"4 3","pages":"213 - 223"},"PeriodicalIF":3.6,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638126/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74073906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generating homozygous mutant populations of barley microspores by ethyl methanesulfonate treatment 甲基磺酸乙酯处理产生大麦小孢子纯合突变体群体
IF 3.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-06-28 DOI: 10.1007/s42994-023-00108-6
Linli Huang, Guangqi Gao, Congcong Jiang, Guimei Guo, Qiang He, Yingjie Zong, Chenghong Liu, Ping Yang

Induced mutations are important for genetic research and breeding. Mutations induced by physical or chemical mutagenesis are usually heterozygous during the early generations. However, mutations must be fixed prior to phenotyping or field trials, which requires additional rounds of self-pollination. Microspore culture is an effective method to produce double-haploid (DH) plants that are fixed homozygotes. In this study, we conducted ethyl methanesulfonate (EMS)-induced mutagenesis of microspore cultures of barley (Hordeum vulgare) cultivar ‘Hua30’ and landrace ‘HTX’. The EMS concentrations were negatively correlated with the efficiency of callus induction and the frequency of mutant plant regeneration. The two genotypes showed different regeneration efficiencies. The phenotypic variation of the regenerated M1 plants and the presence of genome-wide nucleotide mutations, revealed by whole-genome sequencing, highlight the utility of EMS-induced mutagenesis of isolated microspore cultures for developing DH mutants. Genome-wide analysis of the mutation frequency in the regenerated plants revealed that a considerable proportion of mutations resulted from microspore culture (somaclonal variation) rather than EMS-induced mutagenesis. In addition to producing a population of 1972 homozygous mutant lines that are available for future field trials, this study lays the foundation for optimizing the regeneration efficiency of DH plants and the richness of mutations (mainly by fine-tuning the mutagen dosage).

诱导突变对遗传研究和育种具有重要意义。由物理或化学诱变引起的突变在早期世代中通常是杂合的。然而,突变必须在表型或田间试验之前固定,这需要额外的自花授粉。小孢子培养是产生固定纯合子的双单倍体植株的有效方法。本研究对大麦(Hordeum vulgare)品种“花30”和地方品种“HTX”的小孢子培养物进行了甲基磺酸乙酯诱变。EMS浓度与愈伤组织诱导效率和突变体植株再生频率呈负相关。两个基因型表现出不同的再生效率。全基因组测序显示,再生M1植株的表型变异和全基因组核苷酸突变的存在,突出了ems诱导的分离小孢子培养物诱变用于产生DH突变体的实用性。对再生植株突变频率的全基因组分析表明,相当大比例的突变是由小孢子培养(体细胞无性系变异)引起的,而不是由ems诱导的突变。本研究除了产生1972个纯合突变系,可用于未来的田间试验外,还为优化DH植株的再生效率和突变丰富度(主要是通过微调诱变剂剂量)奠定了基础。
{"title":"Generating homozygous mutant populations of barley microspores by ethyl methanesulfonate treatment","authors":"Linli Huang,&nbsp;Guangqi Gao,&nbsp;Congcong Jiang,&nbsp;Guimei Guo,&nbsp;Qiang He,&nbsp;Yingjie Zong,&nbsp;Chenghong Liu,&nbsp;Ping Yang","doi":"10.1007/s42994-023-00108-6","DOIUrl":"10.1007/s42994-023-00108-6","url":null,"abstract":"<div><p>Induced mutations are important for genetic research and breeding. Mutations induced by physical or chemical mutagenesis are usually heterozygous during the early generations. However, mutations must be fixed prior to phenotyping or field trials, which requires additional rounds of self-pollination. Microspore culture is an effective method to produce double-haploid (DH) plants that are fixed homozygotes. In this study, we conducted ethyl methanesulfonate (EMS)-induced mutagenesis of microspore cultures of barley (<i>Hordeum vulgare</i>) cultivar ‘Hua30’ and landrace ‘HTX’. The EMS concentrations were negatively correlated with the efficiency of callus induction and the frequency of mutant plant regeneration. The two genotypes showed different regeneration efficiencies. The phenotypic variation of the regenerated M<sub>1</sub> plants and the presence of genome-wide nucleotide mutations, revealed by whole-genome sequencing, highlight the utility of EMS-induced mutagenesis of isolated microspore cultures for developing DH mutants. Genome-wide analysis of the mutation frequency in the regenerated plants revealed that a considerable proportion of mutations resulted from microspore culture (somaclonal variation) rather than EMS-induced mutagenesis. In addition to producing a population of 1972 homozygous mutant lines that are available for future field trials, this study lays the foundation for optimizing the regeneration efficiency of DH plants and the richness of mutations (mainly by fine-tuning the mutagen dosage).</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"4 3","pages":"202 - 212"},"PeriodicalIF":3.6,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-023-00108-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120503570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipidomic insights into the response of Arabidopsis sepals to mild heat stress 脂质组学研究拟南芥萼片对轻度热胁迫的反应。
IF 3.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-06-06 DOI: 10.1007/s42994-023-00103-x
Zican Chen, Weronika Jasinska, Muhammad Ashraf, Leah Rosental, Jung Hong, Dabing Zhang, Yariv Brotman, Jianxin Shi

