首页 > 最新文献

Nano Futures最新文献

英文 中文
Synthesis of AgInS2-ZnS quantum dot/TiO2 nanocomposites as efficient photocatalysts for methylene blue degradation AgInS2-ZnS量子点/TiO2纳米复合材料降解亚甲基蓝的合成
IF 2.1 4区 材料科学 Q2 Engineering Pub Date : 2023-01-31 DOI: 10.1088/2399-1984/acb7b7
Nomfundo Ruth Lushaba, S. Parani, Rodney Maluleke, Gracia it Mwad Mbaz, O. Oluwafemi
Photocatalytic degradation has been demonstrated to be an efficient and eco-friendly method for the removal of dye pollutants. Herein, we report the synergetic effect of glutathione (GSH)-capped AgInS2-ZnS (AIS-ZnS) core–shell quantum dots (QDs) and titanium dioxide (TiO2) as a novel nanocomposite for the efficient photocatalytic treatment of methylene blue (MB). The AIS-ZnS core–shell QDs and the corresponding QD/TiO2 nanocomposites were synthesized directly in an aqueous medium followed by annealing. The optical properties of the AIS-ZnS core–shell QDs showed strong yellow photoluminescence, which decreased gradually with the addition of TiO2. Fourier transform infrared (FTIR) spectroscopy confirmed the GSH capping on the QDs and nanocomposites. X-ray diffraction and transmission electron microscopy revealed the nanocrystalline nature and shape of the as-synthesized materials and showed the integration of the QDs (3.9 nm) on the TiO2 particles after annealing. These materials were then investigated as a photocatalyst for MB degradation using visible light irradiation. The effect of TiO2 content in the catalyst, calcination, photoirradiation period, catalyst dose, and initial MB concentration on photodegradation of MB was studied. The results indicated that the AIS-ZnS QD/TiO2 nanocomposite exhibited better photodegradation performance compared to AIS-ZnS QDs and TiO2. The increasing TiO2 concentration in the nanocomposite also enhanced MB degradation efficiency (up to 99%). The kinetics of MB degradation follows a pseudo-first-order process. The prepared AIS-ZnS QD/TiO2 nanocomposite would serve as an effective and eco-friendly photocatalyst for MB degradation.
光催化降解已被证明是一种高效、环保的去除染料污染物的方法。本文报道了谷胱甘肽(GSH)包封的AgInS2-ZnS (AIS-ZnS)核壳量子点(QDs)与二氧化钛(TiO2)作为一种新型纳米复合材料的协同作用,用于亚甲基蓝(MB)的高效光催化处理。在水介质中直接合成了AIS-ZnS核壳量子点和相应的量子点/TiO2纳米复合材料。AIS-ZnS核壳量子点的光学性质表现为强黄色光致发光,随TiO2的加入逐渐减弱。傅里叶变换红外光谱(FTIR)证实了GSH在量子点和纳米复合材料上的封盖作用。x射线衍射和透射电子显微镜显示了合成材料的纳米晶性质和形状,并显示了退火后TiO2粒子上的量子点(3.9 nm)的集成。然后研究了这些材料在可见光照射下作为光催化剂降解MB。研究了催化剂中TiO2含量、煅烧程度、光照射时间、催化剂剂量、初始MB浓度等因素对MB光降解的影响。结果表明,与AIS-ZnS QD和TiO2相比,AIS-ZnS QD/TiO2纳米复合材料具有更好的光降解性能。TiO2浓度的增加也提高了纳米复合材料对MB的降解效率(可达99%)。MB降解动力学遵循准一阶过程。制备的AIS-ZnS QD/TiO2纳米复合材料可作为一种高效、环保的光催化剂降解MB。
{"title":"Synthesis of AgInS2-ZnS quantum dot/TiO2 nanocomposites as efficient photocatalysts for methylene blue degradation","authors":"Nomfundo Ruth Lushaba, S. Parani, Rodney Maluleke, Gracia it Mwad Mbaz, O. Oluwafemi","doi":"10.1088/2399-1984/acb7b7","DOIUrl":"https://doi.org/10.1088/2399-1984/acb7b7","url":null,"abstract":"Photocatalytic degradation has been demonstrated to be an efficient and eco-friendly method for the removal of dye pollutants. Herein, we report the synergetic effect of glutathione (GSH)-capped AgInS2-ZnS (AIS-ZnS) core–shell quantum dots (QDs) and titanium dioxide (TiO2) as a novel nanocomposite for the efficient photocatalytic treatment of methylene blue (MB). The AIS-ZnS core–shell QDs and the corresponding QD/TiO2 nanocomposites were synthesized directly in an aqueous medium followed by annealing. The optical properties of the AIS-ZnS core–shell QDs showed strong yellow photoluminescence, which decreased gradually with the addition of TiO2. Fourier transform infrared (FTIR) spectroscopy confirmed the GSH capping on the QDs and nanocomposites. X-ray diffraction and transmission electron microscopy revealed the nanocrystalline nature and shape of the as-synthesized materials and showed the integration of the QDs (3.9 nm) on the TiO2 particles after annealing. These materials were then investigated as a photocatalyst for MB degradation using visible light irradiation. The effect of TiO2 content in the catalyst, calcination, photoirradiation period, catalyst dose, and initial MB concentration on photodegradation of MB was studied. The results indicated that the AIS-ZnS QD/TiO2 nanocomposite exhibited better photodegradation performance compared to AIS-ZnS QDs and TiO2. The increasing TiO2 concentration in the nanocomposite also enhanced MB degradation efficiency (up to 99%). The kinetics of MB degradation follows a pseudo-first-order process. The prepared AIS-ZnS QD/TiO2 nanocomposite would serve as an effective and eco-friendly photocatalyst for MB degradation.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44670101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controllable assessment of quantum rods with polarized emission for display applications 显示应用中偏振发射量子棒的可控评估
