Pub Date : 2024-07-25DOI: 10.1021/cbmi.4c0003410.1021/cbmi.4c00034
Yusuke Murakami, Masahiro Ando, Ayako Imamura, Ryosuke Oketani, Philippe Leproux, Sakiko Honjoh and Hideaki Kano*,
The Raman fingerprint spectral region provides abundant structural information on molecules. However, analyzing vibrational images within this region using coherent Raman imaging remains challenging due to the small Raman cross section and congested spectral features. In this study, we combined ultrabroadband coherent anti-Stokes Raman scattering (CARS) microspectroscopy across the spectral range of 500–4000 cm–1 with multivariate curve resolution-alternating least-squares (MCR-ALS) to reveal hidden Raman bands in the fingerprint region. Applying this method to mouse brain tissue, we extracted information on cholesterol and collagen, leveraging their distinctive molecular signatures, as well as on key molecules such as lipids, proteins, water, and nucleic acids. Moreover, the simultaneous detection of second harmonic generation facilitated label-free visualization of organelles, including arachnoid membrane and Rootletin filaments.
{"title":"Molecular Fingerprinting of Mouse Brain Using Ultrabroadband Coherent Anti-Stokes Raman Scattering (CARS) Microspectroscopy Empowered by Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS)","authors":"Yusuke Murakami, Masahiro Ando, Ayako Imamura, Ryosuke Oketani, Philippe Leproux, Sakiko Honjoh and Hideaki Kano*, ","doi":"10.1021/cbmi.4c0003410.1021/cbmi.4c00034","DOIUrl":"https://doi.org/10.1021/cbmi.4c00034https://doi.org/10.1021/cbmi.4c00034","url":null,"abstract":"<p >The Raman fingerprint spectral region provides abundant structural information on molecules. However, analyzing vibrational images within this region using coherent Raman imaging remains challenging due to the small Raman cross section and congested spectral features. In this study, we combined ultrabroadband coherent anti-Stokes Raman scattering (CARS) microspectroscopy across the spectral range of 500–4000 cm<sup>–1</sup> with multivariate curve resolution-alternating least-squares (MCR-ALS) to reveal hidden Raman bands in the fingerprint region. Applying this method to mouse brain tissue, we extracted information on cholesterol and collagen, leveraging their distinctive molecular signatures, as well as on key molecules such as lipids, proteins, water, and nucleic acids. Moreover, the simultaneous detection of second harmonic generation facilitated label-free visualization of organelles, including arachnoid membrane and Rootletin filaments.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 10","pages":"689–697 689–697"},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.4c00034","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142517215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1021/cbmi.4c0004510.1021/cbmi.4c00045
David Ken Gibbs*, Maximilian Podsednik, Patrick Tapler, Maximilian Weiss, Alexander Karl Opitz, Michael Nelhiebel, Charles Derrick Quarles Jr, Silvia Larisegger and Andreas Limbeck*,
Elemental imaging in laser-induced breakdown spectroscopy is usually performed by placing laser shots adjacent to each other on the sample surface without spatial overlap. Seeing that signal intensity is directly related to the amount of ablated material, this restricts either spatial resolution (for a given excitation efficiency) or sensitivity (when reducing the laser spot size). The experimental applicability of a concept involving the spatial overlapping of shots on the sample surface is investigated and compared to the conventional approach. By systematic choice of spacing between laser shots, spatial resolution can be improved to the single digit micrometer range for a given laser spot size. Signal intensity is found to be linearly dependent on the area ablated per shot, facilitating larger signal-to-background ratios with increased spot sizes. Owing to this, the presented approach is also employed to enhance signal intensity, while preserving spatial resolution. The applicability of the method is explored by analyzing samples with distinct thickness of the surface layer, allowing for the assessment of the concept’s suitability for different sample types.