Arabidopsis sepals coordinate flower opening in the morning as ambient temperature rises; however, the underlying molecular mechanisms are poorly understood. Mutation of one heat shock protein encoding gene, HSP70-16, impaired sepal heat stress responses (HSR), disrupting lipid metabolism, especially sepal cuticular lipids, leading to abnormal flower opening. To further explore, to what extent, lipids play roles in this process, in this study, we compared lipidomic changes in sepals of hsp70-16 and vdac3 (mutant of a voltage-dependent anion channel, VDAC3, an HSP70-16 interactor) grown under both normal (22 °C) and mild heat stress (27 °C, mild HS) temperatures. Under normal temperature, neither hsp70-16 nor vdac3 sepals showed significant changes in total lipids; however, vdac3 but not hsp70-16 sepals exhibited significant reductions in the ratios of all detected 11 lipid classes, except the monogalactosyldiacylglycerols (MGDGs). Under mild HS temperature, hsp70-16 but not vdac3 sepals showed dramatic reduction in total lipids. In addition, vdac3 sepals exhibited a significant accumulation of plastidic lipids, especially sulfoquinovosyldiacylglycerols (SQDGs) and phosphatidylglycerols (PGs), whereas hsp70-16 sepals had a significant accumulation of triacylglycerols (TAGs) and simultaneous dramatic reductions in SQDGs and phospholipids (PLs), such as phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), and phosphatidylserines (PSs). These findings revealed that the impact of mild HS on sepal lipidome is influenced by genetic factors, and further, that HSP70-16 and VDAC3 differently affect sepal lipidomic responses to mild HS. Our studies provide a lipidomic insight into functions of HSP and VDAC proteins in the plant’s HSR, in the context of floral development.

