M. E. Gastaldello, C. Agnini, T. Westerhold, A. Drury, R. Sutherland, M. Drake, A. Lam, G. Dickens, E. Dallanave, S. Burns, L. Alegret
The Late Miocene‐Early Pliocene Biogenic Bloom (∼9–3.5 Ma) was a paleoceanographic phenomenon defined by anomalously high accumulations of biological components at multiple open ocean sites, especially in certain regions of the Indian, and Pacific oceans. Its temporal and spatial extent with available information leaves fundamental questions about driving forces and responses unanswered. In this work, we focus on the middle part of the Biogenic Bloom (7.4–4.5 Ma) at International Ocean Discovery Program Site U1506 in the Tasman Sea, where we provide an integrated age model based on orbital tuning of the Natural Gamma Radiation, benthic foraminiferal oxygen isotopes, and calcareous nannofossil biostratigraphy. Benthic foraminiferal assemblages suggest changes in deep water oxygen concentration and seafloor nutrient supply during generally high export productivity conditions. From 7.4 to 6.7 Ma, seafloor conditions were characterized by episodic nutrient supply, perhaps related to seasonal phytoplankton blooms. From 6.7 to 4.5 Ma, the regime shifted to a more stable interval characterized by eutrophic and dysoxic conditions. Combined with seismic data, a regional change in paleoceanography is inferred at around 6.7 Ma, from stronger and well‐oxygenated bottom currents to weaker, oxygen‐depleted bottom currents. Our results support the hypothesis that the Biogenic Bloom was a complex, multiphase phenomenon driven by changes in ocean currents, rather than a single uniform period of sustained sea surface water productivity. Highly resolved studies are thus fundamental to its understanding and the disentanglement of local, regional, and global imprints.
{"title":"The Late Miocene‐Early Pliocene Biogenic Bloom: An Integrated Study in the Tasman Sea","authors":"M. E. Gastaldello, C. Agnini, T. Westerhold, A. Drury, R. Sutherland, M. Drake, A. Lam, G. Dickens, E. Dallanave, S. Burns, L. Alegret","doi":"10.1029/2022PA004565","DOIUrl":"https://doi.org/10.1029/2022PA004565","url":null,"abstract":"The Late Miocene‐Early Pliocene Biogenic Bloom (∼9–3.5 Ma) was a paleoceanographic phenomenon defined by anomalously high accumulations of biological components at multiple open ocean sites, especially in certain regions of the Indian, and Pacific oceans. Its temporal and spatial extent with available information leaves fundamental questions about driving forces and responses unanswered. In this work, we focus on the middle part of the Biogenic Bloom (7.4–4.5 Ma) at International Ocean Discovery Program Site U1506 in the Tasman Sea, where we provide an integrated age model based on orbital tuning of the Natural Gamma Radiation, benthic foraminiferal oxygen isotopes, and calcareous nannofossil biostratigraphy. Benthic foraminiferal assemblages suggest changes in deep water oxygen concentration and seafloor nutrient supply during generally high export productivity conditions. From 7.4 to 6.7 Ma, seafloor conditions were characterized by episodic nutrient supply, perhaps related to seasonal phytoplankton blooms. From 6.7 to 4.5 Ma, the regime shifted to a more stable interval characterized by eutrophic and dysoxic conditions. Combined with seismic data, a regional change in paleoceanography is inferred at around 6.7 Ma, from stronger and well‐oxygenated bottom currents to weaker, oxygen‐depleted bottom currents. Our results support the hypothesis that the Biogenic Bloom was a complex, multiphase phenomenon driven by changes in ocean currents, rather than a single uniform period of sustained sea surface water productivity. Highly resolved studies are thus fundamental to its understanding and the disentanglement of local, regional, and global imprints.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41937705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. R. Hall, Matthew S. Allison, Max T. Papadopoulos, D. Barfod, S. Jones
The Barmur Group (informally Tjörnes beds) sedimentary succession of northern Iceland is key to reconstructing the opening of the Bering Strait oceanic gateway because these rocks record migration of bivalve molluscs from the Pacific to the Atlantic via the Arctic. However, the timing of the migration event is poorly constrained owing to a lack of reliable absolute ages. To address this problem, we present the first Ar‐Ar radiometric dates from four basaltic lavas that underlie, are intercalated with, and overlie the Barmur Group, and integrate them with existing paleomagnetic records. We show that the Barmur Group has a latest Miocene to early Pliocene age range (c. 6.0–4.4 Ma; C3r–C3n.2n), older than all previous age models. Thus, the Barmur Group does not record the