IF 2.1 4区 材料科学 Q2 Engineering Pub Date : 2023-01-20 DOI: 10.1088/2399-1984/acae5a
Lixuan Chen, Jinyang Zhao, Zhiqing Shi, Miao Zhou, Shenmin Zhang, Xiaowei Sun, Xin Zhang
Semiconductor quantum rods (QRs) emit polarized light, which shows great promise in the development of modern display devices with regard to energy efficiency and color enhancement. Here we demonstrate stretching of an aligned QR polarized film for brightness enhancement and optical efficiency improvement of current quantum-dot based displays. Study of the relationship between the QR material, stretching ratio and degree of alignment provides a guide for the fabrication of highly polarized QR film. A large-area film with a high degree of alignment of 0.635 and more than 1.6-fold enhancement of brightness and transmittance compared with the traditional structure was achieved, making the film a viable candidate for use in various energy-saving display devices.
半导体量子棒(QRs)发射偏振光,在现代显示设备的能效和色彩增强方面显示出巨大的前景。在这里,我们展示了对齐的QR偏振膜的拉伸,用于增强当前基于量子点的显示器的亮度和提高光学效率。研究二维码材料、拉伸比和取向度之间的关系,为高极化二维码薄膜的制备提供了指导。与传统结构相比,获得了取向度为0.635、亮度和透射率提高1.6倍以上的大面积薄膜,使该薄膜成为各种节能显示设备的可行候选者。
{"title":"Controllable assessment of quantum rods with polarized emission for display applications","authors":"Lixuan Chen, Jinyang Zhao, Zhiqing Shi, Miao Zhou, Shenmin Zhang, Xiaowei Sun, Xin Zhang","doi":"10.1088/2399-1984/acae5a","DOIUrl":"https://doi.org/10.1088/2399-1984/acae5a","url":null,"abstract":"Semiconductor quantum rods (QRs) emit polarized light, which shows great promise in the development of modern display devices with regard to energy efficiency and color enhancement. Here we demonstrate stretching of an aligned QR polarized film for brightness enhancement and optical efficiency improvement of current quantum-dot based displays. Study of the relationship between the QR material, stretching ratio and degree of alignment provides a guide for the fabrication of highly polarized QR film. A large-area film with a high degree of alignment of 0.635 and more than 1.6-fold enhancement of brightness and transmittance compared with the traditional structure was achieved, making the film a viable candidate for use in various energy-saving display devices.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47723875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ni3S4/NiS/rGO as a promising electrocatalyst for methanol and ethanol electro-oxidation Ni3S4/NiS/rGO是一种很有前途的甲醇和乙醇电氧化电催化剂
IF 2.1 4区 材料科学 Q2 Engineering Pub Date : 2023-01-04 DOI: 10.1088/2399-1984/acb02b
S. Azizi, M. Askari, M. T. T. Moghadam, M. Seifi, A. Di Bartolomeo
We present a one-step hydrothermal synthesis of hybrids consisting of nickel sulfides in the form of Ni3S4–NiS (NN) and Ni3S4–NiS-rGO (NNR), i.e. with the addition of reduced graphene oxide (rGO), for application as catalysts. After accurate physical characterization and confirmation of successful synthesis, we evaluate the ability of these catalysts in the processes of methanol and ethanol oxidation. The precise electrochemical analyses show relatively good potential and excellent cyclic stability in methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR) processes. The comparison of the two catalysts shows the superiority of NNR over NN, confirming that rGO introduces a higher specific surface area and a higher electrical conductivity in the NNR structure. In the process of MOR, NNR has an oxidation peak at a current density of 55 mA cm−2 and a peak potential of 0.54 V. In EOR, this peak is located at a current density of 11 mA cm−2 and at a peak potential of 0.59 V. NNR has 97% and 94% stability in MOR and EOR after 1000 consecutive cycles, respectively, which are acceptable values.
