首页 > 最新文献

Nano Futures最新文献

英文 中文
Moiré patterns and carbon nanotube sorting 波纹模式和碳纳米管分选
IF 2.1 4区 材料科学 Q2 Engineering Pub Date : 2022-01-11 DOI: 10.1088/2399-1984/ac4a27
O. Konevtsova, D. Roshal, S. Rochal
Moiré patterns (MPs), arising from the superposition of two lattices with close periods, are tightly related to the physicochemical properties of bilayer nanostructures. Here, we develop the theory of complex MPs emerging in twisted bilayer graphene and planar nets of double-walled nanotubes at significant relative twist and/or deformation of layers. The proposed theory clarifies the physicochemical regularities arising at sorting of single-walled carbon nanotubes (SWCNTs) by organic molecules, which self-assemble in regular coatings on both the tubes and planar graphene. We introduce and consider an outer tubular virtual lattice that is a parent structure for the deposited coating and due to this fact, its existence is crucial for the coating formation. As we show, such outer lattices exist only for successfully sorted SWCNTs and the superposition between the outer lattice and SWCNT forms a specific long-period MP. We explain known experimental results of SWCNT sorting by molecules of flavin group, poly(9,9-dioctylfluorene-2,7-diyl), and poly [(m-phenylenevinylene)-alt-(p-phenylenevinylene)]. Also, our approach points out other organic molecules and polymers suitable for effective carbon nanotube sorting.
莫尔条纹(MP)是由两个周期相近的晶格叠加而成,与双层纳米结构的物理化学性质密切相关。在这里,我们发展了在扭曲的双层石墨烯和双壁纳米管的平面网中,在层的显著相对扭曲和/或变形下出现的复杂MP的理论。所提出的理论阐明了单壁碳纳米管(SWCNTs)被有机分子分选时产生的物理化学规律,有机分子在管和平面石墨烯上的规则涂层中自组装。我们引入并考虑了一个外管状虚拟晶格,它是沉积涂层的母体结构,由于这一事实,它的存在对涂层的形成至关重要。正如我们所表明的,这种外晶格只存在于成功分选的SWCNT中,外晶格和SWCNT之间的叠加形成了一个特定的长周期MP。我们解释了已知的通过黄素基团、聚(9,9-二辛基芴-2,7-二基)和聚[(间-亚苯基)-alt-(对-亚苯基)]分子分选SWCNT的实验结果。此外,我们的方法还指出了适用于有效碳纳米管分选的其他有机分子和聚合物。
{"title":"Moiré patterns and carbon nanotube sorting","authors":"O. Konevtsova, D. Roshal, S. Rochal","doi":"10.1088/2399-1984/ac4a27","DOIUrl":"https://doi.org/10.1088/2399-1984/ac4a27","url":null,"abstract":"Moiré patterns (MPs), arising from the superposition of two lattices with close periods, are tightly related to the physicochemical properties of bilayer nanostructures. Here, we develop the theory of complex MPs emerging in twisted bilayer graphene and planar nets of double-walled nanotubes at significant relative twist and/or deformation of layers. The proposed theory clarifies the physicochemical regularities arising at sorting of single-walled carbon nanotubes (SWCNTs) by organic molecules, which self-assemble in regular coatings on both the tubes and planar graphene. We introduce and consider an outer tubular virtual lattice that is a parent structure for the deposited coating and due to this fact, its existence is crucial for the coating formation. As we show, such outer lattices exist only for successfully sorted SWCNTs and the superposition between the outer lattice and SWCNT forms a specific long-period MP. We explain known experimental results of SWCNT sorting by molecules of flavin group, poly(9,9-dioctylfluorene-2,7-diyl), and poly [(m-phenylenevinylene)-alt-(p-phenylenevinylene)]. Also, our approach points out other organic molecules and polymers suitable for effective carbon nanotube sorting.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2022-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45710646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
An investigation into the environmental and therapeutic applications of holmium-doped titanium dioxide (Ho-TiO2) nanocatalysts: a kinetic and thermodynamic study of the photocatalytic degradation of Safranin O dye 掺钬二氧化钛(Ho-TiO2)纳米催化剂的环境和治疗应用研究:光催化降解红皂素O染料的动力学和热力学研究
IF 2.1 4区 材料科学 Q2 Engineering Pub Date : 2021-12-17 DOI: 10.1088/2399-1984/ac446c
F. A. Jan, Wajidullah, R. Ullah, Salman, N. Ullah, A. Salam
Titanium dioxide (TiO2) and holmium-doped titanium dioxide (Ho-TiO2) nanoparticles(NPs) were synthesized through a sol gel route. The synthesized NPs were characterized by ultraviolet-visible (UV–Vis) spectroscopy, x-ray diffraction (XRD), energy dispersive x-ray analysis, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and photoluminescence (PL) spectroscopy. DNA binding, antibacterial, hemolysis, and antioxidant assays of the synthesized NPs were also carried out in order to find their therapeutic applications. Successful doping of TiO2 with Ho reduced the bandgap from 3.10 to 2.88 eV. SEM and XRD analysis showed that both TiO2 and Ho-TiO2 NPs exhibit a tetragonal structure and the morphology of the particles improved and agglomeration reduced as a result of doping. The PL emission intensity of TiO2 also reduced with doping. The degradation of Safranin O dye over both the catalysts followed first-order kinetics. The calculated activation energy for the photodegradation of the given dye was found to be 51.7 and 35.2 KJ mol−1 for bare TiO2 and Ho-TiO2 NPs, respectively. After 180 min, 84% and 87% dye degradation was observed using pure TiO2 and Ho-TiO2, respectively. A high percent of degradation of the dye was found at a low concentration (20 ppm) and at optimal dosage (0.035 g) of both the catalysts. The rate of Safranin O dye degradation was found to increase with an increase in temperature and pH of the medium. A DNA binding study revealed that Ho-TiO2 NPs are more capable of binding to human DNA. An antibacterial activity study showed that Ho-TiO2 NPs were more efficient against both gram-negative and gram-positive bacterial strains compared to pure TiO2. Hemolysis assay showed that TiO2 and Ho-TiO2 NPs are non-biocompatible. Ho-TiO2 NPs showed higher anti-oxidant activity compared to bare TiO2.