mid‐Piacenzian Warm Period, contra some previous suggestions. Abundant Pacific bivalve molluscs appeared in the Barmur Group during subchrons C3n.4n–C3n.3r at 5.235–4.896 Ma, over 1.3 million years earlier than previously suggested. Appearance of Pacific bivalves in the northern Atlantic occurred shortly after the 5.6–5.4 Ma age previously inferred for first appearance of Arctic bivalves in the Pacific. Thus, our data suggest that first opening of the Bering Strait gateway by the latest Miocene (c. 5.5 Ma) was soon followed by bidirectional trans‐Arctic faunal exchange, and argue against a hypothesized two‐stage faunal exchange process spanning c. 2 million years. Our results also confirm that first opening of the Bering Strait gateway was not directly associated with the growth of large northern hemisphere icesheets, which occurred several million years later.
{"title":"Timing and Consequences of Bering Strait Opening: New Insights From 40Ar/39Ar Dating of the Barmur Group (Tjörnes Beds), Northern Iceland","authors":"J. R. Hall, Matthew S. Allison, Max T. Papadopoulos, D. Barfod, S. Jones","doi":"10.1029/2022PA004539","DOIUrl":"https://doi.org/10.1029/2022PA004539","url":null,"abstract":"The Barmur Group (informally Tjörnes beds) sedimentary succession of northern Iceland is key to reconstructing the opening of the Bering Strait oceanic gateway because these rocks record migration of bivalve molluscs from the Pacific to the Atlantic via the Arctic. However, the timing of the migration event is poorly constrained owing to a lack of reliable absolute ages. To address this problem, we present the first Ar‐Ar radiometric dates from four basaltic lavas that underlie, are intercalated with, and overlie the Barmur Group, and integrate them with existing paleomagnetic records. We show that the Barmur Group has a latest Miocene to early Pliocene age range (c. 6.0–4.4 Ma; C3r–C3n.2n), older than all previous age models. Thus, the Barmur Group does not record the mid‐Piacenzian Warm Period, contra some previous suggestions. Abundant Pacific bivalve molluscs appeared in the Barmur Group during subchrons C3n.4n–C3n.3r at 5.235–4.896 Ma, over 1.3 million years earlier than previously suggested. Appearance of Pacific bivalves in the northern Atlantic occurred shortly after the 5.6–5.4 Ma age previously inferred for first appearance of Arctic bivalves in the Pacific. Thus, our data suggest that first opening of the Bering Strait gateway by the latest Miocene (c. 5.5 Ma) was soon followed by bidirectional trans‐Arctic faunal exchange, and argue against a hypothesized two‐stage faunal exchange process spanning c. 2 million years. Our results also confirm that first opening of the Bering Strait gateway was not directly associated with the growth of large northern hemisphere icesheets, which occurred several million years later.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46991264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Issue Information","authors":"","doi":"10.1002/palo.21174","DOIUrl":"https://doi.org/10.1002/palo.21174","url":null,"abstract":"No abstract is available for this article.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43938899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Koffman, S. Goldstein, G. Winckler, M. Kaplan, L. Bolge, P. Biscaye
The Southern Hemisphere westerly winds (SWW) play a critical role in global climate, yet their behavior on decadal to centennial timescales, and the mechanisms driving these changes during the preindustrial era, remain poorly understood. We present a decadally resolved record of dust compositions using strontium and neodymium isotope ratios in mineral dust from the Siple Dome ice core, Antarctica, to explore the potential that abrupt changes in SWW behavior occurred over the past millennium. The record spans portions of the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA) intervals as defined in the Northern Hemisphere. We find evidence of an abrupt strengthening of atmospheric circulation during the MCA at ∼1125 CE (825 BP) that persisted for about 60 yr, indicating increased influence of Patagonia‐sourced dust. This occurs during an extended positive phase of Southern Annular Mode (SAM+)‐like conditions, characterized by high SWW velocities and a southerly shift of the main wind belt toward ∼60°S, suggesting that rapid changes in SWW strength could occur under the present SAM+ pattern. A second 20 yr long shift in dust compositions during the LIA at ∼1748 CE (200 BP) is coincident with higher dust delivery to Siple Dome, and may indicate increased dust emissions related to glacier activity in Patagonia. The new Siple Dome ice core data set demonstrates that Sr‐Nd isotopes can be used to trace shifts in atmospheric circulation on decadal timescales.