我们提出了一步水热合成由Ni3S4-NiS (NN)和Ni3S4-NiS -rGO (NNR)形式的硫化镍组成的杂化物,即加入还原氧化石墨烯(rGO)作为催化剂。在进行了准确的物理表征和确认成功合成后,我们评估了这些催化剂在甲醇和乙醇氧化过程中的能力。精确的电化学分析表明,该材料在甲醇氧化反应(MOR)和乙醇氧化反应(EOR)过程中具有较好的应用潜力和良好的循环稳定性。两种催化剂的比较表明NNR优于NN,证实了还原氧化石墨烯在NNR结构中引入了更高的比表面积和更高的导电性。在MOR过程中,NNR在电流密度为55 mA cm−2时出现氧化峰,峰值电位为0.54 V。在EOR中,该峰值位于电流密度为11 mA cm - 2,峰值电位为0.59 V。连续1000次循环后,NNR的MOR和EOR稳定性分别为97%和94%,这是可接受的值。
{"title":"Ni3S4/NiS/rGO as a promising electrocatalyst for methanol and ethanol electro-oxidation","authors":"S. Azizi, M. Askari, M. T. T. Moghadam, M. Seifi, A. Di Bartolomeo","doi":"10.1088/2399-1984/acb02b","DOIUrl":"https://doi.org/10.1088/2399-1984/acb02b","url":null,"abstract":"We present a one-step hydrothermal synthesis of hybrids consisting of nickel sulfides in the form of Ni3S4–NiS (NN) and Ni3S4–NiS-rGO (NNR), i.e. with the addition of reduced graphene oxide (rGO), for application as catalysts. After accurate physical characterization and confirmation of successful synthesis, we evaluate the ability of these catalysts in the processes of methanol and ethanol oxidation. The precise electrochemical analyses show relatively good potential and excellent cyclic stability in methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR) processes. The comparison of the two catalysts shows the superiority of NNR over NN, confirming that rGO introduces a higher specific surface area and a higher electrical conductivity in the NNR structure. In the process of MOR, NNR has an oxidation peak at a current density of 55 mA cm−2 and a peak potential of 0.54 V. In EOR, this peak is located at a current density of 11 mA cm−2 and at a peak potential of 0.59 V. NNR has 97% and 94% stability in MOR and EOR after 1000 consecutive cycles, respectively, which are acceptable values.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48332463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Self-assembly of bioinspired peptides for biomimetic synthesis of advanced peptide-based nanomaterials: a mini-review 仿生合成先进多肽基纳米材料的仿生多肽自组装:综述
IF 2.1 4区 材料科学 Q2 Engineering Pub Date : 2023-01-03 DOI: 10.1088/2399-1984/acafbe
Hao Kong, Guozheng Yang, Peng He, Danzhu Zhu, Xin Luan, Youyin Xu, RongQiu Mu, Gang Wei
The design and motif-tailoring of peptide sequences are crucial for mediating the self-assembly of peptide molecules and the biomimetic synthesis of functional peptide-based nanomaterials. It is well known that nature provides guidance and inspiration for the design and molecular tailoring of functional peptide sequences, which can further self-assemble into complex peptide nanomaterials with adjustable dimensions. In this mini-review, we summarize recent advances in the bioinspired design and regulation of functional peptide sequences by natural things, such as mussels, milk protein, silkworm silk, frogs and Alzheimer’s disease. The self-assembly of bioinspired peptides in vitro and in vivo for controlled synthesis of various peptide-based nanomaterials is introduced and analyzed. In addition, various applications of biomimetic peptide nanomaterials for biosensors, bioimaging, cancer therapy, antibacterial materials, tissue engineering, as well as energy storage and environmental science are demonstrated in detail. Finally, we give perspectives on the future development of this promising research topic. With these efforts, we hope to promote the understanding of the optimization of bioinspired peptides and the design of novel peptide nanomaterials for advanced applications.