通过溶胶-凝胶法合成了二氧化钛(TiO2)和掺钬二氧化钛(Ho-TiO2)纳米颗粒(NP)。通过紫外-可见(UV–Vis)光谱、x射线衍射(XRD)、能量色散x射线分析、扫描电子显微镜(SEM)、傅立叶变换红外光谱和光致发光(PL)光谱对合成的纳米颗粒进行了表征。还对合成的NP进行了DNA结合、抗菌、溶血和抗氧化分析,以寻找其治疗应用。成功地用Ho掺杂TiO2将带隙从3.10降低到2.88eV。SEM和XRD分析表明,掺杂使TiO2和Ho-TiO2纳米颗粒都表现出四方结构,颗粒的形貌得到改善,团聚减少。TiO2的PL发射强度也随着掺杂而降低。两种催化剂对番红O染料的降解均遵循一级动力学。对于裸TiO2和Ho-TiO2 NP,给定染料光降解的计算活化能分别为51.7和35.2 KJ mol−1。180分钟后,使用纯TiO2和Ho-TiO2分别观察到84%和87%的染料降解。在两种催化剂的低浓度(20ppm)和最佳剂量(0.035g)下发现染料的高降解率。发现藏红O染料的降解速率随着培养基的温度和pH的增加而增加。一项DNA结合研究表明,Ho-TiO2 NP更能与人类DNA结合。一项抗菌活性研究表明,与纯TiO2相比,Ho-TiO2 NP对革兰氏阴性和革兰氏阳性菌株都更有效。溶血试验表明TiO2和Ho-TiO2纳米粒子是非生物相容性的。与裸露的TiO2相比,Ho-TiO2 NP显示出更高的抗氧化活性。
{"title":"An investigation into the environmental and therapeutic applications of holmium-doped titanium dioxide (Ho-TiO2) nanocatalysts: a kinetic and thermodynamic study of the photocatalytic degradation of Safranin O dye","authors":"F. A. Jan, Wajidullah, R. Ullah, Salman, N. Ullah, A. Salam","doi":"10.1088/2399-1984/ac446c","DOIUrl":"https://doi.org/10.1088/2399-1984/ac446c","url":null,"abstract":"Titanium dioxide (TiO2) and holmium-doped titanium dioxide (Ho-TiO2) nanoparticles(NPs) were synthesized through a sol gel route. The synthesized NPs were characterized by ultraviolet-visible (UV–Vis) spectroscopy, x-ray diffraction (XRD), energy dispersive x-ray analysis, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and photoluminescence (PL) spectroscopy. DNA binding, antibacterial, hemolysis, and antioxidant assays of the synthesized NPs were also carried out in order to find their therapeutic applications. Successful doping of TiO2 with Ho reduced the bandgap from 3.10 to 2.88 eV. SEM and XRD analysis showed that both TiO2 and Ho-TiO2 NPs exhibit a tetragonal structure and the morphology of the particles improved and agglomeration reduced as a result of doping. The PL emission intensity of TiO2 also reduced with doping. The degradation of Safranin O dye over both the catalysts followed first-order kinetics. The calculated activation energy for the photodegradation of the given dye was found to be 51.7 and 35.2 KJ mol−1 for bare TiO2 and Ho-TiO2 NPs, respectively. After 180 min, 84% and 87% dye degradation was observed using pure TiO2 and Ho-TiO2, respectively. A high percent of degradation of the dye was found at a low concentration (20 ppm) and at optimal dosage (0.035 g) of both the catalysts. The rate of Safranin O dye degradation was found to increase with an increase in temperature and pH of the medium. A DNA binding study revealed that Ho-TiO2 NPs are more capable of binding to human DNA. An antibacterial activity study showed that Ho-TiO2 NPs were more efficient against both gram-negative and gram-positive bacterial strains compared to pure TiO2. Hemolysis assay showed that TiO2 and Ho-TiO2 NPs are non-biocompatible. Ho-TiO2 NPs showed higher anti-oxidant activity compared to bare TiO2.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47681698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Nanocrystals of metal halide perovskites and their analogues as scintillators for x-ray detection 金属卤化物钙钛矿纳米晶体及其类似物作为x射线探测闪烁体
IF 2.1 4区 材料科学 Q2 Engineering Pub Date : 2021-12-10 DOI: 10.1088/2399-1984/ac421c
Huiwen Chen, Yunlong Li, Bo Zhao, Jun Ming, D. Xue
Scintillators are widely used for x-ray detection in various fields, such as medical diagnostics, industrial inspection and homeland security. Nanocrystals (NCs) of metal halide perovskites (MHPs) and their analogues showed great advantages as x-ray scintillators due to their cheap manufacturing, fast decay time, and room temperature scintillation from quantum confinement effect. However, there are still many challenges unsolved for further industrialization. Herein, it is necessary to summarize the progress of scintillators based on NCs of MHPs and their analogues. In the first section, the scintillation mechanism and key parameters are outlined. Then, various NCs of MHPs and their analogues used as scintillators are reviewed. Finally, the challenges and outlook are discussed. It is believed that NCs of MHPs and their analogues are favorable for large-area and flexible x-ray detectors.
