N. Fahse, M. Millard, F. Kempter, S. Maier, M. Roller, J. Fehr
Significant trends in the vehicle industry are autonomous driving, micromobility, electrification and the increased use of shared mobility solutions. These new vehicle automation and mobility classes lead to a larger number of occupant positions, interiors and load directions. As safety systems interact with and protect occupants, it is essential to place the human, with its variability and vulnerability, at the center of the design and operation of these systems. Digital human body models (HBMs) can help meet these requirements and are therefore increasingly being integrated into the development of new vehicle models. This contribution provides an overview of current HBMs and their applications in vehicle safety in different driving modes. The authors briefly introduce the underlying mathematical methods and present a selection of HBMs to the reader. An overview table with guideline values for simulation times, common applications and available variants of the models is provided. To provide insight into the broad application of HBMs, the authors present three case studies in the field of vehicle safety: (i) in-crash finite element simulations and injuries of riders on a motorcycle; (ii) scenario-based assessment of the active pre-crash behavior of occupants with the Madymo multibody HBM; (iii) prediction of human behavior in a take-over scenario using the EMMA model.
{"title":"Dynamic human body models in vehicle safety: An overview","authors":"N. Fahse, M. Millard, F. Kempter, S. Maier, M. Roller, J. Fehr","doi":"10.1002/gamm.202300007","DOIUrl":"https://doi.org/10.1002/gamm.202300007","url":null,"abstract":"<p>Significant trends in the vehicle industry are autonomous driving, micromobility, electrification and the increased use of shared mobility solutions. These new vehicle automation and mobility classes lead to a larger number of occupant positions, interiors and load directions. As safety systems interact with and protect occupants, it is essential to place the human, with its variability and vulnerability, at the center of the design and operation of these systems. Digital human body models (HBMs) can help meet these requirements and are therefore increasingly being integrated into the development of new vehicle models. This contribution provides an overview of current HBMs and their applications in vehicle safety in different driving modes. The authors briefly introduce the underlying mathematical methods and present a selection of HBMs to the reader. An overview table with guideline values for simulation times, common applications and available variants of the models is provided. To provide insight into the broad application of HBMs, the authors present three case studies in the field of vehicle safety: (i) in-crash finite element simulations and injuries of riders on a motorcycle; (ii) scenario-based assessment of the active pre-crash behavior of occupants with the Madymo multibody HBM; (iii) prediction of human behavior in a take-over scenario using the EMMA model.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"46 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gamm.202300007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50144387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The current special issue of the GAMM Mitteilungen, which is the first of a two-part series, contains several contributions on the topic of applied and nonlinear dynamics. Dynamical problems occur in a wide range of engineering systems, such as all kinds of vehicles, wind power plants, turbines, engines, machine tools or in robotics, ranging from industrial robotics to service and medical robots. Dynamical questions are also essential in the modeling of biomechanical systems, for example in the description of the (human) musculoskeletal system or in the development of human dummies for crash tests. Nowadays a wide range of analytical, numerical, data-based and experimental tools and methods exists to foster the investigation of all kinds of dynamical systems. Hereby also the issue of model reduction plays an increasingly important role. Modern dynamical systems are often active systems, thus methods from system dynamics and control theory have to be included. This important connection between these communities is also reflected in the GAMM activity group (Fachausschuss) “Dynamics and Control Theory.” Many researchers contributing to this topical issue on applied and nonlinear dynamics are members of this GAMM activity group. We are very happy that several teams of authors have accepted our invitation to report on recent developments, research highlights and emerging application areas in applied and nonlinear dynamics. The four papers in this first part of the topical issue on applied and nonlinear dynamics are devoted to the above mentioned topics. The first paper [1] presents a minimal model for investigation of the influence of equilibrium positions on brake squeal. Paper [2] deals with an interpolation-based parametric model order reduction of automotive brake systems for frequency-domain analyses. In the contribution [3] nonlinear vibration phenomena in hydrodynamically supported rotor systems are discussed. Finally the last paper [4] presents the application of stable inversion methods to flexible manipulators modeled by the absolute nodal coordinate formulation for feedforward control design.