{"title":"Abrupt Changes in Atmospheric Circulation During the Medieval Climate Anomaly and Little Ice Age Recorded by Sr‐Nd Isotopes in the Siple Dome Ice Core, Antarctica","authors":"B. Koffman, S. Goldstein, G. Winckler, M. Kaplan, L. Bolge, P. Biscaye","doi":"10.1029/2022PA004543","DOIUrl":"https://doi.org/10.1029/2022PA004543","url":null,"abstract":"The Southern Hemisphere westerly winds (SWW) play a critical role in global climate, yet their behavior on decadal to centennial timescales, and the mechanisms driving these changes during the preindustrial era, remain poorly understood. We present a decadally resolved record of dust compositions using strontium and neodymium isotope ratios in mineral dust from the Siple Dome ice core, Antarctica, to explore the potential that abrupt changes in SWW behavior occurred over the past millennium. The record spans portions of the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA) intervals as defined in the Northern Hemisphere. We find evidence of an abrupt strengthening of atmospheric circulation during the MCA at ∼1125 CE (825 BP) that persisted for about 60 yr, indicating increased influence of Patagonia‐sourced dust. This occurs during an extended positive phase of Southern Annular Mode (SAM+)‐like conditions, characterized by high SWW velocities and a southerly shift of the main wind belt toward ∼60°S, suggesting that rapid changes in SWW strength could occur under the present SAM+ pattern. A second 20 yr long shift in dust compositions during the LIA at ∼1748 CE (200 BP) is coincident with higher dust delivery to Siple Dome, and may indicate increased dust emissions related to glacier activity in Patagonia. The new Siple Dome ice core data set demonstrates that Sr‐Nd isotopes can be used to trace shifts in atmospheric circulation on decadal timescales.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43658168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Kearns, Alex Searle-Barnes, G. Foster, J. A. Milton, C. Standish, T. Ezard
Variation among individuals within species is a biological precondition for co‐existence. Traditional geochemical analysis based on bulk averages facilitates rapid data gathering but necessarily means the loss of large amounts of potentially crucial information into variability within a given sample. As the sensitivity of geochemical analysis improves, it is now feasible to build sufficiently powerful datasets to investigate paleoclimatic variation at the level of individual specimens. Here, we investigate geochemical and morphological variation among the sensu stricto, sensu lato and sensu lato extreme subspecies of the workhorse extant planktic foraminifera Globigerinoides ruber. Our experimental design distinguishes between subspecies and intraspecific variability as well as the repeatability of laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS). We show that geochemical variability in Mg/Ca ratios is driven by differences in subspecies depth habitat and that ontogenetic trends in Mg/Ca ratios are evident in the final whorl, with the final chamber consistently showing depleted Mg/Ca. These ontogenetic trends are not driven by individual chamber or test size. The Mg/Ca value variance among individuals is ∼100 times higher than the variance among repeated laser spot analyses of single chambers, directing laboratory protocols towards the need to sample ecologically and environmentally homogeneous samples. Our results emphasize that we can use LA‐ICP‐MS to quantify how individual variability aggregates to bulk results, and highlights that, with sufficient sample sizes, it is possible to reveal how intraspecific variability alters geochemical inference.