肽序列的设计和基序剪裁对于介导肽分子的自组装和基于功能肽的纳米材料的仿生合成至关重要。众所周知,大自然为功能肽序列的设计和分子剪裁提供了指导和灵感,功能肽序列可以进一步自组装成尺寸可调的复杂肽纳米材料。在这篇小型综述中,我们总结了受生物启发设计和调节天然物质功能肽序列的最新进展,如贻贝、乳蛋白、蚕丝、青蛙和阿尔茨海默病。介绍并分析了生物启发肽在体外和体内的自组装,用于控制合成各种肽基纳米材料。此外,还详细介绍了仿生肽纳米材料在生物传感器、生物成像、癌症治疗、抗菌材料、组织工程以及储能和环境科学等方面的各种应用。最后,对本课题的发展前景进行了展望。通过这些努力,我们希望促进对生物启发肽的优化和用于高级应用的新型肽纳米材料的设计的理解。
{"title":"Self-assembly of bioinspired peptides for biomimetic synthesis of advanced peptide-based nanomaterials: a mini-review","authors":"Hao Kong, Guozheng Yang, Peng He, Danzhu Zhu, Xin Luan, Youyin Xu, RongQiu Mu, Gang Wei","doi":"10.1088/2399-1984/acafbe","DOIUrl":"https://doi.org/10.1088/2399-1984/acafbe","url":null,"abstract":"The design and motif-tailoring of peptide sequences are crucial for mediating the self-assembly of peptide molecules and the biomimetic synthesis of functional peptide-based nanomaterials. It is well known that nature provides guidance and inspiration for the design and molecular tailoring of functional peptide sequences, which can further self-assemble into complex peptide nanomaterials with adjustable dimensions. In this mini-review, we summarize recent advances in the bioinspired design and regulation of functional peptide sequences by natural things, such as mussels, milk protein, silkworm silk, frogs and Alzheimer’s disease. The self-assembly of bioinspired peptides in vitro and in vivo for controlled synthesis of various peptide-based nanomaterials is introduced and analyzed. In addition, various applications of biomimetic peptide nanomaterials for biosensors, bioimaging, cancer therapy, antibacterial materials, tissue engineering, as well as energy storage and environmental science are demonstrated in detail. Finally, we give perspectives on the future development of this promising research topic. With these efforts, we hope to promote the understanding of the optimization of bioinspired peptides and the design of novel peptide nanomaterials for advanced applications.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42827251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Amplified plasmonic emission enhancement of PbS quantum dots via Al-oxide/PMMA heterostructures Al-oxide/PMMA异质结构增强PbS量子点的放大等离子体发射
IF 2.1 4区 材料科学 Q2 Engineering Pub Date : 2022-12-06 DOI: 10.1088/2399-1984/aca943
S. M. Sadeghi, Rithvik R. Gutha, C. Sharp
We study the impact of Al oxide/Poly(methyl methacrylate) (PMMA) interface on plasmonic emission enhancement of infrared semiconductor quantum dots (QDs). For this, PbS QDs embedded in PMMA matrix are deposited on the top of heterostructures consisting of a Au thin film, a dielectric spacer, and an ultrathin layer of Al oxide. Our results suggest that such structures can support an emission enhancement far more than what can be reached in the cases when the QDs/PMMA films are placed on Au thin film/dielectric spacer directly, i.e. in the absence of the Al oxide. We also demonstrate that Au/Si/Al oxide/PMMA heterostructures can increase the photo-induced fluorescence enhancement of PbS QDs, making them brighter as they are irradiated with a laser field. We discuss these results in terms of combined effects of plasmonic field enhancement (Purcell effect) and the carboxylate anion bonds formed at the Al oxide/PMMA interface.
研究了氧化铝/聚甲基丙烯酸甲酯(PMMA)界面对红外半导体量子点(QDs)等离子体发射增强的影响。为此,将嵌入PMMA基体中的PbS量子点沉积在由Au薄膜、介电间隔层和超薄氧化铝层组成的异质结构的顶部。我们的研究结果表明,这种结构可以支持发射增强,远远超过直接将量子点/PMMA薄膜放置在Au薄膜/介电间隔片上的情况,即在没有氧化铝的情况下。我们还证明了Au/Si/Al氧化物/PMMA异质结构可以增加PbS量子点的光诱导荧光增强,使它们在激光场照射下更亮。我们从等离子体场增强(Purcell效应)和在氧化铝/PMMA界面形成的羧酸阴离子键的综合效应方面讨论了这些结果。
{"title":"Amplified plasmonic emission enhancement of PbS quantum dots via Al-oxide/PMMA heterostructures","authors":"S. M. Sadeghi, Rithvik R. Gutha, C. Sharp","doi":"10.1088/2399-1984/aca943","DOIUrl":"https://doi.org/10.1088/2399-1984/aca943","url":null,"abstract":"We study the impact of Al oxide/Poly(methyl methacrylate) (PMMA) interface on plasmonic emission enhancement of infrared semiconductor quantum dots (QDs). For this, PbS QDs embedded in PMMA matrix are deposited on the top of heterostructures consisting of a Au thin film, a dielectric spacer, and an ultrathin layer of Al oxide. Our results suggest that such structures can support an emission enhancement far more than what can be reached in the cases when the QDs/PMMA films are placed on Au thin film/dielectric spacer directly, i.e. in the absence of the Al oxide. We also demonstrate that Au/Si/Al oxide/PMMA heterostructures can increase the photo-induced fluorescence enhancement of PbS QDs, making them brighter as they are irradiated with a laser field. We discuss these results in terms of combined effects of plasmonic field enhancement (Purcell effect) and the carboxylate anion bonds formed at the Al oxide/PMMA interface.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44655231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Using nanomaterials to enhance the additive manufacturing of polymeric resins 利用纳米材料增强聚合物树脂的增材制造
IF 2.1 4区 材料科学 Q2 Engineering Pub Date : 2022-11-08 DOI: 10.1088/2399-1984/aca130
Ava G. Crowley, T. Tran, Micah J. Green
Additive manufacturing (AM) technologies, also called 3D printing, have dramatically developed over the past decade to allow new capabilities in materials processing with printed resolution comparable to that of traditional manufacturing techniques. Sequential layer deposition can lead to the creation of complex parts with minimized material waste, high manufacturing throughput, and increased prototyping ability, while also meeting the demand for mid- and low-volume production. The AM of polymer nanocomposites is a growing area of research because nanomaterial additives can enhance the mechanical, electrical, and other properties for end-use applications. However, the use of nanomaterial inclusions can also enhance the AM processes themselves. Here, we discuss works where nanomaterials are employed as local heaters for fused deposition modeling, as viscosifiers for direct ink writing, and as photothermal sensitizers for selective laser sintering and vat polymerization. We also note the disconnect between the researched AM capabilities and current industrial manufacturing; nanomaterials can bridge the technological gap and lead to new common practices in industrial manufacturing spaces.