{"title":"Preface to the topical issue on applied and nonlinear dynamics: Part I","authors":"Jörg Fehr, Kristin de Payrebrune, Robert Seifried","doi":"10.1002/gamm.202300005","DOIUrl":"https://doi.org/10.1002/gamm.202300005","url":null,"abstract":"The current special issue of the GAMM Mitteilungen, which is the first of a two-part series, contains several contributions on the topic of applied and nonlinear dynamics. Dynamical problems occur in a wide range of engineering systems, such as all kinds of vehicles, wind power plants, turbines, engines, machine tools or in robotics, ranging from industrial robotics to service and medical robots. Dynamical questions are also essential in the modeling of biomechanical systems, for example in the description of the (human) musculoskeletal system or in the development of human dummies for crash tests. Nowadays a wide range of analytical, numerical, data-based and experimental tools and methods exists to foster the investigation of all kinds of dynamical systems. Hereby also the issue of model reduction plays an increasingly important role. Modern dynamical systems are often active systems, thus methods from system dynamics and control theory have to be included. This important connection between these communities is also reflected in the GAMM activity group (Fachausschuss) “Dynamics and Control Theory.” Many researchers contributing to this topical issue on applied and nonlinear dynamics are members of this GAMM activity group. We are very happy that several teams of authors have accepted our invitation to report on recent developments, research highlights and emerging application areas in applied and nonlinear dynamics. The four papers in this first part of the topical issue on applied and nonlinear dynamics are devoted to the above mentioned topics. The first paper [1] presents a minimal model for investigation of the influence of equilibrium positions on brake squeal. Paper [2] deals with an interpolation-based parametric model order reduction of automotive brake systems for frequency-domain analyses. In the contribution [3] nonlinear vibration phenomena in hydrodynamically supported rotor systems are discussed. Finally the last paper [4] presents the application of stable inversion methods to flexible manipulators modeled by the absolute nodal coordinate formulation for feedforward control design.","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"46 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50137407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Steffen Nitzschke, Elmar Woschke, Cornelius Strackeljan
It is a well-known fact, that hydrodynamically supported systems are prone to nonlinear vibrations. Their exact simulative prediction with respect to frequency and amplitude is complicated by the fact that different system properties interact. The paper at hand outlines an approach that takes all relevant influences like rigid body motions, elastic deformations, nonlinear relation between fluid film pressure and bearing kinematics as well as temperature increase due to power loss or adjacent heat sources into account as detailed as necessary. Both journal and thrust bearings are considered as they contribute to the system's stiffness and damping capabilities. The approach is applied to self-excited pad vibrations of tilting pad thrust bearings as well as the run-up simulation of a turbocharger rotor under different axial loads. Both models are validated against measurements.