闪烁体广泛用于医疗诊断、工业检测和国土安全等各个领域的x射线检测。金属卤化物钙钛矿(MHP)及其类似物的纳米晶体(NCs)由于其制造成本低、衰变时间快以及量子限制效应产生的室温闪烁而显示出作为x射线闪烁体的巨大优势。然而,进一步工业化仍有许多挑战尚未解决。在此,有必要总结基于MHP及其类似物的NCs的闪烁体的研究进展。在第一节中,概述了闪烁机制和关键参数。然后,对MHP的各种NCs及其类似物用作闪烁体进行了综述。最后,讨论了挑战和展望。人们认为MHP及其类似物的NCs有利于大面积和柔性的x射线探测器。
{"title":"Nanocrystals of metal halide perovskites and their analogues as scintillators for x-ray detection","authors":"Huiwen Chen, Yunlong Li, Bo Zhao, Jun Ming, D. Xue","doi":"10.1088/2399-1984/ac421c","DOIUrl":"https://doi.org/10.1088/2399-1984/ac421c","url":null,"abstract":"Scintillators are widely used for x-ray detection in various fields, such as medical diagnostics, industrial inspection and homeland security. Nanocrystals (NCs) of metal halide perovskites (MHPs) and their analogues showed great advantages as x-ray scintillators due to their cheap manufacturing, fast decay time, and room temperature scintillation from quantum confinement effect. However, there are still many challenges unsolved for further industrialization. Herein, it is necessary to summarize the progress of scintillators based on NCs of MHPs and their analogues. In the first section, the scintillation mechanism and key parameters are outlined. Then, various NCs of MHPs and their analogues used as scintillators are reviewed. Finally, the challenges and outlook are discussed. It is believed that NCs of MHPs and their analogues are favorable for large-area and flexible x-ray detectors.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49113038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Biogenic synthesis of nano-sulfur using Punica granatum fruit peel extract with enhanced antimicrobial activities for accelerating wound healing 利用具有增强抗菌活性的石榴皮提取物生物合成纳米硫促进伤口愈合
IF 2.1 4区 材料科学 Q2 Engineering Pub Date : 2021-12-01 DOI: 10.1088/2399-1984/ac279b
K. Samrat, M. Chandraprabha, R. Hari Krishna, R. Sharath, B. Harish
Microbial wound infections leading to secondary complications in wound healing has resulted in high demand for therapeutic drugs with improved efficacy. Despite achieving enhanced bio-activity and higher bioavailability compared to its bulk form, nano-sulfur (SNP) has been explored to a very limited extent for wound healing applications. In this work, we prepare biogenic SNP (SNP-B) via simple biogenic technique using pomegranate (Punica granatum) peel extract and demonstrate its antimicrobial and wound healing activity. The SNP-B was characterized using powder x-ray diffractometer, FESEM, transmission electron microscopy and Raman spectroscopy. Different wound models (excision, incision, dead space and burn) were used to assess the wound healing potential of SNP-B. The 2% (w/w) SNP-B treated group exhibited enhanced wound contraction rate (excision wound, 99.62 ± 0.59%; burn wound, 99.46 ± 0.59%), breaking strength (393.2 ± 10.87 g cm−2), and granulation tissue weight (166.8 ± 9.45 mg) compared to the control group (excision wound, 84.24 ± 2.78%; burn wound, 90.58 ± 3.2%; breaking strength, 241.3 ± 16.11 g cm−2; granulation tissue weight, 91.17 ± 7.28 mg). The efficacy of 2% (w/w) SNP-B was comparable to that of standard (5% w/w povidone-iodine ointment) in all the wound models analyzed. The SNP-B showed enhanced antibacterial activity with a MIC value of 90, 80, 80, and 60 μg ml−1 for Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis and Staphylococcus aureus, respectively. The results obtained prove the potential of SNP-B as a multifunctional therapeutic agent for topical applications.
