Lucas Schmidt Goecks, André Luis Korzenowski, Platão Gonçalves Terra Neto, Davenilcio Luiz de Souza, Taciana Mareth
Money laundering has affected the global economy for many years, and there are several methods of solving it presented in the literature. However, when tackling money laundering and financial fraud together there are few methods for solving them. Thus, this study aims to identify methods for anti-money laundering (AML) and financial fraud detection (FFD). A systematic literature review was performed for analysis and research of the methods used, utilizing the SCOPUS and Web of Science databases. Of the 48 articles that aligned with the research theme, 20 used quantitative methods for AML and FFD solution, 13 were literature reviews, 7 used qualitative methods, and 8 used mixed methods. This study contributes by presenting a systematic literature review that fills two research gaps: lack of studies on AML and FFD, and the methods used to solve them. This will assist researchers in identifying gaps and related research.
洗钱已经影响了全球经济多年,有几种方法解决它在文献中提出。然而,当洗钱和金融欺诈一起处理时,解决它们的方法很少。因此,本研究旨在确定反洗钱(AML)和金融欺诈检测(FFD)的方法。利用SCOPUS和Web of Science数据库,对所采用的方法进行了系统的文献综述和分析研究。在符合研究主题的48篇文章中,20篇采用AML和FFD溶液的定量方法,13篇为文献综述,7篇采用定性方法,8篇采用混合方法。本研究通过系统的文献综述填补了两个研究空白:AML和FFD研究的缺乏,以及解决这些问题的方法。这将有助于研究人员确定差距和相关研究。
{"title":"Anti-money laundering and financial fraud detection: A systematic literature review","authors":"Lucas Schmidt Goecks, André Luis Korzenowski, Platão Gonçalves Terra Neto, Davenilcio Luiz de Souza, Taciana Mareth","doi":"10.1002/isaf.1509","DOIUrl":"10.1002/isaf.1509","url":null,"abstract":"<p>Money laundering has affected the global economy for many years, and there are several methods of solving it presented in the literature. However, when tackling money laundering and financial fraud together there are few methods for solving them. Thus, this study aims to identify methods for anti-money laundering (AML) and financial fraud detection (FFD). A systematic literature review was performed for analysis and research of the methods used, utilizing the SCOPUS and Web of Science databases. Of the 48 articles that aligned with the research theme, 20 used quantitative methods for AML and FFD solution, 13 were literature reviews, 7 used qualitative methods, and 8 used mixed methods. This study contributes by presenting a systematic literature review that fills two research gaps: lack of studies on AML and FFD, and the methods used to solve them. This will assist researchers in identifying gaps and related research.</p>","PeriodicalId":53473,"journal":{"name":"Intelligent Systems in Accounting, Finance and Management","volume":"29 2","pages":"71-85"},"PeriodicalIF":0.0,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133438268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raúl Gómez-Martínez, Carmen Orden-Cruz, Juan Gabriel Martínez-Navalón
The attempt to measure investors’ mood to find an early indicator of financial markets has evolved and developed with the advancement of technology over the years. The first attempts were based on surveys, a long and expensive process. Nowadays, big data has made it possible to measure the investor’s mood accurately and almost entirely online. This paper analyzes the explanatory and predictive capacity of Wikipedia pageviews for the Nasdaq index. For this purpose, two econometric models have been developed. In both models, the explanatory variable is the number of Wikipedia visits, and the endogenous variable is Nasdaq index return. As an alternative to this approach, an algorithmic trading system has been developed. It uses Wikipedia visits as investment signals for long and short positions to check the predictability power of this indicator. It is determined that the volume of queries about Nasdaq companies is a statistically significant variable for expressing the evolution of this index. However, it has no predictive capacity. Keeping in mind the capacity of Wikipedia to exemplify Nasdaq trends, further studies should be conducted to determine how to make this indicator profitable.
{"title":"Wikipedia pageviews as investors’ attention indicator for Nasdaq","authors":"Raúl Gómez-Martínez, Carmen Orden-Cruz, Juan Gabriel Martínez-Navalón","doi":"10.1002/isaf.1508","DOIUrl":"https://doi.org/10.1002/isaf.1508","url":null,"abstract":"<p>The attempt to measure investors’ mood to find an early indicator of financial markets has evolved and developed with the advancement of technology over the years. The first attempts were based on surveys, a long and expensive process. Nowadays, big data has made it possible to measure the investor’s mood accurately and almost entirely online. This paper analyzes the explanatory and predictive capacity of Wikipedia pageviews for the Nasdaq index. For this purpose, two econometric models have been developed. In both models, the explanatory variable is the number of Wikipedia visits, and the endogenous variable is Nasdaq index return. As an alternative to this approach, an algorithmic trading system has been developed. It uses Wikipedia visits as investment signals for long and short positions to check the predictability power of this indicator. It is determined that the volume of queries about Nasdaq companies is a statistically significant variable for expressing the evolution of this index. However, it has no predictive capacity. Keeping in mind the capacity of Wikipedia to exemplify Nasdaq trends, further studies should be conducted to determine how to make this indicator profitable.</p>","PeriodicalId":53473,"journal":{"name":"Intelligent Systems in Accounting, Finance and Management","volume":"29 1","pages":"41-49"},"PeriodicalIF":0.0,"publicationDate":"2022-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/isaf.1508","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109170445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Steven Y. K. Wong, Jennifer S. K. Chan, Lamiae Azizi, Richard Y. D. Xu
We consider the problem of neural network training in a time-varying context. Machine learning algorithms have excelled in problems that do not change over time. However, problems encountered in financial markets are often time varying. We propose the online early stopping algorithm and show that a neural network trained using this algorithm can track a function changing with unknown dynamics. We compare the proposed algorithm to current approaches on predicting monthly US stock returns and show its superiority. We also show that prominent factors (such as the size and momentum effects) and industry indicators exhibit time-varying predictive power on stock returns. We find that during market distress, industry indicators experience an increase in importance at the expense of firm level features. This indicates that industries play a role in explaining stock returns during periods of heightened risk.
{"title":"Time-varying neural network for stock return prediction","authors":"Steven Y. K. Wong, Jennifer S. K. Chan, Lamiae Azizi, Richard Y. D. Xu","doi":"10.1002/isaf.1507","DOIUrl":"https://doi.org/10.1002/isaf.1507","url":null,"abstract":"<p>We consider the problem of neural network training in a time-varying context. Machine learning algorithms have excelled in problems that do not change over time. However, problems encountered in financial markets are often <i>time varying</i>. We propose the <i>online early stopping</i> algorithm and show that a neural network trained using this algorithm can track a function changing with unknown dynamics. We compare the proposed algorithm to current approaches on predicting monthly US stock returns and show its superiority. We also show that prominent factors (such as the size and momentum effects) and industry indicators exhibit time-varying predictive power on stock returns. We find that during market distress, industry indicators experience an increase in importance at the expense of firm level features. This indicates that industries play a role in explaining stock returns during periods of heightened risk.</p>","PeriodicalId":53473,"journal":{"name":"Intelligent Systems in Accounting, Finance and Management","volume":"29 1","pages":"3-18"},"PeriodicalIF":0.0,"publicationDate":"2022-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109177142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}