{"title":"Improving Spatial Resolution by Reinterpreting Dosage for Laser-Induced Breakdown Spectroscopy Imaging: Conceptualization and Limitations","authors":"David Ken Gibbs*, Maximilian Podsednik, Patrick Tapler, Maximilian Weiss, Alexander Karl Opitz, Michael Nelhiebel, Charles Derrick Quarles Jr, Silvia Larisegger and Andreas Limbeck*, ","doi":"10.1021/cbmi.4c0004510.1021/cbmi.4c00045","DOIUrl":"https://doi.org/10.1021/cbmi.4c00045https://doi.org/10.1021/cbmi.4c00045","url":null,"abstract":"<p >Elemental imaging in laser-induced breakdown spectroscopy is usually performed by placing laser shots adjacent to each other on the sample surface without spatial overlap. Seeing that signal intensity is directly related to the amount of ablated material, this restricts either spatial resolution (for a given excitation efficiency) or sensitivity (when reducing the laser spot size). The experimental applicability of a concept involving the spatial overlapping of shots on the sample surface is investigated and compared to the conventional approach. By systematic choice of spacing between laser shots, spatial resolution can be improved to the single digit micrometer range for a given laser spot size. Signal intensity is found to be linearly dependent on the area ablated per shot, facilitating larger signal-to-background ratios with increased spot sizes. Owing to this, the presented approach is also employed to enhance signal intensity, while preserving spatial resolution. The applicability of the method is explored by analyzing samples with distinct thickness of the surface layer, allowing for the assessment of the concept’s suitability for different sample types.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 9","pages":"631–639 631–639"},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.4c00045","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1021/cbmi.4c0004110.1021/cbmi.4c00041
Nuwandi M. Ariyasingha*, Anna Samoilenko, Md Raduanul H. Chowdhury, Shiraz Nantogma, Clementinah Oladun, Jonathan R. Birchall, Tarek Bawardi, Oleg G. Salnikov, Larisa M. Kovtunova, Valerii I. Bukhtiyarov, Zhongjie Shi, Kehuan Luo, Sidhartha Tan, Igor V. Koptyug, Boyd M. Goodson and Eduard Y. Chekmenev*,
NMR hyperpolarization dramatically improves the detection sensitivity of magnetic resonance through the increase in nuclear spin polarization. Because of the sensitivity increase by several orders of magnitude, additional applications have been unlocked, including imaging of gases in physiologically relevant conditions. Hyperpolarized 129Xe gas recently received FDA approval as the first inhalable gaseous MRI contrast agent for clinical functional lung imaging of a wide range of pulmonary diseases. However, production and utilization of hyperpolarized 129Xe gas faces a number of translational challenges including the high cost and complexity of contrast agent production and imaging using proton-only (i.e., conventional) clinical MRI scanners, which are typically not suited to scan 129Xe nuclei. As a solution to circumvent the translational challenges of hyperpolarized 129Xe, we have recently demonstrated the feasibility of a simple and cheap process for production of proton-hyperpolarized propane gas contrast agent using ultralow-cost disposable production equipment and demonstrated the feasibility of lung ventilation imaging using hyperpolarized propane gas in excised pig lungs. However, previous pilot studies have concluded that the hyperpolarized state of propane gas decays very fast with an exponential decay T1 constant of ∼0.8 s at 1 bar (physiologically relevant pressure); moreover, the previously reported production rates were too slow for potential clinical utilization. Here, we investigate the feasibility of high-capacity production of hyperpolarized butane gas via heterogeneous parahydrogen-induced polarization using Rh nanoparticle-based catalyst utilizing butene gas as a precursor for parahydrogen pairwise addition. We demonstrate a remarkable result: the lifetime of the hyperpolarized state can be nearly doubled compared to that of propane (T1 of ∼1.6 s and long-lived spin-state TS of ∼3.8 s at clinically relevant 1 bar pressure). Moreover, we demonstrate a production speed of up to 0.7 standard liters of hyperpolarized gas per second. These two synergistic developments pave the way to biomedical utilization of proton-hyperpolarized gas media for ventilation imaging. Indeed, here we demonstrate the feasibility of phantom imaging of hyperpolarized butane gas in Tedlar bags and also the feasibility of subsecond 2D ventilation gas imaging in excised rabbit lungs with 1.6 × 1.6 mm2 in-plane resolution using a clinical MRI scanner. The demonstrated results have the potential to revolutionize functional pulmonary imaging with a simple and inexpensive on-demand production of proton-hyperpolarized gas contrast media, followed by visualization on virtually any MRI scanner, including emerging bedside low-field MRI scanner technology.