拟南芥萼片在早晨随着环境温度的升高而协调开花;然而,人们对其潜在的分子机制知之甚少。一个热休克蛋白编码基因HSP70-16突变,导致萼片热应激反应(HSR)受损,破坏脂质代谢,特别是萼片角质层脂质,导致开花异常。为了进一步探讨脂质在这一过程中发挥了多大的作用,在本研究中,我们比较了在正常(22℃)和轻度热应激(27℃,轻度HS)温度下生长的hsp70-16和vdac3(电压依赖性阴离子通道vdac3的突变体,hsp70-16相互作用物)萼片的脂质组学变化。常温下,hsp70-16和vdac3萼片的总脂质均无明显变化;然而,除了单半乳糖二酰甘油(MGDGs)外,vdac3而非hsp70-16萼片在所有检测到的11种脂类比例中均表现出显著的降低。在温和的HS温度下,hsp70-16萼片总脂质显著降低,而vdac3萼片无显著降低。此外,vdac3萼片表现出显著的可塑性脂质的积累,特别是磺基喹啉二酰基甘油(sqdg)和磷脂酰甘油(pg),而hsp70-16萼片则有显著的三酰基甘油(TAGs)的积累,同时sqdg和磷脂(PLs),如磷脂酰胆碱(PCs)、磷脂酰乙醇胺(PEs)和磷脂酰丝氨酸(ps)的急剧减少。这些结果表明,轻度HS对隔膜脂质组的影响受遗传因素的影响,HSP70-16和VDAC3对轻度HS的隔膜脂质组反应有不同的影响。我们的研究为植物在花发育过程中HSP和VDAC蛋白在植物HSR中的功能提供了脂质组学的见解。补充资料:在线版本包含补充资料,网址为10.1007/s42994-023-00103-x。
{"title":"Lipidomic insights into the response of Arabidopsis sepals to mild heat stress","authors":"Zican Chen,&nbsp;Weronika Jasinska,&nbsp;Muhammad Ashraf,&nbsp;Leah Rosental,&nbsp;Jung Hong,&nbsp;Dabing Zhang,&nbsp;Yariv Brotman,&nbsp;Jianxin Shi","doi":"10.1007/s42994-023-00103-x","DOIUrl":"10.1007/s42994-023-00103-x","url":null,"abstract":"<div><p>Arabidopsis sepals coordinate flower opening in the morning as ambient temperature rises; however, the underlying molecular mechanisms are poorly understood. Mutation of one heat shock protein encoding gene, <i>HSP70-16</i>, impaired sepal heat stress responses (HSR), disrupting lipid metabolism, especially sepal cuticular lipids, leading to abnormal flower opening. To further explore, to what extent, lipids play roles in this process, in this study, we compared lipidomic changes in sepals of <i>hsp70-16</i> and <i>vdac3</i> (mutant of a voltage-dependent anion channel, VDAC3, an HSP70-16 interactor) grown under both normal (22 °C) and mild heat stress (27 °C, mild HS) temperatures. Under normal temperature, neither <i>hsp70-16</i> nor <i>vdac3</i> sepals showed significant changes in total lipids; however, <i>vdac3</i> but not <i>hsp70-16</i> sepals exhibited significant reductions in the ratios of all detected 11 lipid classes, except the monogalactosyldiacylglycerols (MGDGs). Under mild HS temperature, <i>hsp70-16</i> but not <i>vdac3</i> sepals showed dramatic reduction in total lipids. In addition, <i>vdac3</i> sepals exhibited a significant accumulation of plastidic lipids, especially sulfoquinovosyldiacylglycerols (SQDGs) and phosphatidylglycerols (PGs), whereas <i>hsp70-16</i> sepals had a significant accumulation of triacylglycerols (TAGs) and simultaneous dramatic reductions in SQDGs and phospholipids (PLs), such as phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), and phosphatidylserines (PSs). These findings revealed that the impact of mild HS on sepal lipidome is influenced by genetic factors, and further, that <i>HSP70-16</i> and <i>VDAC3</i> differently affect sepal lipidomic responses to mild HS. Our studies provide a lipidomic insight into functions of HSP and VDAC proteins in the plant’s HSR, in the context of floral development.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"4 3","pages":"224 - 237"},"PeriodicalIF":3.6,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638258/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72672549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Insights into pollen–stigma recognition: self-incompatibility mechanisms serve as interspecies barriers in Brassicaceae? 花粉柱头识别的见解:自交不亲和机制是十字花科种间屏障吗?
IF 3.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-06-05 DOI: 10.1007/s42994-023-00105-9
Zijun Lan, Sheng Zhong, Li-Jia Qu

A new study provides a comprehensive molecular mechanism that controls interspecific incompatibility of self-incompatible (SI) plants in the Brassicaceae. This finding points to a potentially promising path to break interspecific barriers and achieve introgression of desirable traits into crops from distant species among SI crops in the Brassicaceae.