增材制造(AM)技术,也称为3D打印,在过去十年中得到了巨大的发展,使材料处理的新能力与传统制造技术的打印分辨率相当。顺序层沉积可以产生复杂的零件,最大限度地减少材料浪费,提高生产吞吐量,提高原型设计能力,同时满足中、低批量生产的需求。聚合物纳米复合材料的AM是一个不断增长的研究领域,因为纳米材料添加剂可以增强最终用途的机械、电学和其他性能。然而,纳米材料夹杂物的使用也可以增强AM工艺本身。在这里,我们讨论了将纳米材料用作熔融沉积建模的局部加热器、直接墨水书写的增粘剂以及选择性激光烧结和还原聚合的光热增敏剂的工作。我们还注意到所研究的AM能力与当前工业制造之间的脱节;纳米材料可以弥合技术差距,并在工业制造领域引入新的通用做法。
{"title":"Using nanomaterials to enhance the additive manufacturing of polymeric resins","authors":"Ava G. Crowley, T. Tran, Micah J. Green","doi":"10.1088/2399-1984/aca130","DOIUrl":"https://doi.org/10.1088/2399-1984/aca130","url":null,"abstract":"Additive manufacturing (AM) technologies, also called 3D printing, have dramatically developed over the past decade to allow new capabilities in materials processing with printed resolution comparable to that of traditional manufacturing techniques. Sequential layer deposition can lead to the creation of complex parts with minimized material waste, high manufacturing throughput, and increased prototyping ability, while also meeting the demand for mid- and low-volume production. The AM of polymer nanocomposites is a growing area of research because nanomaterial additives can enhance the mechanical, electrical, and other properties for end-use applications. However, the use of nanomaterial inclusions can also enhance the AM processes themselves. Here, we discuss works where nanomaterials are employed as local heaters for fused deposition modeling, as viscosifiers for direct ink writing, and as photothermal sensitizers for selective laser sintering and vat polymerization. We also note the disconnect between the researched AM capabilities and current industrial manufacturing; nanomaterials can bridge the technological gap and lead to new common practices in industrial manufacturing spaces.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47832293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
First report on onsite temperature based recovery of quenched chemiluminescence signal from graphenized μPADs: validation by catechins radical scavenging 石墨化μ pad猝灭化学发光信号的现场温度回收:儿茶素自由基清除验证
IF 2.1 4区 材料科学 Q2 Engineering Pub Date : 2022-10-25 DOI: 10.1088/2399-1984/ac9d78
Pavar Sai Kumar, Paul A. Advincula, S. Goel
Graphene-based materials are excellent acceptors of the CRET phenomenon. Due to the presence of π -conjugated planar structure, these materials were reported to quench the chemiluminescence (CL) signal. Based on this fact, herein, for the first time, the recovery of quenched CL signal from different graphene-based materials is successfully obtained through the catalytic activity of onsite temperature. The maximum recovery of a quenched signal at an optimum temperature of 70 ∘C was 1440% from the 10 mg ml−1 reduced graphene oxide paper analytical devices. The recovery of flash graphene and laser induced graphene materials were found to be 895% and 521%, respectively, for the same conditions via the generation of π -conjugated carbon radicals. Catechin, an antioxidant, was analyzed from 0.1 nM to 500 nM to interpret the generation of carbon radicals from graphenized materials. The proposed smartphone-enabled onsite heating recovery model was validated with the lower limit of 94 pM (27.3 pg ml−1) of catechin concentration without advanced photodiodes or instrumentation. The validation was performed in real samples of green tea (1 and 2). This method of CL recovery can be a future model for indicating the purity of graphene-based materials without using advanced instrumentations.