{"title":"Developing Hyperpolarized Butane Gas for Ventilation Lung Imaging","authors":"Nuwandi M. Ariyasingha*, Anna Samoilenko, Md Raduanul H. Chowdhury, Shiraz Nantogma, Clementinah Oladun, Jonathan R. Birchall, Tarek Bawardi, Oleg G. Salnikov, Larisa M. Kovtunova, Valerii I. Bukhtiyarov, Zhongjie Shi, Kehuan Luo, Sidhartha Tan, Igor V. Koptyug, Boyd M. Goodson and Eduard Y. Chekmenev*, ","doi":"10.1021/cbmi.4c0004110.1021/cbmi.4c00041","DOIUrl":"https://doi.org/10.1021/cbmi.4c00041https://doi.org/10.1021/cbmi.4c00041","url":null,"abstract":"<p >NMR hyperpolarization dramatically improves the detection sensitivity of magnetic resonance through the increase in nuclear spin polarization. Because of the sensitivity increase by several orders of magnitude, additional applications have been unlocked, including imaging of gases in physiologically relevant conditions. Hyperpolarized <sup>129</sup>Xe gas recently received FDA approval as the first inhalable gaseous MRI contrast agent for clinical functional lung imaging of a wide range of pulmonary diseases. However, production and utilization of hyperpolarized <sup>129</sup>Xe gas faces a number of translational challenges including the high cost and complexity of contrast agent production and imaging using proton-only (i.e., conventional) clinical MRI scanners, which are typically not suited to scan <sup>129</sup>Xe nuclei. As a solution to circumvent the translational challenges of hyperpolarized <sup>129</sup>Xe, we have recently demonstrated the feasibility of a simple and cheap process for production of proton-hyperpolarized propane gas contrast agent using ultralow-cost disposable production equipment and demonstrated the feasibility of lung ventilation imaging using hyperpolarized propane gas in excised pig lungs. However, previous pilot studies have concluded that the hyperpolarized state of propane gas decays very fast with an exponential decay <i>T</i><sub>1</sub> constant of ∼0.8 s at 1 bar (physiologically relevant pressure); moreover, the previously reported production rates were too slow for potential clinical utilization. Here, we investigate the feasibility of high-capacity production of hyperpolarized butane gas via heterogeneous parahydrogen-induced polarization using Rh nanoparticle-based catalyst utilizing butene gas as a precursor for parahydrogen pairwise addition. We demonstrate a remarkable result: the lifetime of the hyperpolarized state can be nearly doubled compared to that of propane (<i>T</i><sub>1</sub> of ∼1.6 s and long-lived spin-state <i>T</i><sub>S</sub> of ∼3.8 s at clinically relevant 1 bar pressure). Moreover, we demonstrate a production speed of up to 0.7 standard liters of hyperpolarized gas per second. These two synergistic developments pave the way to biomedical utilization of <i>proton</i>-hyperpolarized gas media for ventilation imaging. Indeed, here we demonstrate the feasibility of phantom imaging of hyperpolarized butane gas in Tedlar bags and also the feasibility of subsecond 2D ventilation gas imaging in excised rabbit lungs with 1.6 × 1.6 mm<sup>2</sup> in-plane resolution using a clinical MRI scanner. The demonstrated results have the potential to revolutionize functional pulmonary imaging with a simple and inexpensive on-demand production of <i>proton</i>-hyperpolarized gas contrast media, followed by visualization on virtually any MRI scanner, including emerging bedside low-field MRI scanner technology.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 10","pages":"698–710 698–710"},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.4c00041","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142550574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.1021/cbmi.4c0003810.1021/cbmi.4c00038