一项新的研究提供了控制十字花科自交不亲和(SI)植物种间不亲和性的综合分子机制。这一发现指出了一条潜在的有希望的途径,可以打破种间障碍,实现十字花科SI作物中理想性状从遥远物种渗入作物。
{"title":"Insights into pollen–stigma recognition: self-incompatibility mechanisms serve as interspecies barriers in Brassicaceae?","authors":"Zijun Lan,&nbsp;Sheng Zhong,&nbsp;Li-Jia Qu","doi":"10.1007/s42994-023-00105-9","DOIUrl":"10.1007/s42994-023-00105-9","url":null,"abstract":"<div><p>A new study provides a comprehensive molecular mechanism that controls interspecific incompatibility of self-incompatible (SI) plants in the Brassicaceae. This finding points to a potentially promising path to break interspecific barriers and achieve introgression of desirable traits into crops from distant species among SI crops in the Brassicaceae.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"4 2","pages":"176 - 179"},"PeriodicalIF":3.6,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-023-00105-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10006271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
TIR enzymatic functions: signaling molecules and receptor mechanisms TIR酶功能:信号分子和受体机制。
IF 3.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-05-07 DOI: 10.1007/s42994-023-00104-w
Li Wan

The evolutionarily conserved Toll/Interleukin-1 Receptor (TIR) domains across kingdoms of prokaryotes, plants, and animals play critical roles in innate immunity. Recent studies have revealed the enzymatic functions of TIRs, the structural bases of TIRs as holoenzymes, and the identity of TIR-generated small signaling molecules and their receptors, which significantly advanced our understanding on TIR-mediated immune signaling pathways. We reviewed the most up-to-date findings in TIR enzymatic functions from the perspectives of signaling molecules and receptor mechanisms.

原核生物、植物和动物王国中进化保守的Toll/白细胞介素-1受体(TIR)结构域在先天免疫中发挥着关键作用。最近的研究揭示了TIR的酶促功能、TIR作为全酶的结构基础,以及TIR产生的小信号分子及其受体的身份,这大大促进了我们对TIR介导的免疫信号通路的理解。我们从信号分子和受体机制的角度综述了TIR酶功能的最新发现。
{"title":"TIR enzymatic functions: signaling molecules and receptor mechanisms","authors":"Li Wan","doi":"10.1007/s42994-023-00104-w","DOIUrl":"10.1007/s42994-023-00104-w","url":null,"abstract":"<div><p>The evolutionarily conserved Toll/Interleukin-1 Receptor (TIR) domains across kingdoms of prokaryotes, plants, and animals play critical roles in innate immunity. Recent studies have revealed the enzymatic functions of TIRs, the structural bases of TIRs as holoenzymes, and the identity of TIR-generated small signaling molecules and their receptors, which significantly advanced our understanding on TIR-mediated immune signaling pathways. We reviewed the most up-to-date findings in TIR enzymatic functions from the perspectives of signaling molecules and receptor mechanisms.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"4 2","pages":"172 - 175"},"PeriodicalIF":3.6,"publicationDate":"2023-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-023-00104-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10006273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A complete MAP kinase cascade controls hyphopodium formation and virulence of Verticillium dahliae 一个完整的MAP激酶级联控制大丽花黄萎病菌的hyphodium形成和毒力
IF 3.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-05-02 DOI: 10.1007/s42994-023-00102-y
Ziqin Ye, Jun Qin, Yu Wang, Jinghan Zhang, Xiaoyun Wu, Xiangguo Li, Lifan Sun, Jie Zhang