微生物伤口感染导致伤口愈合中的继发并发症,导致对疗效提高的治疗药物的高需求。尽管与本体形式相比,纳米硫具有更强的生物活性和更高的生物利用度,但其在伤口愈合应用中的探索程度非常有限。在这项工作中,我们使用石榴皮提取物通过简单的生物技术制备了生物SNP(SNP-B),并证明了其抗菌和伤口愈合活性。利用粉末x射线衍射仪、FESEM、透射电子显微镜和拉曼光谱对SNP-B进行了表征。使用不同的伤口模型(切除、切口、死区和烧伤)来评估SNP-B的伤口愈合潜力。2%(w/w)SNP-B治疗组的伤口收缩率(切除伤口,99.62±0.59%;烧伤伤口,99.46±0.59%)、断裂强度(393.2±10.87 g cm−2)、,肉芽组织重量(166.8±9.45 mg)与对照组相比(切除伤口84.24±2.78%;烧伤伤口90.58±3.2%;断裂强度241.3±16.11 g cm−2;肉芽组织质量91.17±7.28 mg)。在所有分析的伤口模型中,2%(w/w)SNP-B的疗效与标准(5%w/w聚维酮碘软膏)相当。SNP-B对铜绿假单胞菌、大肠杆菌、枯草芽孢杆菌和金黄色葡萄球菌的MIC值分别为90、80、80和60μg ml−1,显示出增强的抗菌活性。所获得的结果证明了SNP-B作为局部应用的多功能治疗剂的潜力。
{"title":"Biogenic synthesis of nano-sulfur using Punica granatum fruit peel extract with enhanced antimicrobial activities for accelerating wound healing","authors":"K. Samrat, M. Chandraprabha, R. Hari Krishna, R. Sharath, B. Harish","doi":"10.1088/2399-1984/ac279b","DOIUrl":"https://doi.org/10.1088/2399-1984/ac279b","url":null,"abstract":"Microbial wound infections leading to secondary complications in wound healing has resulted in high demand for therapeutic drugs with improved efficacy. Despite achieving enhanced bio-activity and higher bioavailability compared to its bulk form, nano-sulfur (SNP) has been explored to a very limited extent for wound healing applications. In this work, we prepare biogenic SNP (SNP-B) via simple biogenic technique using pomegranate (Punica granatum) peel extract and demonstrate its antimicrobial and wound healing activity. The SNP-B was characterized using powder x-ray diffractometer, FESEM, transmission electron microscopy and Raman spectroscopy. Different wound models (excision, incision, dead space and burn) were used to assess the wound healing potential of SNP-B. The 2% (w/w) SNP-B treated group exhibited enhanced wound contraction rate (excision wound, 99.62 ± 0.59%; burn wound, 99.46 ± 0.59%), breaking strength (393.2 ± 10.87 g cm−2), and granulation tissue weight (166.8 ± 9.45 mg) compared to the control group (excision wound, 84.24 ± 2.78%; burn wound, 90.58 ± 3.2%; breaking strength, 241.3 ± 16.11 g cm−2; granulation tissue weight, 91.17 ± 7.28 mg). The efficacy of 2% (w/w) SNP-B was comparable to that of standard (5% w/w povidone-iodine ointment) in all the wound models analyzed. The SNP-B showed enhanced antibacterial activity with a MIC value of 90, 80, 80, and 60 μg ml−1 for Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis and Staphylococcus aureus, respectively. The results obtained prove the potential of SNP-B as a multifunctional therapeutic agent for topical applications.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44367413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Activation of two dopants, Bi and Er in δ-doped layer in Si crystal Bi和Er两种掺杂剂在硅晶体δ掺杂层中的活化
IF 2.1 4区 材料科学 Q2 Engineering Pub Date : 2021-12-01 DOI: 10.1088/2399-1984/ac421d
K. Murata, S. Yagi, Takashi Kanazawa, S. Tsubomatsu, C. Kirkham, K. Nittoh, D. Bowler, K. Miki
Conventional doping processes are no longer viable for realizing extreme structures, such as a δ-doped layer with multiple elements, such as the heavy Bi, within the silicon crystal. Here, we demonstrate the formation of (Bi + Er)-δ-doped layer based on surface nanostructures, i.e. Bi nanolines, as the dopant source by molecular beam epitaxy. The concentration of both Er and Bi dopants is controlled by adjusting the amount of deposited Er atoms, the growth temperature during Si capping and surfactant techniques. Subsequent post-annealing processing is essential in this doping technique to obtain activated dopants in the δ-doped layer. Electric transport measurement and photoluminescence study revealed that both Bi and Er dopants were activated after post-annealing at moderate temperature.
传统的掺杂工艺不再适用于实现极端结构,例如硅晶体中含有多种元素(如重Bi)的δ掺杂层。在这里,我们展示了基于表面纳米结构(即Bi纳米线)作为掺杂源的分子束外延形成(Bi + Er) δ掺杂层。通过调整沉积Er原子的数量、Si封盖过程中的生长温度和表面活性剂技术来控制Er和Bi掺杂剂的浓度。在该掺杂技术中,为了在δ掺杂层中获得活化的掺杂,后续的后退火处理是必不可少的。电输运和光致发光研究表明,Bi和Er掺杂剂在中等温度下退火后均被活化。
{"title":"Activation of two dopants, Bi and Er in δ-doped layer in Si crystal","authors":"K. Murata, S. Yagi, Takashi Kanazawa, S. Tsubomatsu, C. Kirkham, K. Nittoh, D. Bowler, K. Miki","doi":"10.1088/2399-1984/ac421d","DOIUrl":"https://doi.org/10.1088/2399-1984/ac421d","url":null,"abstract":"Conventional doping processes are no longer viable for realizing extreme structures, such as a δ-doped layer with multiple elements, such as the heavy Bi, within the silicon crystal. Here, we demonstrate the formation of (Bi + Er)-δ-doped layer based on surface nanostructures, i.e. Bi nanolines, as the dopant source by molecular beam epitaxy. The concentration of both Er and Bi dopants is controlled by adjusting the amount of deposited Er atoms, the growth temperature during Si capping and surfactant techniques. Subsequent post-annealing processing is essential in this doping technique to obtain activated dopants in the δ-doped layer. Electric transport measurement and photoluminescence study revealed that both Bi and Er dopants were activated after post-annealing at moderate temperature.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46133403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-atom catalyst cathodes for lithium–oxygen batteries: a review 锂氧电池单原子催化剂阴极研究进展
IF 2.1 4区 材料科学 Q2 Engineering Pub Date : 2021-11-30 DOI: 10.1088/2399-1984/ac3ec1
X. Lei, Bo Liu, Payam Ahmadian Koudakan, Hongge Pan, Yitai Qian, Gongming Wang
Recently, single-atom catalysts (SACs) have been found to be promising candidates for oxygen electrocatalysis in rechargeable lithium–oxygen batteries (LOBs) owing to their high oxygen electrocatalytic activity and high stability, which originates from their unique coordination environments and electronic properties. As a new type of catalyst for LOBs, the advancements have never been reviewed and discussed comprehensively. Herein, breakthroughs in the design of various types of SACs as cathode catalysts for LOBs are summarized, including Co-based, Ru-based, and other types of SACs. Moreover, considerable emphasis is placed on the correlations between the structural feature of the SAC active sites and the electrocatalytic performance of LOBs. Finally, an overview and challenges of SACs for practical LOBs are also provided. This review provides an intensive understanding of SACs for designing efficient oxygen electrocatalysis and offers useful guidelines for the development of SACs in the field of LOBs.