{"title":"Nonlinear vibration phenomena in hydrodynamically supported rotor systems","authors":"Steffen Nitzschke, Elmar Woschke, Cornelius Strackeljan","doi":"10.1002/gamm.202300003","DOIUrl":"https://doi.org/10.1002/gamm.202300003","url":null,"abstract":"<p>It is a well-known fact, that hydrodynamically supported systems are prone to nonlinear vibrations. Their exact simulative prediction with respect to frequency and amplitude is complicated by the fact that different system properties interact. The paper at hand outlines an approach that takes all relevant influences like rigid body motions, elastic deformations, nonlinear relation between fluid film pressure and bearing kinematics as well as temperature increase due to power loss or adjacent heat sources into account as detailed as necessary. Both journal and thrust bearings are considered as they contribute to the system's stiffness and damping capabilities. The approach is applied to self-excited pad vibrations of tilting pad thrust bearings as well as the run-up simulation of a turbocharger rotor under different axial loads. Both models are validated against measurements.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"46 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gamm.202300003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50137406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The phenomenon brake squeal has been an ongoing topic for decades, both in the automotive industry and in science. Although there is agreement on the excitation mechanism of brake squeal, namely self-excitation due to frictional forces between the disk and the pad, in the subject of squeal it is very complex to discover all relevant effects and to take them into account. Several of these problems are related to nonlinearities, for example, in the contact between pad and disk or drum or in the behavior of the brake pad material. One of these nonlinear effects, which has been almost completely neglected so far, is that the brake can engage, mainly due to the bushing and joint elements within the brake, different equilibrium positions. This in fact has serious influence on the noise behavior as shown in experimental studies. For example, it is observed in experiments that, despite identical operating parameters, squeal sometimes occurs and sometimes not. In initial experimental studies, this could be related to the engaged equilibrium position. Following these experimental studies, the present paper introduces a minimal model by extending the well-known minimal model by Hoffmann et al. by corresponding elements and nonlinearities allowing the system to engage different equilibrium positions. As will be presented, the stability behavior strongly depends on the engaged equilibrium position. Therefore, the minimal model represents the key experimentally observed issues. Additionally, a limit cycle behavior can also be observed.
{"title":"A minimal model for the influence of equilibrium positions on brake squeal","authors":"Sebastian Koch, Nils Gräbner, Utz von Wagner","doi":"10.1002/gamm.202300001","DOIUrl":"https://doi.org/10.1002/gamm.202300001","url":null,"abstract":"<p>The phenomenon brake squeal has been an ongoing topic for decades, both in the automotive industry and in science. Although there is agreement on the excitation mechanism of brake squeal, namely self-excitation due to frictional forces between the disk and the pad, in the subject of squeal it is very complex to discover all relevant effects and to take them into account. Several of these problems are related to nonlinearities, for example, in the contact between pad and disk or drum or in the behavior of the brake pad material. One of these nonlinear effects, which has been almost completely neglected so far, is that the brake can engage, mainly due to the bushing and joint elements within the brake, different equilibrium positions. This in fact has serious influence on the noise behavior as shown in experimental studies. For example, it is observed in experiments that, despite identical operating parameters, squeal sometimes occurs and sometimes not. In initial experimental studies, this could be related to the engaged equilibrium position. Following these experimental studies, the present paper introduces a minimal model by extending the well-known minimal model by Hoffmann et al. by corresponding elements and nonlinearities allowing the system to engage different equilibrium positions. As will be presented, the stability behavior strongly depends on the engaged equilibrium position. Therefore, the minimal model represents the key experimentally observed issues. Additionally, a limit cycle behavior can also be observed.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"46 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gamm.202300001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50116537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Compared to conventional robots, flexible manipulators offer many advantages, such as faster end-effector velocities and less energy consumption. However, their flexible structure can lead to undesired oscillations. Therefore, the applied control strategy should account for these elasticities. A feedforward controller based on an inverse model of the system is an efficient way to improve the performance. However, unstable internal dynamics arise for many common flexible robots and stable inversion must be applied. In this contribution, an approximation of the original stable inversion approach is proposed. The approximation simplifies the problem setup, since the internal dynamics do not need to be derived explicitly for the definition of the boundary conditions. From a practical point of view, this makes the method applicable to more complex systems with many unactuated degrees of freedom. Flexible manipulators modeled by the absolute nodal coordinate formulation (ANCF) are considered as an application example.