Richard Ortega, Mónica Fernández-Monreal, Noémie Pied, Stéphane Roudeau, Peter Cloetens and Asuncion Carmona*,
Essential metals such as iron, copper, and zinc are required for a wide variety of biological processes. For example, they act as cofactors in many proteins, conferring enzymatic activity or structural stability. Interactions between metals and proteins are often difficult to characterize due to the low concentration of metals in biological tissues and the sometimes labile nature of the chemical bonds involved. To better understand the cellular functions of essential metals, we correlate protein localization, using fluorescence light microscopy (FLM), and metal distribution with synchrotron X-ray fluorescence (SXRF), a high-sensitivity and high-spatial-resolution technique for metal imaging. Both chemical imaging modalities are implemented under cryogenic conditions to preserve native cell structure and chemical element distribution. As a proof of concept, we applied cryo-FLM and cryo-SXRF correlative imaging to cultured primary hippocampal neurons. Neurons were labeled under live conditions with fluorescent F-actin and tubulin dyes, then samples were flash-frozen and observed in a frozen hydrated state. This methodology, cryo-FLM combined to cryo-SXRF, revealed the distribution of iron, copper and zinc relative to F-actin and tubulin in the growth cones, dendrites, axons, and axonal en passant boutons of developing neurons.
许多生物过程都需要铁、铜和锌等必需金属。例如,它们在许多蛋白质中充当辅助因子,赋予酶活性或结构稳定性。由于金属在生物组织中的浓度较低,而且所涉及的化学键有时具有易变性,因此金属与蛋白质之间的相互作用往往难以表征。为了更好地了解基本金属的细胞功能,我们利用荧光显微镜(FLM)将蛋白质定位与同步辐射 X 射线荧光(SXRF)(一种高灵敏度和高空间分辨率的金属成像技术)将金属分布相关联。这两种化学成像模式都是在低温条件下实现的,以保留原生细胞结构和化学元素分布。作为概念验证,我们将低温FLM 和低温-SXRF 相关成像技术应用于培养的原发性海马神经元。在活体条件下用荧光 F-肌动蛋白和微管蛋白染料对神经元进行标记,然后将样本急速冷冻并在冷冻水合状态下进行观察。这种将低温荧光显微镜与低温 XXRF 相结合的方法揭示了铁、铜和锌相对于 F-肌动蛋白和微管蛋白在发育中神经元的生长锥、树突、轴突和轴突通过突起中的分布情况。
{"title":"Native Cryo-Correlative Light and Synchrotron X-ray Fluorescence Imaging of Proteins and Essential Metals in Subcellular Neuronal Compartments","authors":"Richard Ortega, Mónica Fernández-Monreal, Noémie Pied, Stéphane Roudeau, Peter Cloetens and Asuncion Carmona*, ","doi":"10.1021/cbmi.4c0003810.1021/cbmi.4c00038","DOIUrl":"https://doi.org/10.1021/cbmi.4c00038https://doi.org/10.1021/cbmi.4c00038","url":null,"abstract":"<p >Essential metals such as iron, copper, and zinc are required for a wide variety of biological processes. For example, they act as cofactors in many proteins, conferring enzymatic activity or structural stability. Interactions between metals and proteins are often difficult to characterize due to the low concentration of metals in biological tissues and the sometimes labile nature of the chemical bonds involved. To better understand the cellular functions of essential metals, we correlate protein localization, using fluorescence light microscopy (FLM), and metal distribution with synchrotron X-ray fluorescence (SXRF), a high-sensitivity and high-spatial-resolution technique for metal imaging. Both chemical imaging modalities are implemented under cryogenic conditions to preserve native cell structure and chemical element distribution. As a proof of concept, we applied cryo-FLM and cryo-SXRF correlative imaging to cultured primary hippocampal neurons. Neurons were labeled under live conditions with fluorescent F-actin and tubulin dyes, then samples were flash-frozen and observed in a frozen hydrated state. This methodology, cryo-FLM combined to cryo-SXRF, revealed the distribution of iron, copper and zinc relative to F-actin and tubulin in the growth cones, dendrites, axons, and axonal <i>en passant boutons</i> of developing neurons.