最近,单原子催化剂(SAC)被发现是可再充电锂-氧电池(LOBs)中氧电催化的有前途的候选者,因为它们具有高的氧电催化活性和高稳定性,这源于它们独特的配位环境和电子性质。作为一种新型的LOB催化剂,其进展从未得到全面的回顾和讨论。本文总结了在设计各种类型的SAC作为LOB的阴极催化剂方面的突破,包括Co基、Ru基和其他类型的SAC。此外,相当重视SAC活性位点的结构特征与LOB的电催化性能之间的相关性。最后,还提供了SAC对实际LOB的概述和挑战。这篇综述为设计有效的氧电催化提供了对SAC的深入理解,并为在LOB领域开发SAC提供了有用的指导。
{"title":"Single-atom catalyst cathodes for lithium–oxygen batteries: a review","authors":"X. Lei, Bo Liu, Payam Ahmadian Koudakan, Hongge Pan, Yitai Qian, Gongming Wang","doi":"10.1088/2399-1984/ac3ec1","DOIUrl":"https://doi.org/10.1088/2399-1984/ac3ec1","url":null,"abstract":"Recently, single-atom catalysts (SACs) have been found to be promising candidates for oxygen electrocatalysis in rechargeable lithium–oxygen batteries (LOBs) owing to their high oxygen electrocatalytic activity and high stability, which originates from their unique coordination environments and electronic properties. As a new type of catalyst for LOBs, the advancements have never been reviewed and discussed comprehensively. Herein, breakthroughs in the design of various types of SACs as cathode catalysts for LOBs are summarized, including Co-based, Ru-based, and other types of SACs. Moreover, considerable emphasis is placed on the correlations between the structural feature of the SAC active sites and the electrocatalytic performance of LOBs. Finally, an overview and challenges of SACs for practical LOBs are also provided. This review provides an intensive understanding of SACs for designing efficient oxygen electrocatalysis and offers useful guidelines for the development of SACs in the field of LOBs.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46627499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Novel ternary metal oxide nanoparticles (La2Cu0.8Zn0.2O4) as a potential photocatalyst for visible light photocatalytic degradation of methylene blue and desulfurization of dibenzothiophene 新型三元金属氧化物纳米粒子La2Cu0.8Zn0.2O4作为可见光光催化降解亚甲基蓝和二苯并噻吩脱硫的潜在光催化剂
IF 2.1 4区 材料科学 Q2 Engineering Pub Date : 2021-11-25 DOI: 10.1088/2399-1984/ac3d6e
Molood Barmala, M. Behnood
In this work we present the preparation of novel ternary metal oxide nanoparticles, La2Cu0.8Zn0.2O4 (LCZO), using a simple co-precipitation method. The crystalline structure, morphology and composition of the prepared LCZO nanoparticles were characterized by x-ray diffraction, scanning electron microscopy and energy-dispersive x-ray analysis. The diffuse reflectance spectrum investigation showed that LCZO nanoparticles have considerable light absorption in the visible light region. Also, the LCZO nanoparticles possess a band-gap energy of 2.82 eV. To investigate the visible light photocatalytic potential of the prepared LCZO nanoparticles, two photocatalytic reactions were conducted, namely degradation of methylene blue (MB) solution and desulfurization of dibenzothiophene (DBT). In the presence of a 3:1 molar ratio of H2O2/DBT, a high photocatalytic desulfurization rate of DBT (93.7%) was obtained over 0.2 g of LCZO photocatalyst. In addition, the photocatalytic degradation rate of MB solution was 91.4%. The mechanisms of both photocatalytic reactions were studied using different radical scavenging agents, which showed that hydroxyl radicals are responsible for highly efficient desulfurization and degradation reactions. Moreover, reusability experiments reveal that the prepared LCZO photocatalyst has great stability and recyclability for both desulfurization of DBT and degradation of MB after six reaction cycles.