{"title":"Application of stable inversion to flexible manipulators modeled by the absolute nodal coordinate formulation","authors":"Svenja Drücker, Robert Seifried","doi":"10.1002/gamm.202300004","DOIUrl":"https://doi.org/10.1002/gamm.202300004","url":null,"abstract":"<p>Compared to conventional robots, flexible manipulators offer many advantages, such as faster end-effector velocities and less energy consumption. However, their flexible structure can lead to undesired oscillations. Therefore, the applied control strategy should account for these elasticities. A feedforward controller based on an inverse model of the system is an efficient way to improve the performance. However, unstable internal dynamics arise for many common flexible robots and stable inversion must be applied. In this contribution, an approximation of the original stable inversion approach is proposed. The approximation simplifies the problem setup, since the internal dynamics do not need to be derived explicitly for the definition of the boundary conditions. From a practical point of view, this makes the method applicable to more complex systems with many unactuated degrees of freedom. Flexible manipulators modeled by the absolute nodal coordinate formulation (ANCF) are considered as an application example.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"46 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gamm.202300004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50116534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brake squeal describes noise with different frequencies that can be emitted during the braking process. Typically, the frequencies are in the range of 1 to 16 kHz. Although the noise has virtually no effect on braking performance, strong attempts are made to identify and eliminate the noise as it can be very unpleasant and annoying. In the field of numerical simulation, the brake is typically modeled using the Finite Element method, and this results in a high-dimensional equation of motion. For the analysis of brake squeal, gyroscopic and circulatory effects, as well as damping and friction, must be considered correctly. For the subsequent analysis, the high-dimensional damped nonlinear equation system is linearized. This results in terms that are non-symmetric and dependent on the rotational frequency of the brake rotor. Many parameter points to be evaluated implies many evaluations to determine the relevant parameters of the unstable system. In order to increase the efficiency of the process, the system is typically reduced with a truncated modal transformation. However, with this method the damping and the velocity-dependent terms, which have a significant influence on the system, are neglected for the calculation of the eigenmodes, and this can lead to inaccurate reduced models. In this paper, we present results of other methods of model order reduction applied on an industrial high-dimensional brake model. Using moment matching methods combined with parametric model order reduction, both the damping and the various parameter-dependent terms of the brake model can be taken into account in the reduction step. Thus, better results in the frequency domain can be obtained. On the one hand, as usual in brake analysis, the complex eigenvalues are evaluated, but on the other hand also the transfer behavior in terms of the frequency response. In each case, the classical and the new reduction method are compared with each other.
{"title":"Interpolation-based parametric model order reduction of automotive brake systems for frequency-domain analyses","authors":"Fabian Matter, Igor Iroz, Peter Eberhard","doi":"10.1002/gamm.202300002","DOIUrl":"https://doi.org/10.1002/gamm.202300002","url":null,"abstract":"<p>Brake squeal describes noise with different frequencies that can be emitted during the braking process. Typically, the frequencies are in the range of 1 to 16 kHz. Although the noise has virtually no effect on braking performance, strong attempts are made to identify and eliminate the noise as it can be very unpleasant and annoying. In the field of numerical simulation, the brake is typically modeled using the Finite Element method, and this results in a high-dimensional equation of motion. For the analysis of brake squeal, gyroscopic and circulatory effects, as well as damping and friction, must be considered correctly. For the subsequent analysis, the high-dimensional damped nonlinear equation system is linearized. This results in terms that are non-symmetric and dependent on the rotational frequency of the brake rotor. Many parameter points to be evaluated implies many evaluations to determine the relevant parameters of the unstable system. In order to increase the efficiency of the process, the system is typically reduced with a truncated modal transformation. However, with this method the damping and the velocity-dependent terms, which have a significant influence on the system, are neglected for the calculation of the eigenmodes, and this can lead to inaccurate reduced models. In this paper, we present results of other methods of model order reduction applied on an industrial high-dimensional brake model. Using moment matching methods combined with parametric model order reduction, both the damping and the various parameter-dependent terms of the brake model can be taken into account in the reduction step. Thus, better results in the frequency domain can be obtained. On the one hand, as usual in brake analysis, the complex eigenvalues are evaluated, but on the other hand also the transfer behavior in terms of the frequency response. In each case, the classical and the new reduction method are compared with each other.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"46 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gamm.202300002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50146353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the present special volume, the German Association of Applied Mathematics and Mechanics (GAMM) Expert Committee “Experimental Solid Mechanics” was again given the opportunity to summarize the current scientific activities of individual participating working groups in Germany. Both optical measurement methods from surface information as well as radiation-based methods for detecting the internal states present in material bodies are receiving increasing interest. Nowadays, the required measurement systems can simply be purchased, or they can be developed in-house. In addition, there are still many scientific questions left open in the evaluation of the found measurement data. In the meantime, image correlation methods are often used to determine the surface deformation of components, the discrete data of which are now evaluated using proprietary software tools, or are coupled with infrared thermography systems, in particular to determine the dissipating energy of mechanically loaded components.