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 11","pages":"744–754 744–754"},"PeriodicalIF":0.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.4c00038","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142694447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-08eCollection Date: 2024-08-26DOI: 10.1021/cbmi.4c00020
David R Smith, Jesse W Wilson, Siddarth Shivkumar, Hervé Rigneault, Randy A Bartels
We demonstrate low-frequency interferometric impulsive stimulated Raman scattering (ISRS) imaging with high robustness to distortions by optical scattering. ISRS is a pump-probe coherent Raman spectroscopy that can capture Raman vibrational spectra. Recording of ISRS spectra requires isolation of a probe pulse from the pump pulse. While this separation is simple in nonscattering specimens, such as liquids, scattering leads to significant pump pulse contamination and prevents the extraction of a Raman spectrum. We introduce a robust method for ISRS microscopy that works in complex scattering samples. High signal-to-noise ISRS spectra are obtained even when the pump and probe pulses pass through many scattering layers.
{"title":"Low-Frequency Coherent Raman Imaging Robust to Optical Scattering.","authors":"David R Smith, Jesse W Wilson, Siddarth Shivkumar, Hervé Rigneault, Randy A Bartels","doi":"10.1021/cbmi.4c00020","DOIUrl":"10.1021/cbmi.4c00020","url":null,"abstract":"<p><p>We demonstrate low-frequency interferometric impulsive stimulated Raman scattering (ISRS) imaging with high robustness to distortions by optical scattering. ISRS is a pump-probe coherent Raman spectroscopy that can capture Raman vibrational spectra. Recording of ISRS spectra requires isolation of a probe pulse from the pump pulse. While this separation is simple in nonscattering specimens, such as liquids, scattering leads to significant pump pulse contamination and prevents the extraction of a Raman spectrum. We introduce a robust method for ISRS microscopy that works in complex scattering samples. High signal-to-noise ISRS spectra are obtained even when the pump and probe pulses pass through many scattering layers.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 8","pages":"584-591"},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351428/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142117047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-08DOI: 10.1021/cbmi.4c0002010.1021/cbmi.4c00020
David R. Smith, Jesse W. Wilson, Siddarth Shivkumar, Hervé Rigneault and Randy A. Bartels*,
We demonstrate low-frequency interferometric impulsive stimulated Raman scattering (ISRS) imaging with high robustness to distortions by optical scattering. ISRS is a pump–probe coherent Raman spectroscopy that can capture Raman vibrational spectra. Recording of ISRS spectra requires isolation of a probe pulse from the pump pulse. While this separation is simple in nonscattering specimens, such as liquids, scattering leads to significant pump pulse contamination and prevents the extraction of a Raman spectrum. We introduce a robust method for ISRS microscopy that works in complex scattering samples. High signal-to-noise ISRS spectra are obtained even when the pump and probe pulses pass through many scattering layers.