本文采用简单共沉淀法制备了新型三元金属氧化物纳米粒子la2cu0.8 zn0.2 2o4 (LCZO)。采用x射线衍射、扫描电镜和能量色散x射线分析对制备的LCZO纳米颗粒的晶体结构、形貌和组成进行了表征。漫反射光谱研究表明,LCZO纳米颗粒在可见光区有相当大的光吸收。此外,LCZO纳米颗粒具有2.82 eV的带隙能量。为了考察所制备的LCZO纳米颗粒的可见光催化性能,进行了亚甲基蓝(MB)溶液降解和二苯并噻吩(DBT)脱硫两种光催化反应。在H2O2/DBT摩尔比为3:1的条件下,0.2 g LCZO光催化剂对DBT的光催化脱硫率高达93.7%。此外,光催化对MB溶液的降解率为91.4%。用不同的自由基清除剂对两种光催化反应的机理进行了研究,结果表明,羟基自由基具有高效的脱硫和降解反应。重复使用实验表明,制备的LCZO光催化剂经过6个反应循环后,对DBT的脱硫和MB的降解均具有良好的稳定性和可回收性。
{"title":"Novel ternary metal oxide nanoparticles (La2Cu0.8Zn0.2O4) as a potential photocatalyst for visible light photocatalytic degradation of methylene blue and desulfurization of dibenzothiophene","authors":"Molood Barmala, M. Behnood","doi":"10.1088/2399-1984/ac3d6e","DOIUrl":"https://doi.org/10.1088/2399-1984/ac3d6e","url":null,"abstract":"In this work we present the preparation of novel ternary metal oxide nanoparticles, La2Cu0.8Zn0.2O4 (LCZO), using a simple co-precipitation method. The crystalline structure, morphology and composition of the prepared LCZO nanoparticles were characterized by x-ray diffraction, scanning electron microscopy and energy-dispersive x-ray analysis. The diffuse reflectance spectrum investigation showed that LCZO nanoparticles have considerable light absorption in the visible light region. Also, the LCZO nanoparticles possess a band-gap energy of 2.82 eV. To investigate the visible light photocatalytic potential of the prepared LCZO nanoparticles, two photocatalytic reactions were conducted, namely degradation of methylene blue (MB) solution and desulfurization of dibenzothiophene (DBT). In the presence of a 3:1 molar ratio of H2O2/DBT, a high photocatalytic desulfurization rate of DBT (93.7%) was obtained over 0.2 g of LCZO photocatalyst. In addition, the photocatalytic degradation rate of MB solution was 91.4%. The mechanisms of both photocatalytic reactions were studied using different radical scavenging agents, which showed that hydroxyl radicals are responsible for highly efficient desulfurization and degradation reactions. Moreover, reusability experiments reveal that the prepared LCZO photocatalyst has great stability and recyclability for both desulfurization of DBT and degradation of MB after six reaction cycles.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46645511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Study of the tribological properties of nano lubricating oil blends for diesel engines 柴油机用纳米润滑油共混物的摩擦学性能研究
IF 2.1 4区 材料科学 Q2 Engineering Pub Date : 2021-11-24 DOI: 10.1088/2399-1984/ac3ccd
Xin Kuang, Bifeng Yin, Xiping Yang, H. Jia, Bo Xu
The aim of this paper is to evaluate and compare the tribological properties of lubricating oil blends with added nano graphene and nano cerium oxide (CeO2) on the key friction pairs of diesel engines. Dispersion stability is the premise of the study of tribological properties. In this paper, nano CeO2 particles were self-made and high-quality nano graphene was purchased. The dispersion stability of the two nanomaterials in lubricating oil was studied after the same modification. According to the working conditions of the cylinder liner and piston ring, friction and wear tests of the lubricating oil blends containing the modified nanomaterials were carried out at different temperatures. The results showed that both nanomaterials were successfully modified with oleic acid and stearic acid. The dispersion stability of the modified nanomaterials in lubricating oil was improved. The dispersion stability of the lubricating oil blends with graphene before and after modification was slightly higher than that of lubricating oil blends with CeO2 before and after modification. At high temperature, the anti-friction properties of the two nano lubricating oil blends were similar. At ambient temperature, lubricating oil blends containing modified CeO2 did not play a role in reducing friction, while lubricating oil blends with modified graphene had the effect of reducing friction. Whether at ambient temperature or high temperature, the anti-wear property when lubricated with lubricating oil blends with modified CeO2 within the right concentration range was better than that when lubricated with lubricating oil blends containing modified graphene.