{"title":"The Influence of Geochemical Variation Among Globigerinoides ruber Individuals on Paleoceanographic Reconstructions","authors":"L. Kearns, Alex Searle-Barnes, G. Foster, J. A. Milton, C. Standish, T. Ezard","doi":"10.1029/2022PA004549","DOIUrl":"https://doi.org/10.1029/2022PA004549","url":null,"abstract":"Variation among individuals within species is a biological precondition for co‐existence. Traditional geochemical analysis based on bulk averages facilitates rapid data gathering but necessarily means the loss of large amounts of potentially crucial information into variability within a given sample. As the sensitivity of geochemical analysis improves, it is now feasible to build sufficiently powerful datasets to investigate paleoclimatic variation at the level of individual specimens. Here, we investigate geochemical and morphological variation among the sensu stricto, sensu lato and sensu lato extreme subspecies of the workhorse extant planktic foraminifera Globigerinoides ruber. Our experimental design distinguishes between subspecies and intraspecific variability as well as the repeatability of laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS). We show that geochemical variability in Mg/Ca ratios is driven by differences in subspecies depth habitat and that ontogenetic trends in Mg/Ca ratios are evident in the final whorl, with the final chamber consistently showing depleted Mg/Ca. These ontogenetic trends are not driven by individual chamber or test size. The Mg/Ca value variance among individuals is ∼100 times higher than the variance among repeated laser spot analyses of single chambers, directing laboratory protocols towards the need to sample ecologically and environmentally homogeneous samples. Our results emphasize that we can use LA‐ICP‐MS to quantify how individual variability aggregates to bulk results, and highlights that, with sufficient sample sizes, it is possible to reveal how intraspecific variability alters geochemical inference.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48373069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rebekah A. Stein, Andrew C. Turner, R. Amundson, D. Stolper
The genus Celtis includes widespread trees that produce drupes with aragonite endocarps, or “hackberries.” These carbonate endocarps are preserved in the fossil record, often in cave deposits or packrat middens, and thus are targets for paleoclimate reconstructions. Stable oxygen isotopes in Celtis endocarps have been used as proxies for oxygen isotopic composition of past stream water and for paleothermometry. Here, we explore the suitability of hackberry carbonates for paleoclimate reconstructions based on carbonate clumped‐isotope thermometry. We sampled modern hackberries grown at sites across North America (n = 37) for stable and clumped isotope analyses. Measured clumped‐isotope temperatures are found to be within the range of measured local modern growing season surface temperatures and typically in dual clumped‐isotope equilibrium. As such, we propose that hackberry clumped‐isotope measurements can be used to reconstruct past Earth‐surface air temperatures.