石墨烯基材料是CRET现象的优秀受体。由于π-共轭平面结构的存在,这些材料被报道可以猝灭化学发光(CL)信号。基于这一事实,本文首次通过现场温度的催化活性,成功地从不同的石墨烯基材料中回收了猝灭的CL信号。在70℃的最佳温度下,10 mg ml−1还原氧化石墨烯纸分析装置的猝灭信号的最大回收率为1440%。在相同的条件下,通过产生π-共轭碳自由基,闪光石墨烯和激光诱导石墨烯材料的回收率分别为895%和521%。儿茶素是一种抗氧化剂,从0.1 nM到500 nM进行分析,以解释石墨化材料中碳自由基的产生。在没有先进光电二极管或仪器的情况下,所提出的智能手机现场加热回收模型的儿茶素浓度下限为94 pM(27.3 pg ml−1)。验证是在绿茶的真实样品(1和2)中进行的。这种CL回收方法可以成为未来在不使用先进仪器的情况下指示石墨烯基材料纯度的模型。
{"title":"First report on onsite temperature based recovery of quenched chemiluminescence signal from graphenized μPADs: validation by catechins radical scavenging","authors":"Pavar Sai Kumar, Paul A. Advincula, S. Goel","doi":"10.1088/2399-1984/ac9d78","DOIUrl":"https://doi.org/10.1088/2399-1984/ac9d78","url":null,"abstract":"Graphene-based materials are excellent acceptors of the CRET phenomenon. Due to the presence of π -conjugated planar structure, these materials were reported to quench the chemiluminescence (CL) signal. Based on this fact, herein, for the first time, the recovery of quenched CL signal from different graphene-based materials is successfully obtained through the catalytic activity of onsite temperature. The maximum recovery of a quenched signal at an optimum temperature of 70 ∘C was 1440% from the 10 mg ml−1 reduced graphene oxide paper analytical devices. The recovery of flash graphene and laser induced graphene materials were found to be 895% and 521%, respectively, for the same conditions via the generation of π -conjugated carbon radicals. Catechin, an antioxidant, was analyzed from 0.1 nM to 500 nM to interpret the generation of carbon radicals from graphenized materials. The proposed smartphone-enabled onsite heating recovery model was validated with the lower limit of 94 pM (27.3 pg ml−1) of catechin concentration without advanced photodiodes or instrumentation. The validation was performed in real samples of green tea (1 and 2). This method of CL recovery can be a future model for indicating the purity of graphene-based materials without using advanced instrumentations.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47654687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
NiCo2O4@V2O5 nanobelts as electrode materials for efficient electrochemical charge storage NiCo2O4@V2O5纳米带作为高效电化学电荷存储的电极材料
IF 2.1 4区 材料科学 Q2 Engineering Pub Date : 2022-10-24 DOI: 10.1088/2399-1984/ac9d12
D. K. Mohapatra, M. Sahoo, S. Praharaj, D. Rout
The development of novel nanostructured composites is of current interest for applications as electrode materials. In this regard, an attempt has been made to synthesize NiCo2O4@V2O5 nanocomposite and compare its charge storage performance with pristine NiCo2O4 nanoparticles. High-resolution scanning electron microscope micrographs reveal a mesoporous nanobelt like morphology of the nanocomposite with a Brunauer–Emmett–Teller surface area of ∼65 m2 g−1 and average mesopore size centered on ∼7.55 nm. Electrochemical measurements performed on both samples anticipate capacitive behavior with quasi-reversible redox reactions. However, NiCo2O4@V2O5 is found to demonstrate a strikingly high specific capacity of 194 mAh g−1 at 1 A g−1 along with a notable capacity retention of ∼90%, even after 3000 charge–discharge cycles, and a Coulombic efficiency >97% at 5 A g−1. These features are much superior to the properties of pristine NiCo2O4 nanoparticles. The results obtained in this work ascertain the functional robustness of NiCo2O4@V2O5 nanocomposites as electrode materials in supercapacitors.
新型纳米复合材料作为电极材料的发展是当前的研究热点。在这方面,我们尝试合成NiCo2O4@V2O5纳米复合材料,并将其与原始NiCo2O4纳米颗粒的电荷存储性能进行比较。高分辨率扫描电子显微镜显微照片显示,纳米复合材料具有介孔纳米带状形貌,brunauer - emmet - teller表面积为~ 65 m2 g−1,平均介孔尺寸为~ 7.55 nm。在两种样品上进行的电化学测量预测了准可逆氧化还原反应的电容行为。然而,研究发现NiCo2O4@V2O5在1ag - 1条件下的比容量高达194mah g - 1,即使在3000次充放电循环后,容量保持率仍高达90%,在5ag - 1条件下库仑效率高达97%。这些特性远远优于原始NiCo2O4纳米颗粒的性能。研究结果确定了NiCo2O4@V2O5纳米复合材料作为超级电容器电极材料的功能稳健性。