本文的目的是评估和比较添加纳米石墨烯和纳米氧化铈(CeO2)的润滑油在柴油机关键摩擦副上的摩擦学性能。分散稳定性是研究摩擦学性能的前提。本文自制了纳米CeO2颗粒,并购买了高质量的纳米石墨烯。研究了两种纳米材料在相同改性后在润滑油中的分散稳定性。根据缸套和活塞环的工作条件,对含有改性纳米材料的润滑油混合物在不同温度下进行了摩擦磨损试验。结果表明,油酸和硬脂酸对两种纳米材料都进行了成功的改性。改性纳米材料在润滑油中的分散稳定性得到改善。改性前后石墨烯润滑油的分散稳定性略高于改性前后CeO2润滑油。在高温下,两种纳米润滑油共混物的抗摩擦性能相似。在环境温度下,含有改性CeO2的润滑油混合物没有起到减摩作用,而含有改性石墨烯的润滑油共混物具有减摩作用。无论在环境温度还是高温下,在合适的浓度范围内,用改性CeO2的润滑油共混物润滑时的抗磨性能都优于用改性石墨烯的润滑油润滑时的耐磨性能。
{"title":"Study of the tribological properties of nano lubricating oil blends for diesel engines","authors":"Xin Kuang, Bifeng Yin, Xiping Yang, H. Jia, Bo Xu","doi":"10.1088/2399-1984/ac3ccd","DOIUrl":"https://doi.org/10.1088/2399-1984/ac3ccd","url":null,"abstract":"The aim of this paper is to evaluate and compare the tribological properties of lubricating oil blends with added nano graphene and nano cerium oxide (CeO2) on the key friction pairs of diesel engines. Dispersion stability is the premise of the study of tribological properties. In this paper, nano CeO2 particles were self-made and high-quality nano graphene was purchased. The dispersion stability of the two nanomaterials in lubricating oil was studied after the same modification. According to the working conditions of the cylinder liner and piston ring, friction and wear tests of the lubricating oil blends containing the modified nanomaterials were carried out at different temperatures. The results showed that both nanomaterials were successfully modified with oleic acid and stearic acid. The dispersion stability of the modified nanomaterials in lubricating oil was improved. The dispersion stability of the lubricating oil blends with graphene before and after modification was slightly higher than that of lubricating oil blends with CeO2 before and after modification. At high temperature, the anti-friction properties of the two nano lubricating oil blends were similar. At ambient temperature, lubricating oil blends containing modified CeO2 did not play a role in reducing friction, while lubricating oil blends with modified graphene had the effect of reducing friction. Whether at ambient temperature or high temperature, the anti-wear property when lubricated with lubricating oil blends with modified CeO2 within the right concentration range was better than that when lubricated with lubricating oil blends containing modified graphene.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43311682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamics of light-induced charge transfer between carbon nanotube and CdSe/CdS core/shell nanocrystals 碳纳米管与CdSe/CdS核/壳纳米晶体间光诱导电荷转移动力学
IF 2.1 4区 材料科学 Q2 Engineering Pub Date : 2021-11-24 DOI: 10.1088/2399-1984/ac3ccc
G. Zeevi, Joanna Dehnel, Adam K. Budniak, Y. Milyutin, G. Ankonina, H. Haick, E. Lifshitz, Y. Yaish
The integration of semiconducting colloidal nanocrystals (NCs) with carbon nanotubes (CNTs) in a single device presents a unique platform that combines optical flexibility with high charge carrying capability. These qualities are desirable in many applications such as photovoltaic cells, photocatalysis, and light sensors. Here, we present hybrid devices that incorporate various CdSe/CdS core/shell NCs, such as seeded quantum dots and asymmetric seeded nanorods (a-sNRs), with a single-wall CNT in a field-effect transistor geometry. We used electrical measurements to probe a light-induced charge transfer (LICT) between the CdSe/CdS NCs and the CNT. We investigate the effect of gate voltage on the LICT magnitude and temporal characteristics. Surprisingly, the measured photo-response depends on the gate voltage, and we observe both electrons and holes transfer from the a-sNRs to the CNT. Furthermore, a comparison between LICT measurements on different devices with different CNTs and NC types reveals that the charge transfer time is directly proportional to the shell-thickness around the CdSe core and inversely correlated with the NCs size. The recovery of the charge trapped inside the CdSe/CdS NCs is characterized by two distinct fast and slow relaxation times, which depend on the NCs size and CNT type. Although, the charge relaxation time is similar between the symmetric QDs and the asymmetric sNRs, the overall percentage of the remaining charge in the QDs is significantly larger than in the sNRs. Understanding both gate voltage and NCs size effect on the LICT processes can optimize the performance of optoelectronic devices.
半导体胶体纳米晶体(NCs)与碳纳米管(CNTs)在单一器件中的集成提供了一个独特的平台,结合了光学灵活性和高载电荷能力。这些特性在光伏电池、光催化和光传感器等许多应用中都是理想的。在这里,我们提出了混合器件,结合了各种CdSe/CdS核/壳NCs,如种子量子点和非对称种子纳米棒(a- snrs),具有场效应晶体管几何形状的单壁碳纳米管。我们使用电测量来探测CdSe/CdS纳米碳纳米管和碳纳米管之间的光诱导电荷转移(LICT)。我们研究了栅极电压对LICT幅值和时间特性的影响。令人惊讶的是,测量的光响应取决于栅极电压,我们观察到电子和空穴从a- snr转移到碳纳米管。此外,在不同碳纳米管和碳纳米管类型的器件上,电荷转移时间与CdSe核心周围的壳层厚度成正比,与碳纳米管尺寸成反比。捕获在CdSe/CdS纳米管内的电荷的恢复具有两个不同的快弛豫时间和慢弛豫时间,这取决于纳米管的大小和碳纳米管的类型。尽管对称量子点和非对称信噪比的电荷弛豫时间相似,但量子点中剩余电荷的总体百分比明显大于信噪比。了解栅极电压和nc尺寸对LICT工艺的影响可以优化光电器件的性能。