Phytopathogens develop specialized infection-related structures to penetrate plant cells during infection. Different from phytopathogens that form appressoria or haustoria, the soil-borne root-infecting fungal pathogen Verticillium dahliae forms hyphopodia during infection, which further differentiate into penetration pegs to promote infection. The molecular mechanisms underlying the regulation of hyphopodium formation in V. dahliae remain poorly characterized. Mitogen-activated protein kinases (MAPKs) are highly conserved cytoplasmic kinases that regulate diverse biological processes in eukaryotes. Here we found that deletion of VdKss1, out of the five MAPKs encoded by V. dahliae, significantly impaired V. dahliae hyphopodium formation, in vitro penetration, and pathogenicity in cotton plants. Constitutive activation of MAPK kinase (MAPKK) VdSte7 and MAPK kinase kinase (MAPKKK) VdSte11 specifically activate VdKss1. Deletion of VdSte7 or VdSte11 resulted in a phenotype similar to that of the mutant with VdKss1 deletion. Thus, this study demonstrates that VdSte11-VdSte7-VdKss1 is a core MAPK cascade that regulates hyphopodium formation and pathogenicity in V. dahliae.

植物病原体形成专门的感染相关结构,在感染期间穿透植物细胞。与形成附着胞或吸器的植物病原体不同,感染真菌病原体大丽花黄萎病菌的土传根在感染过程中形成hyphopodia,后者进一步分化为穿透钉以促进感染。大丽花中hyphopodium形成调控的分子机制仍不清楚。丝裂原活化蛋白激酶(MAPKs)是一种高度保守的细胞质激酶,在真核生物中调节各种生物过程。在这里,我们发现,在大丽花编码的五个MAPK中,VdKss1的缺失显著损害了大丽花hyphopodium在棉花植株中的形成、体外渗透和致病性。MAPK激酶(MAPKK)VdSte7和MAPK激酶激酶(MAPKKK)VdSte 11的组成型激活特异性激活VdKss1。VdSte7或VdSte11的缺失导致与具有VdKss1缺失的突变体的表型相似的表型。因此,本研究表明,VdSte11-VdSte7-VdKss1是一个核心MAPK级联反应,它调节大丽花中hyphodium的形成和致病性。
{"title":"A complete MAP kinase cascade controls hyphopodium formation and virulence of Verticillium dahliae","authors":"Ziqin Ye,&nbsp;Jun Qin,&nbsp;Yu Wang,&nbsp;Jinghan Zhang,&nbsp;Xiaoyun Wu,&nbsp;Xiangguo Li,&nbsp;Lifan Sun,&nbsp;Jie Zhang","doi":"10.1007/s42994-023-00102-y","DOIUrl":"10.1007/s42994-023-00102-y","url":null,"abstract":"<div><p>Phytopathogens develop specialized infection-related structures to penetrate plant cells during infection. Different from phytopathogens that form appressoria or haustoria, the soil-borne root-infecting fungal pathogen <i>Verticillium dahliae</i> forms hyphopodia during infection, which further differentiate into penetration pegs to promote infection. The molecular mechanisms underlying the regulation of hyphopodium formation in <i>V. dahliae</i> remain poorly characterized. Mitogen-activated protein kinases (MAPKs) are highly conserved cytoplasmic kinases that regulate diverse biological processes in eukaryotes. Here we found that deletion of <i>VdKss1</i>, out of the five MAPKs encoded by <i>V. dahliae</i>, significantly impaired <i>V. dahliae</i> hyphopodium formation, in vitro penetration, and pathogenicity in cotton plants. Constitutive activation of MAPK kinase (MAPKK) VdSte7 and MAPK kinase kinase (MAPKKK) VdSte11 specifically activate VdKss1. Deletion of <i>VdSte7</i> or <i>VdSte11</i> resulted in a phenotype similar to that of the mutant with <i>VdKss1</i> deletion. Thus, this study demonstrates that VdSte11-VdSte7-VdKss1 is a core MAPK cascade that regulates hyphopodium formation and pathogenicity in <i>V. dahliae</i>.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"4 2","pages":"97 - 107"},"PeriodicalIF":3.6,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-023-00102-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50441384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
aBIOTECH
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1