{"title":"NiCo2O4@V2O5 nanobelts as electrode materials for efficient electrochemical charge storage","authors":"D. K. Mohapatra, M. Sahoo, S. Praharaj, D. Rout","doi":"10.1088/2399-1984/ac9d12","DOIUrl":"https://doi.org/10.1088/2399-1984/ac9d12","url":null,"abstract":"The development of novel nanostructured composites is of current interest for applications as electrode materials. In this regard, an attempt has been made to synthesize NiCo2O4@V2O5 nanocomposite and compare its charge storage performance with pristine NiCo2O4 nanoparticles. High-resolution scanning electron microscope micrographs reveal a mesoporous nanobelt like morphology of the nanocomposite with a Brunauer–Emmett–Teller surface area of ∼65 m2 g−1 and average mesopore size centered on ∼7.55 nm. Electrochemical measurements performed on both samples anticipate capacitive behavior with quasi-reversible redox reactions. However, NiCo2O4@V2O5 is found to demonstrate a strikingly high specific capacity of 194 mAh g−1 at 1 A g−1 along with a notable capacity retention of ∼90%, even after 3000 charge–discharge cycles, and a Coulombic efficiency >97% at 5 A g−1. These features are much superior to the properties of pristine NiCo2O4 nanoparticles. The results obtained in this work ascertain the functional robustness of NiCo2O4@V2O5 nanocomposites as electrode materials in supercapacitors.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43056285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of Na doping on layered LiNi1/3Co1/3Mn1/3O2 single-crystal structure as a cathode for lithium-ion batteries 钠掺杂对锂离子电池正极层状LiNi1/3Co1/3Mn1/3O2单晶结构的影响
IF 2.1 4区 材料科学 Q2 Engineering Pub Date : 2022-10-19 DOI: 10.1088/2399-1984/ac9bb0
Dongsheng Yu, Jili Li, Zhiyu Min, Chunjuan Tang, Peiguo Meng, Baotai Chen
A cathode with single-crystal structure for Li-ion batteries is shown to provide stable cycle performance because of its integrated crystal structure and smaller internal stress. Here, Na+ ions with larger radius are doped into LiNi1/3Co1/3Mn1/3O2 (LNCMO) single-crystal nanoparticles through a simple sol–gel method to further improve the rate capability. Different amounts of Na doping are considered to illustrate the cooperative effect of single-crystal structure and Na doping. The results indicate that a Li0.9Na0.1Ni1/3Co1/3Mn1/3O2 cathode has a discharge capacity of 193.7 mAh g–1 at 0.2 C, much higher than the 174.8 mAh g–1 of its undoped counterpart. After 50 cycles, the capacity retention is enhanced from 71.3% for undoped LNCMO to 89.2% for Li0.9Na0.1Ni1/3Co1/3Mn1/3O2. At the same time, Li0.9Na0.1Ni1/3Co1/3Mn1/3O2 delivers a discharge capacity of 137.9 mAh g–1 at 10 C, about twice the capacity of LNCMO. Na ions doped into the lattice can magnify the distances between lithium layers and act as pins for more stable structure and faster kinetics of Li+-ion diffusion.
单晶结构的锂离子电池阴极由于具有完整的晶体结构和较小的内应力,具有稳定的循环性能。本文通过简单的溶胶-凝胶法将半径较大的Na+离子掺杂到LiNi1/3Co1/3Mn1/3O2 (LNCMO)单晶纳米颗粒中,进一步提高了速率能力。为了说明单晶结构与钠掺杂的协同效应,考虑了不同钠掺杂量。结果表明,在0.2℃下,Li0.9Na0.1Ni1/3Co1/3Mn1/3O2阴极的放电容量为193.7 mAh g-1,远高于未掺杂Li0.9Na0.1Ni1/3Co1/3Mn1/3O2阴极的174.8 mAh g-1。循环50次后,未掺杂LNCMO的容量保持率从71.3%提高到Li0.9Na0.1Ni1/3Co1/3Mn1/3O2的89.2%。同时,Li0.9Na0.1Ni1/3Co1/3Mn1/3O2在10℃下的放电容量为137.9 mAh g-1,约为LNCMO的两倍。在晶格中掺入Na离子可以放大锂层之间的距离,并作为引脚,使结构更稳定,Li+离子扩散动力学更快。
{"title":"The effect of Na doping on layered LiNi1/3Co1/3Mn1/3O2 single-crystal structure as a cathode for lithium-ion batteries","authors":"Dongsheng Yu, Jili Li, Zhiyu Min, Chunjuan Tang, Peiguo Meng, Baotai Chen","doi":"10.1088/2399-1984/ac9bb0","DOIUrl":"https://doi.org/10.1088/2399-1984/ac9bb0","url":null,"abstract":"A cathode with single-crystal structure for Li-ion batteries is shown to provide stable cycle performance because of its integrated crystal structure and smaller internal stress. Here, Na+ ions with larger radius are doped into LiNi1/3Co1/3Mn1/3O2 (LNCMO) single-crystal nanoparticles through a simple sol–gel method to further improve the rate capability. Different amounts of Na doping are considered to illustrate the cooperative effect of single-crystal structure and Na doping. The results indicate that a Li0.9Na0.1Ni1/3Co1/3Mn1/3O2 cathode has a discharge capacity of 193.7 mAh g–1 at 0.2 C, much higher than the 174.8 mAh g–1 of its undoped counterpart. After 50 cycles, the capacity retention is enhanced from 71.3% for undoped LNCMO to 89.2% for Li0.9Na0.1Ni1/3Co1/3Mn1/3O2. At the same time, Li0.9Na0.1Ni1/3Co1/3Mn1/3O2 delivers a discharge capacity of 137.9 mAh g–1 at 10 C, about twice the capacity of LNCMO. Na ions doped into the lattice can magnify the distances between lithium layers and act as pins for more stable structure and faster kinetics of Li+-ion diffusion.