{"title":"Dynamics of light-induced charge transfer between carbon nanotube and CdSe/CdS core/shell nanocrystals","authors":"G. Zeevi, Joanna Dehnel, Adam K. Budniak, Y. Milyutin, G. Ankonina, H. Haick, E. Lifshitz, Y. Yaish","doi":"10.1088/2399-1984/ac3ccc","DOIUrl":"https://doi.org/10.1088/2399-1984/ac3ccc","url":null,"abstract":"The integration of semiconducting colloidal nanocrystals (NCs) with carbon nanotubes (CNTs) in a single device presents a unique platform that combines optical flexibility with high charge carrying capability. These qualities are desirable in many applications such as photovoltaic cells, photocatalysis, and light sensors. Here, we present hybrid devices that incorporate various CdSe/CdS core/shell NCs, such as seeded quantum dots and asymmetric seeded nanorods (a-sNRs), with a single-wall CNT in a field-effect transistor geometry. We used electrical measurements to probe a light-induced charge transfer (LICT) between the CdSe/CdS NCs and the CNT. We investigate the effect of gate voltage on the LICT magnitude and temporal characteristics. Surprisingly, the measured photo-response depends on the gate voltage, and we observe both electrons and holes transfer from the a-sNRs to the CNT. Furthermore, a comparison between LICT measurements on different devices with different CNTs and NC types reveals that the charge transfer time is directly proportional to the shell-thickness around the CdSe core and inversely correlated with the NCs size. The recovery of the charge trapped inside the CdSe/CdS NCs is characterized by two distinct fast and slow relaxation times, which depend on the NCs size and CNT type. Although, the charge relaxation time is similar between the symmetric QDs and the asymmetric sNRs, the overall percentage of the remaining charge in the QDs is significantly larger than in the sNRs. Understanding both gate voltage and NCs size effect on the LICT processes can optimize the performance of optoelectronic devices.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47890798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncertainty quantification and prediction for mechanical properties of graphene aerogels via Gaussian process metamodels 基于高斯过程超模型的石墨烯气凝胶力学性能不确定度量化与预测
IF 2.1 4区 材料科学 Q2 Engineering Pub Date : 2021-11-23 DOI: 10.1088/2399-1984/ac3c8f
Bowen Zheng, Zeyu Zheng, Grace X. Gu
Graphene aerogels (GAs), a special class of 3D graphene assemblies, are well known for their exceptional combination of high strength, lightweightness, and high porosity. However, due to microstructural randomness, the mechanical properties of GAs are also highly stochastic, an issue that has been observed but insufficiently addressed. In this work, we develop Gaussian process metamodels to not only predict important mechanical properties of GAs but also quantify their uncertainties. Using the molecular dynamics simulation technique, GAs are assembled from randomly distributed graphene flakes and spherical inclusions, and are subsequently subject to a quasi-static uniaxial tensile load to deduce mechanical properties. Results show that given the same density, mechanical properties such as the Young’s modulus and the ultimate tensile strength can vary substantially. Treating density, Young’s modulus, and ultimate tensile strength as functions of the inclusion size, and using the simulated GA results as training data, we build Gaussian process metamodels that can efficiently predict the properties of unseen GAs. In addition, statistically valid confidence intervals centered around the predictions are established. This metamodel approach is particularly beneficial when the data acquisition requires expensive experiments or computation, which is the case for GA simulations. The present research quantifies the uncertain mechanical properties of GAs, which may shed light on the statistical analysis of novel nanomaterials of a broad variety.
石墨烯气凝胶(GAs)是一类特殊的3D石墨烯组件,以其高强度、轻量化和高孔隙率的独特组合而闻名。然而,由于微观结构的随机性,气体的力学性能也是高度随机的,这是一个已经被观察到但尚未充分解决的问题。在这项工作中,我们建立了高斯过程元模型,不仅可以预测气体的重要力学性能,还可以量化它们的不确定性。利用分子动力学模拟技术,将随机分布的石墨烯薄片和球形夹杂物组装在一起,然后施加准静态单轴拉伸载荷来推断其力学性能。结果表明,在相同的密度下,杨氏模量和极限抗拉强度等力学性能会发生很大的变化。将密度、杨氏模量和极限抗拉强度作为夹杂物大小的函数,并将模拟GA结果作为训练数据,建立高斯过程元模型,该模型可以有效地预测未见气体的性质。此外,建立了以预测为中心的统计有效置信区间。当数据采集需要昂贵的实验或计算时,这种元模型方法特别有用,这就是遗传算法模拟的情况。本研究量化了气体的不确定力学性能,这可能有助于对各种新型纳米材料的统计分析。
{"title":"Uncertainty quantification and prediction for mechanical properties of graphene aerogels via Gaussian process metamodels","authors":"Bowen Zheng, Zeyu Zheng, Grace X. Gu","doi":"10.1088/2399-1984/ac3c8f","DOIUrl":"https://doi.org/10.1088/2399-1984/ac3c8f","url":null,"abstract":"Graphene aerogels (GAs), a special class of 3D graphene assemblies, are well known for their exceptional combination of high strength, lightweightness, and high porosity. However, due to microstructural randomness, the mechanical properties of GAs are also highly stochastic, an issue that has been observed but insufficiently addressed. In this work, we develop Gaussian process metamodels to not only predict important mechanical properties of GAs but also quantify their uncertainties. Using the molecular dynamics simulation technique, GAs are assembled from randomly distributed graphene flakes and spherical inclusions, and are subsequently subject to a quasi-static uniaxial tensile load to deduce mechanical properties. Results show that given the same density, mechanical properties such as the Young’s modulus and the ultimate tensile strength can vary substantially. Treating density, Young’s modulus, and ultimate tensile strength as functions of the inclusion size, and using the simulated GA results as training data, we build Gaussian process metamodels that can efficiently predict the properties of unseen GAs. In addition, statistically valid confidence intervals centered around the predictions are established. This metamodel approach is particularly beneficial when the data acquisition requires expensive experiments or computation, which is the case for GA simulations. The present research quantifies the uncertain mechanical properties of GAs, which may shed light on the statistical analysis of novel nanomaterials of a broad variety.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46786747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Nano Futures
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1