{"title":"Low-Frequency Coherent Raman Imaging Robust to Optical Scattering","authors":"David R. Smith, Jesse W. Wilson, Siddarth Shivkumar, Hervé Rigneault and Randy A. Bartels*, ","doi":"10.1021/cbmi.4c0002010.1021/cbmi.4c00020","DOIUrl":"https://doi.org/10.1021/cbmi.4c00020https://doi.org/10.1021/cbmi.4c00020","url":null,"abstract":"<p >We demonstrate low-frequency interferometric impulsive stimulated Raman scattering (ISRS) imaging with high robustness to distortions by optical scattering. ISRS is a pump–probe coherent Raman spectroscopy that can capture Raman vibrational spectra. Recording of ISRS spectra requires isolation of a probe pulse from the pump pulse. While this separation is simple in nonscattering specimens, such as liquids, scattering leads to significant pump pulse contamination and prevents the extraction of a Raman spectrum. We introduce a robust method for ISRS microscopy that works in complex scattering samples. High signal-to-noise ISRS spectra are obtained even when the pump and probe pulses pass through many scattering layers.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 8","pages":"584–591 584–591"},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.4c00020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142075613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1021/cbmi.4c0003910.1021/cbmi.4c00039
Apeksha C. Rajamanthrilage, Unaiza Uzair, Paul W. Millhouse, Matthew J. Case, Donald W. Benza and Jeffrey N. Anker*,
Measuring chemical concentrations at the surface of implanted medical devices is important for elucidating the local biochemical environment, especially during implant infection. Although chemical indicator dyes enable chemical measurements in vitro, they are usually ineffective when measuring through tissue because the background obscures the dye signal and scattering dramatically reduces the spatial resolution. X-ray excited luminescent chemical imaging (XELCI) is a recent imaging modality which overcomes these limitations using a focused X-ray beam to excite a small spot of red light on scintillator-coated medical implants with well-defined location (because X-rays are minimally scattered) and low background. A spectrochemical indicator film placed over the scintillator layer, e.g., a polymer film containing pH-indicator dyes, absorbs some of the luminescence according to the local chemical environment, and this absorption is then detected by measuring the light intensity/spectrum passing through the tissue. A focused X-ray beam is used to scan point-by-point with a spatial resolution mainly limited by the X-ray beam width with minimum increase from X-ray absorption and scattering in the tissue. X-ray resolution, implant surface specificity, and chemical sensitivity are the three key features of XELCI. Here, we study spatial resolution using optically absorptive targets. For imaging a series of lines, the 20–80% knife-edge resolution was ∼285 (±15) μm with no tissue and 475 ± 18 and 520 ± 34 μm, respectively, through 5 and 10 mm thick tissue. Thus, doubling the tissue depth did not appreciably change the spatial resolution recorded through the tissue. This shows the promise of XELCI for submillimeter chemical imaging through tissue.
测量植入式医疗器械表面的化学浓度对于阐明局部生化环境非常重要,尤其是在植入物感染期间。虽然化学指示剂染料可以在体外进行化学测量,但在通过组织进行测量时通常效果不佳,因为背景会掩盖染料信号,而且散射会大大降低空间分辨率。X 射线激发发光化学成像(XELCI)是最近出现的一种成像方式,它克服了这些局限性,利用聚焦 X 射线束在闪烁体涂层的医疗植入物上激发一小点红光,具有位置明确(因为 X 射线散射最小)和背景低的特点。放置在闪烁体层上的光谱化学指示膜(如含有 pH 值指示染料的聚合物膜)会根据当地的化学环境吸收部分发光,然后通过测量穿过组织的光强/光谱来检测这种吸收。聚焦 X 射线束用于逐点扫描,其空间分辨率主要受 X 射线束宽度的限制,组织中 X 射线吸收和散射的影响最小。X 射线分辨率、植入物表面特异性和化学灵敏度是 XELCI 的三大特点。在此,我们利用光学吸收目标研究空间分辨率。在对一系列线条成像时,无组织时 20-80% 的刀口分辨率为 ∼285 (±15) μm,而通过 5 毫米和 10 毫米厚的组织时,分辨率分别为 475 ± 18 μm 和 520 ± 34 μm。因此,将组织深度增加一倍并不会明显改变通过组织记录的空间分辨率。这表明 XELCI 有希望通过组织进行亚毫米化学成像。