{"title":"Clumped Isotope Thermometry in Plant‐Derived Carbonates","authors":"Rebekah A. Stein, Andrew C. Turner, R. Amundson, D. Stolper","doi":"10.1029/2022PA004473","DOIUrl":"https://doi.org/10.1029/2022PA004473","url":null,"abstract":"The genus Celtis includes widespread trees that produce drupes with aragonite endocarps, or “hackberries.” These carbonate endocarps are preserved in the fossil record, often in cave deposits or packrat middens, and thus are targets for paleoclimate reconstructions. Stable oxygen isotopes in Celtis endocarps have been used as proxies for oxygen isotopic composition of past stream water and for paleothermometry. Here, we explore the suitability of hackberry carbonates for paleoclimate reconstructions based on carbonate clumped‐isotope thermometry. We sampled modern hackberries grown at sites across North America (n = 37) for stable and clumped isotope analyses. Measured clumped‐isotope temperatures are found to be within the range of measured local modern growing season surface temperatures and typically in dual clumped‐isotope equilibrium. As such, we propose that hackberry clumped‐isotope measurements can be used to reconstruct past Earth‐surface air temperatures.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44372767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Arellano‐Torres, Abril Amezcua‐Montiel, Arantza Casas‐Ortiz
The loop current (LC) in the Gulf of Mexico (GoM) is part of the western North Atlantic circulation. Recording its strength and slowdown variations can help us characterize the regional climate over the Late Pleistocene. To reconstruct the sea surface and the LC intensity in the eastern GoM, we study the distribution patterns of planktonic foraminifera in the core EN‐032‐18PC, spanning the end of Marine Isotope Stage (MIS) 9 to early MIS‐4. We reconstructed a sequence of paleoceanographic events based on stable isotopes (δ18O and δ13C) of the surface dweller Globigerinoides ruber and two faunal assemblages. The first assemblage explains most of the glacial and late interglacial periods, suggesting a subtropical environment with a deep thermocline and a reduced LC due to a moderate inflow of warm Caribbean waters. The second assemblage explains the warmest interglacial substages, dominated by tropical species, a shallow thermocline, and an extended LC, driven by summer insolation. Overall, surface ocean conditions led to more ecological successions and instability during the warmest interglacial substages than during glacial periods, as supported by the stable isotope records. Besides the GoM relationship to AMOC, as a regulator of heat transport to higher latitudes, we suggest that fluctuations in the LC rely on the migration of atmospheric circulation patterns and astronomical insolation forcing.
{"title":"The Loop Current Circulation Over the MIS 9 to MIS 5 Based on Planktonic Foraminifera Assemblages From the Gulf of Mexico","authors":"E. Arellano‐Torres, Abril Amezcua‐Montiel, Arantza Casas‐Ortiz","doi":"10.1029/2022PA004568","DOIUrl":"https://doi.org/10.1029/2022PA004568","url":null,"abstract":"The loop current (LC) in the Gulf of Mexico (GoM) is part of the western North Atlantic circulation. Recording its strength and slowdown variations can help us characterize the regional climate over the Late Pleistocene. To reconstruct the sea surface and the LC intensity in the eastern GoM, we study the distribution patterns of planktonic foraminifera in the core EN‐032‐18PC, spanning the end of Marine Isotope Stage (MIS) 9 to early MIS‐4. We reconstructed a sequence of paleoceanographic events based on stable isotopes (δ18O and δ13C) of the surface dweller Globigerinoides ruber and two faunal assemblages. The first assemblage explains most of the glacial and late interglacial periods, suggesting a subtropical environment with a deep thermocline and a reduced LC due to a moderate inflow of warm Caribbean waters. The second assemblage explains the warmest interglacial substages, dominated by tropical species, a shallow thermocline, and an extended LC, driven by summer insolation. Overall, surface ocean conditions led to more ecological successions and instability during the warmest interglacial substages than during glacial periods, as supported by the stable isotope records. Besides the GoM relationship to AMOC, as a regulator of heat transport to higher latitudes, we suggest that fluctuations in the LC rely on the migration of atmospheric circulation patterns and astronomical insolation forcing.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48452621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Q. Pillot, B. Suchéras-Marx, A. Sarr, C. Bolton, Y. Donnadieu
The Late Miocene Biogenic Bloom (LMBB) is a late Miocene to early Pliocene oceanographic event characterized by high accumulation rates of opal from diatoms and calcite from calcareous nannofossils and planktic foraminifera. This multi‐million year event has been recognized in sediment cores from the Pacific, Atlantic, and Indian Oceans. Based on existing studies, it is not clear whether the LMBB is a global omnipresent event, or whether it is restricted to certain regions or oceanographic environments. Moreover, the origin of this event is still widely discussed. In this study, we aim to provide a comprehensive overview of the geographical and temporal aspects of the LMBB by compiling published ocean drilling (DSDP, ODP, and IODP) records of sedimentation rates, and CaCO3, opal, and terrigenous accumulation rates that cover the late Miocene and early Pliocene interval. Our data compilation shows that manifestations of the LMBB are present in many different locations but in a very heterogeneous way. The compilation shows that the sites where the LMBB is expressed are mainly located in areas with a high productivity regime (i.e., upwelling systems). We suggest that one of the possible hypotheses to explain the onset of the LMBB could be a global increase in upwelling intensity due to an increase in wind strength or an increase in deep water formation, ramping up global thermohaline circulation.