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41664021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Facile copper ferrite/carbon quantum dot magnetic nanocomposite as an effective nanocatalyst for reduction of para-nitroaniline and ortho-nitroaniline 易变铜铁氧体/碳量子点磁性纳米复合材料作为对硝基苯胺和对硝基苯胺还原的有效纳米催化剂
IF 2.1 4区 材料科学 Q2 Engineering Pub Date : 2022-10-13 DOI: 10.1088/2399-1984/ac9a19
Samin Naghash-Hamed, N. Arsalani, Seyed Borhan Mousavi
Para-nitroaniline (PNA) and ortho-nitroaniline (ONA) are highly toxic contaminants in aqueous solution and must be treated. In the current investigation, novel magnetic nanocomposites containing copper ferrite (CuFe2O4) and gelatin-derived carbon quantum dots (CQDs) were successfully synthesized. The prepared nanocatalyst was characterized by scanning electron microscopy, x-ray diffraction, transmission electron microscopy, Brunauer–Emmet–Teller (BET), Fourier transform infrared and ultraviolet–visible techniques. The mesoporous structure of the CuFe2O4/CQD nanocomposite was shown using the BET/Barrett–Joyner–Halenda technique. The catalytic performance of the nanocatalyst during the reduction of PNA and ONA was assessed in an aqueous medium at 25 °C. The complete reduction of PNA and ONA using the CuFe2O2/CQDs nanocomposite occurred in 13 s and 35 s, respectively. The pseudo-second-order rate constant (K app) was obtained as 2.89 × 10−1 s−1 and 9.3 × 10−2 s−1 for reducing PNA and ONA, respectively. Moreover, the magnetic nanocatalyst was easily separated from the reaction solution and recycled for up to six consecutive cycles without significant loss of catalytic activity.
对硝基苯胺(PNA)和对硝基苯胺(ONA)是水溶液中的高毒性污染物,必须进行处理。在本研究中,成功地合成了一种新型磁性纳米复合材料,该复合材料含有铁氧体铜(CuFe2O4)和明胶衍生的碳量子点(CQDs)。采用扫描电子显微镜、x射线衍射、透射电子显微镜、布鲁诺尔-埃米特-泰勒(bruauer - emmet - teller, BET)、傅里叶变换红外和紫外可见技术对所制备的纳米催化剂进行了表征。采用BET/ Barrett-Joyner-Halenda技术表征了CuFe2O4/CQD纳米复合材料的介孔结构。在25°C的水介质中评估纳米催化剂在PNA和ONA还原过程中的催化性能。CuFe2O2/CQDs纳米复合材料分别在13 s和35 s内完全还原了PNA和ONA。还原PNA和ONA的准二阶速率常数K app分别为2.89 × 10−1 s−1和9.3 × 10−2 s−1。此外,磁性纳米催化剂很容易从反应溶液中分离出来,并且可以连续循环多达6次,而不会显著损失催化活性。
{"title":"Facile copper ferrite/carbon quantum dot magnetic nanocomposite as an effective nanocatalyst for reduction of para-nitroaniline and ortho-nitroaniline","authors":"Samin Naghash-Hamed, N. Arsalani, Seyed Borhan Mousavi","doi":"10.1088/2399-1984/ac9a19","DOIUrl":"https://doi.org/10.1088/2399-1984/ac9a19","url":null,"abstract":"Para-nitroaniline (PNA) and ortho-nitroaniline (ONA) are highly toxic contaminants in aqueous solution and must be treated. In the current investigation, novel magnetic nanocomposites containing copper ferrite (CuFe2O4) and gelatin-derived carbon quantum dots (CQDs) were successfully synthesized. The prepared nanocatalyst was characterized by scanning electron microscopy, x-ray diffraction, transmission electron microscopy, Brunauer–Emmet–Teller (BET), Fourier transform infrared and ultraviolet–visible techniques. The mesoporous structure of the CuFe2O4/CQD nanocomposite was shown using the BET/Barrett–Joyner–Halenda technique. The catalytic performance of the nanocatalyst during the reduction of PNA and ONA was assessed in an aqueous medium at 25 °C. The complete reduction of PNA and ONA using the CuFe2O2/CQDs nanocomposite occurred in 13 s and 35 s, respectively. The pseudo-second-order rate constant (K app) was obtained as 2.89 × 10−1 s−1 and 9.3 × 10−2 s−1 for reducing PNA and ONA, respectively. Moreover, the magnetic nanocatalyst was easily separated from the reaction solution and recycled for up to six consecutive cycles without significant loss of catalytic activity.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43238137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 31
期刊
Nano Futures
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1