{"title":"Spatial Resolution for X-ray Excited Luminescence Chemical Imaging (XELCI)","authors":"Apeksha C. Rajamanthrilage, Unaiza Uzair, Paul W. Millhouse, Matthew J. Case, Donald W. Benza and Jeffrey N. Anker*, ","doi":"10.1021/cbmi.4c0003910.1021/cbmi.4c00039","DOIUrl":"https://doi.org/10.1021/cbmi.4c00039https://doi.org/10.1021/cbmi.4c00039","url":null,"abstract":"<p >Measuring chemical concentrations at the surface of implanted medical devices is important for elucidating the local biochemical environment, especially during implant infection. Although chemical indicator dyes enable chemical measurements in vitro, they are usually ineffective when measuring through tissue because the background obscures the dye signal and scattering dramatically reduces the spatial resolution. X-ray excited luminescent chemical imaging (XELCI) is a recent imaging modality which overcomes these limitations using a focused X-ray beam to excite a small spot of red light on scintillator-coated medical implants with well-defined location (because X-rays are minimally scattered) and low background. A spectrochemical indicator film placed over the scintillator layer, e.g., a polymer film containing pH-indicator dyes, absorbs some of the luminescence according to the local chemical environment, and this absorption is then detected by measuring the light intensity/spectrum passing through the tissue. A focused X-ray beam is used to scan point-by-point with a spatial resolution mainly limited by the X-ray beam width with minimum increase from X-ray absorption and scattering in the tissue. X-ray resolution, implant surface specificity, and chemical sensitivity are the three key features of XELCI. Here, we study spatial resolution using optically absorptive targets. For imaging a series of lines, the 20–80% knife-edge resolution was ∼285 (±15) μm with no tissue and 475 ± 18 and 520 ± 34 μm, respectively, through 5 and 10 mm thick tissue. Thus, doubling the tissue depth did not appreciably change the spatial resolution recorded through the tissue. This shows the promise of XELCI for submillimeter chemical imaging through tissue.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 7","pages":"510–517 510–517"},"PeriodicalIF":0.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.4c00039","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141955872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-25DOI: 10.1021/cbmi.4c0003310.1021/cbmi.4c00033
Arianna N. Lacen, and , Hui-Ting Lee*,
Chromatin organization plays a key role in gene regulation throughout the cell cycle. Understanding the dynamics governing the accessibility of chromatin is crucial for insight into mechanisms of gene regulation, DNA replication, and cell division. Extensive research has been done to track chromatin dynamics to explain how cells function and how diseases develop, in the hope of this knowledge leading to future therapeutics utilizing proteins or drugs that modify the accessibility or expression of disease-related genes. Traditional methods for studying the movement of chromatin throughout the cell relied on cross-linking spatially adjacent sections or hybridizing fluorescent probes to chromosomal loci and then constructing dynamic models from the static data collected at different time points. While these traditional methods are fruitful in understanding fundamental aspects of chromatin organization, they are limited by their invasive sample preparation protocols and diffraction-limited microscope resolution. These limitations have been challenged by modern methods based on high- or super-resolution microscopy and specific labeling techniques derived from gene targeting tools. These modern methods are more sensitive and less invasive than traditional methods, therefore allowing researchers to track chromosomal organization, compactness, and even the distance or rate of chromatin domain movement in detail and real time. This review highlights a selection of recently developed methods of chromatin tracking and their applications in fixed and live cells.