{"title":"A Global Reassessment of the Spatial and Temporal Expression of the Late Miocene Biogenic Bloom","authors":"Q. Pillot, B. Suchéras-Marx, A. Sarr, C. Bolton, Y. Donnadieu","doi":"10.1029/2022PA004564","DOIUrl":"https://doi.org/10.1029/2022PA004564","url":null,"abstract":"The Late Miocene Biogenic Bloom (LMBB) is a late Miocene to early Pliocene oceanographic event characterized by high accumulation rates of opal from diatoms and calcite from calcareous nannofossils and planktic foraminifera. This multi‐million year event has been recognized in sediment cores from the Pacific, Atlantic, and Indian Oceans. Based on existing studies, it is not clear whether the LMBB is a global omnipresent event, or whether it is restricted to certain regions or oceanographic environments. Moreover, the origin of this event is still widely discussed. In this study, we aim to provide a comprehensive overview of the geographical and temporal aspects of the LMBB by compiling published ocean drilling (DSDP, ODP, and IODP) records of sedimentation rates, and CaCO3, opal, and terrigenous accumulation rates that cover the late Miocene and early Pliocene interval. Our data compilation shows that manifestations of the LMBB are present in many different locations but in a very heterogeneous way. The compilation shows that the sites where the LMBB is expressed are mainly located in areas with a high productivity regime (i.e., upwelling systems). We suggest that one of the possible hypotheses to explain the onset of the LMBB could be a global increase in upwelling intensity due to an increase in wind strength or an increase in deep water formation, ramping up global thermohaline circulation.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49323482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jonathan Obrist‐Farner, B. Steinman, N. Stansell, J. Maurer
Continued global warming is expected to result in reduced precipitation and a drier climate in Central America. Projections of future changes are highly uncertain, however, due to the spatial resolution limitations of models and insufficient observational data coverage across space and time. Paleoclimate proxy data are therefore critical for understanding regional climate responses during times of global climate reorganization. Here we present two lake‐sediment based records of precipitation variability in Guatemala along with a synthesis of Central American hydroclimate records spanning the last millennium (800–2000 CE). The synthesis reveals that regional climate changes have been strikingly heterogeneous, even over relatively short distances. Our analysis further suggests that shifts in the mean position of the Intertropical Convergence Zone, which have been invoked by numerous studies to explain variability in Central American and circum‐Caribbean proxy records, cannot alone explain the observed pattern of hydroclimate variability. Instead, interactions between several ocean‐atmosphere processes and their disparate influences across variable topography appear to have resulted in complex precipitation responses. These complexities highlight the difficulty of reconstructing past precipitation changes across Central America and point to the need for additional paleo‐record development and analysis before the relationships between external forcing and hydroclimate change can be robustly determined. Such efforts should help anchor model‐based predictions of future responses to continued global warming.