In the first issue of this special volume, four contributions are compiled proposing (1) a shear evaluation tool using digital image correlation (DIC) for plane problems [5], the coupling of infrared thermography (IRT) and 3D DIC for both (2) identifying material parameters in metal plasticity [6] as well as (3) applicability studies of foams and auxetic materials [3], and, finally, (4) identifying the heat conductivity parameters in transversal isotropy using IRT [8].
The second issue treats distance measurements of laminate layers using microscopical images [4], and three further contributions on μ-CT measurements. First, new in-situ measurements in granular media using μ-X-ray computer tomography (CT) combined with ultrasonic wave propagation is investigated [7]. A further contribution treats the influence of the pores on the fatigue properties of particular additively manufactured parts [2], and, finally, a study on the micro-structural characterization and stochastic modeling of open-cell foam using μ-CT image analysis [1]. All articles contribute to contact-less measurement sensing and evaluation in the field of solid mechanics.
{"title":"Special Issue on Experimental Solid Mechanics","authors":"Stefan Hartmann, Stefan Diebels","doi":"10.1002/gamm.202200019","DOIUrl":"10.1002/gamm.202200019","url":null,"abstract":"<p>In the present special volume, the German Association of Applied Mathematics and Mechanics (GAMM) Expert Committee “Experimental Solid Mechanics” was again given the opportunity to summarize the current scientific activities of individual participating working groups in Germany. Both optical measurement methods from surface information as well as radiation-based methods for detecting the internal states present in material bodies are receiving increasing interest. Nowadays, the required measurement systems can simply be purchased, or they can be developed in-house. In addition, there are still many scientific questions left open in the evaluation of the found measurement data. In the meantime, image correlation methods are often used to determine the surface deformation of components, the discrete data of which are now evaluated using proprietary software tools, or are coupled with infrared thermography systems, in particular to determine the dissipating energy of mechanically loaded components.</p><p>In the first issue of this special volume, four contributions are compiled proposing (1) a shear evaluation tool using digital image correlation (DIC) for plane problems [<span>5</span>], the coupling of infrared thermography (IRT) and 3D DIC for both (2) identifying material parameters in metal plasticity [<span>6</span>] as well as (3) applicability studies of foams and auxetic materials [<span>3</span>], and, finally, (4) identifying the heat conductivity parameters in transversal isotropy using IRT [<span>8</span>].</p><p>The second issue treats distance measurements of laminate layers using microscopical images [<span>4</span>], and three further contributions on <i>μ</i>-CT measurements. First, new in-situ measurements in granular media using <i>μ</i>-X-ray computer tomography (CT) combined with ultrasonic wave propagation is investigated [<span>7</span>]. A further contribution treats the influence of the pores on the fatigue properties of particular additively manufactured parts [<span>2</span>], and, finally, a study on the micro-structural characterization and stochastic modeling of open-cell foam using <i>μ</i>-CT image analysis [<span>1</span>]. All articles contribute to contact-less measurement sensing and evaluation in the field of solid mechanics.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"45 3-4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gamm.202200019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82316468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Foam is a cellular material whose mechanical properties are strongly determined by its complex microstructure. To study the microstructure, at first a foam characterization based on