{"title":"Tracing the Chromatin: From 3C to Live-Cell Imaging","authors":"Arianna N. Lacen, and , Hui-Ting Lee*, ","doi":"10.1021/cbmi.4c0003310.1021/cbmi.4c00033","DOIUrl":"https://doi.org/10.1021/cbmi.4c00033https://doi.org/10.1021/cbmi.4c00033","url":null,"abstract":"<p >Chromatin organization plays a key role in gene regulation throughout the cell cycle. Understanding the dynamics governing the accessibility of chromatin is crucial for insight into mechanisms of gene regulation, DNA replication, and cell division. Extensive research has been done to track chromatin dynamics to explain how cells function and how diseases develop, in the hope of this knowledge leading to future therapeutics utilizing proteins or drugs that modify the accessibility or expression of disease-related genes. Traditional methods for studying the movement of chromatin throughout the cell relied on cross-linking spatially adjacent sections or hybridizing fluorescent probes to chromosomal loci and then constructing dynamic models from the static data collected at different time points. While these traditional methods are fruitful in understanding fundamental aspects of chromatin organization, they are limited by their invasive sample preparation protocols and diffraction-limited microscope resolution. These limitations have been challenged by modern methods based on high- or super-resolution microscopy and specific labeling techniques derived from gene targeting tools. These modern methods are more sensitive and less invasive than traditional methods, therefore allowing researchers to track chromosomal organization, compactness, and even the distance or rate of chromatin domain movement in detail and real time. This review highlights a selection of recently developed methods of chromatin tracking and their applications in fixed and live cells.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 10","pages":"659–682 659–682"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.4c00033","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142551112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-25eCollection Date: 2024-10-28DOI: 10.1021/cbmi.4c00033
Arianna N Lacen, Hui-Ting Lee
Chromatin organization plays a key role in gene regulation throughout the cell cycle. Understanding the dynamics governing the accessibility of chromatin is crucial for insight into mechanisms of gene regulation, DNA replication, and cell division. Extensive research has been done to track chromatin dynamics to explain how cells function and how diseases develop, in the hope of this knowledge leading to future therapeutics utilizing proteins or drugs that modify the accessibility or expression of disease-related genes. Traditional methods for studying the movement of chromatin throughout the cell relied on cross-linking spatially adjacent sections or hybridizing fluorescent probes to chromosomal loci and then constructing dynamic models from the static data collected at different time points. While these traditional methods are fruitful in understanding fundamental aspects of chromatin organization, they are limited by their invasive sample preparation protocols and diffraction-limited microscope resolution. These limitations have been challenged by modern methods based on high- or super-resolution microscopy and specific labeling techniques derived from gene targeting tools. These modern methods are more sensitive and less invasive than traditional methods, therefore allowing researchers to track chromosomal organization, compactness, and even the distance or rate of chromatin domain movement in detail and real time. This review highlights a selection of recently developed methods of chromatin tracking and their applications in fixed and live cells.
{"title":"Tracing the Chromatin: From 3C to Live-Cell Imaging.","authors":"Arianna N Lacen, Hui-Ting Lee","doi":"10.1021/cbmi.4c00033","DOIUrl":"10.1021/cbmi.4c00033","url":null,"abstract":"<p><p>Chromatin organization plays a key role in gene regulation throughout the cell cycle. Understanding the dynamics governing the accessibility of chromatin is crucial for insight into mechanisms of gene regulation, DNA replication, and cell division. Extensive research has been done to track chromatin dynamics to explain how cells function and how diseases develop, in the hope of this knowledge leading to future therapeutics utilizing proteins or drugs that modify the accessibility or expression of disease-related genes. Traditional methods for studying the movement of chromatin throughout the cell relied on cross-linking spatially adjacent sections or hybridizing fluorescent probes to chromosomal loci and then constructing dynamic models from the static data collected at different time points. While these traditional methods are fruitful in understanding fundamental aspects of chromatin organization, they are limited by their invasive sample preparation protocols and diffraction-limited microscope resolution. These limitations have been challenged by modern methods based on high- or super-resolution microscopy and specific labeling techniques derived from gene targeting tools. These modern methods are more sensitive and less invasive than traditional methods, therefore allowing researchers to track chromosomal organization, compactness, and even the distance or rate of chromatin domain movement in detail and real time. This review highlights a selection of recently developed methods of chromatin tracking and their applications in fixed and live cells.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 10","pages":"659-682"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523001/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"First Year of Chemical & Biomedical Imaging: Reflection and Prospect","authors":"Wenxi Lei, Juanjuan Jia, Deju Ye and Zijian Guo*, ","doi":"10.1021/cbmi.4c00043","DOIUrl":"https://doi.org/10.1021/cbmi.4c00043","url":null,"abstract":"","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 6","pages":"398–400"},"PeriodicalIF":0.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.4c00043","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141474750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}