{"title":"Incoherency in Central American Hydroclimate Proxy Records Spanning the Last Millennium","authors":"Jonathan Obrist‐Farner, B. Steinman, N. Stansell, J. Maurer","doi":"10.1029/2022PA004445","DOIUrl":"https://doi.org/10.1029/2022PA004445","url":null,"abstract":"Continued global warming is expected to result in reduced precipitation and a drier climate in Central America. Projections of future changes are highly uncertain, however, due to the spatial resolution limitations of models and insufficient observational data coverage across space and time. Paleoclimate proxy data are therefore critical for understanding regional climate responses during times of global climate reorganization. Here we present two lake‐sediment based records of precipitation variability in Guatemala along with a synthesis of Central American hydroclimate records spanning the last millennium (800–2000 CE). The synthesis reveals that regional climate changes have been strikingly heterogeneous, even over relatively short distances. Our analysis further suggests that shifts in the mean position of the Intertropical Convergence Zone, which have been invoked by numerous studies to explain variability in Central American and circum‐Caribbean proxy records, cannot alone explain the observed pattern of hydroclimate variability. Instead, interactions between several ocean‐atmosphere processes and their disparate influences across variable topography appear to have resulted in complex precipitation responses. These complexities highlight the difficulty of reconstructing past precipitation changes across Central America and point to the need for additional paleo‐record development and analysis before the relationships between external forcing and hydroclimate change can be robustly determined. Such efforts should help anchor model‐based predictions of future responses to continued global warming.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48665780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Z. Belka, S. Skompski, M. Jakubowicz, J. Dopieralska, A. Walczak, S. Mustapayeva
Over the past decades, neodymium (Nd) isotopes have received considerable attention in paleoceanography as a tool for reconstructing past seawater circulation, local weathering inputs, and sea‐level change. In this study, we have investigated the Nd isotope composition of a shallow‐water Serpukhovian (Carboniferous) carbonate succession to explore icehouse cyclicity pattern and seawater dynamics on the Karatau carbonate platform in southern Kazakhstan. The cyclic succession formed in response to glacio‐eustasy and composed of subtidal and intertidal limestones displays a large variation in εNd(326 Ma) values from −1.6 to +4.3, corresponding to differences in the isotopic composition of two seawater masses present in the Uralian–Turkestan Ocean during the Serpukhovian: (a) highly radiogenic deep waters and (b) less radiogenic surface waters. The Nd isotope excursions within the icehouse cycles are more complex than simple transgressive‐regressive cycles. They probably reflect a temporal pattern of the sub‐Milankovitch climatic perturbations during Carboniferous interglacial intervals. The episodic appearance of rich brachiopod communities was forced by the inflow of highly radiogenic, nutrient‐enriched waters, presumably driven by upwelling. Nd isotope analyses of cyclic intertidal and subtidal carbonates have great potential to produce high‐resolution records of seawater dynamics on shallow‐water carbonate platforms.
{"title":"Exploring Icehouse Cyclicity Pattern and Seawater Dynamics on an Ancient Carbonate Platform With Nd Isotopes (Carboniferous, Southern Kazakhstan)","authors":"Z. Belka, S. Skompski, M. Jakubowicz, J. Dopieralska, A. Walczak, S. Mustapayeva","doi":"10.1029/2022PA004587","DOIUrl":"https://doi.org/10.1029/2022PA004587","url":null,"abstract":"Over the past decades, neodymium (Nd) isotopes have received considerable attention in paleoceanography as a tool for reconstructing past seawater circulation, local weathering inputs, and sea‐level change. In this study, we have investigated the Nd isotope composition of a shallow‐water Serpukhovian (Carboniferous) carbonate succession to explore icehouse cyclicity pattern and seawater dynamics on the Karatau carbonate platform in southern Kazakhstan. The cyclic succession formed in response to glacio‐eustasy and composed of subtidal and intertidal limestones displays a large variation in εNd(326 Ma) values from −1.6 to +4.3, corresponding to differences in the isotopic composition of two seawater masses present in the Uralian–Turkestan Ocean during the Serpukhovian: (a) highly radiogenic deep waters and (b) less radiogenic surface waters. The Nd isotope excursions within the icehouse cycles are more complex than simple transgressive‐regressive cycles. They probably reflect a temporal pattern of the sub‐Milankovitch climatic perturbations during Carboniferous interglacial intervals. The episodic appearance of rich brachiopod communities was forced by the inflow of highly radiogenic, nutrient‐enriched waters, presumably driven by upwelling. Nd isotope analyses of cyclic intertidal and subtidal carbonates have great potential to produce high‐resolution records of seawater dynamics on shallow‐water carbonate platforms.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45109420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}