Pub Date : 2024-04-17DOI: 10.1109/JTEHM.2024.3388852
Ghena Hammour;Harry Davies;Giuseppe Atzori;Ciro Della Monica;Kiran K. G. Ravindran;Victoria Revell;Derk-Jan Dijk;Danilo P. Mandic
Objective: Sleep monitoring has extensively utilized electroencephalogram (EEG) data collected from the scalp, yielding very large data repositories and well-trained analysis models. Yet, this wealth of data is lacking for emerging, less intrusive modalities, such as ear-EEG.Methods and procedures: The current study seeks to harness the abundance of open-source scalp EEG datasets by applying models pre-trained on data, either directly or with minimal fine-tuning; this is achieved in the context of effective sleep analysis from ear-EEG data that was recorded using a single in-ear electrode, referenced to the ipsilateral mastoid, and developed in-house as described in our previous work. Unlike previous studies, our research uniquely focuses on an older cohort (17 subjects aged 65-83, mean age 71.8 years, some with health conditions), and employs LightGBM for transfer learning, diverging from previous deep learning approaches. Results: Results show that the initial accuracy of the pre-trained model on ear-EEG was 70.1%, but fine-tuning the model with ear-EEG data improved its classification accuracy to 73.7%. The fine-tuned model exhibited a statistically significant improvement (p < 0.05, dependent t-test) for 10 out of the 13 participants, as reflected by an enhanced average Cohen’s kappa score (a statistical measure of inter-rater agreement for categorical items) of 0.639, indicating a stronger agreement between automated and expert classifications of sleep stages. Comparative SHAP value analysis revealed a shift in feature importance for the N3 sleep stage, underscoring the effectiveness of the fine-tuning process.Conclusion: Our findings underscore the potential of fine-tuning pre-trained scalp EEG models on ear-EEG data to enhance classification accuracy, particularly within an older population and using feature-based methods for transfer learning. This approach presents a promising avenue for ear-EEG analysis in sleep studies, offering new insights into the applicability of transfer learning across different populations and computational techniques.Clinical impact: An enhanced ear-EEG method could be pivotal in remote monitoring settings, allowing for continuous, non-invasive sleep quality assessment in elderly patients with conditions like dementia or sleep apnea.
{"title":"From Scalp to Ear-EEG: A Generalizable Transfer Learning Model for Automatic Sleep Scoring in Older People","authors":"Ghena Hammour;Harry Davies;Giuseppe Atzori;Ciro Della Monica;Kiran K. G. Ravindran;Victoria Revell;Derk-Jan Dijk;Danilo P. Mandic","doi":"10.1109/JTEHM.2024.3388852","DOIUrl":"10.1109/JTEHM.2024.3388852","url":null,"abstract":"Objective: Sleep monitoring has extensively utilized electroencephalogram (EEG) data collected from the scalp, yielding very large data repositories and well-trained analysis models. Yet, this wealth of data is lacking for emerging, less intrusive modalities, such as ear-EEG.Methods and procedures: The current study seeks to harness the abundance of open-source scalp EEG datasets by applying models pre-trained on data, either directly or with minimal fine-tuning; this is achieved in the context of effective sleep analysis from ear-EEG data that was recorded using a single in-ear electrode, referenced to the ipsilateral mastoid, and developed in-house as described in our previous work. Unlike previous studies, our research uniquely focuses on an older cohort (17 subjects aged 65-83, mean age 71.8 years, some with health conditions), and employs LightGBM for transfer learning, diverging from previous deep learning approaches. Results: Results show that the initial accuracy of the pre-trained model on ear-EEG was 70.1%, but fine-tuning the model with ear-EEG data improved its classification accuracy to 73.7%. The fine-tuned model exhibited a statistically significant improvement (p < 0.05, dependent t-test) for 10 out of the 13 participants, as reflected by an enhanced average Cohen’s kappa score (a statistical measure of inter-rater agreement for categorical items) of 0.639, indicating a stronger agreement between automated and expert classifications of sleep stages. Comparative SHAP value analysis revealed a shift in feature importance for the N3 sleep stage, underscoring the effectiveness of the fine-tuning process.Conclusion: Our findings underscore the potential of fine-tuning pre-trained scalp EEG models on ear-EEG data to enhance classification accuracy, particularly within an older population and using feature-based methods for transfer learning. This approach presents a promising avenue for ear-EEG analysis in sleep studies, offering new insights into the applicability of transfer learning across different populations and computational techniques.Clinical impact: An enhanced ear-EEG method could be pivotal in remote monitoring settings, allowing for continuous, non-invasive sleep quality assessment in elderly patients with conditions like dementia or sleep apnea.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"448-456"},"PeriodicalIF":3.4,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10504255","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140612025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-17DOI: 10.1109/JTEHM.2024.3390589
Phuong Truong;Erin Walsh;Vanessa P. Scott;Michelle Leff;Alice Chen;James Friend
Objective: Identify infants with abnormal suckling behavior from simple non-nutritive suckling devices.Background: While it is well known breastfeeding is beneficial to the health of both mothers and infants, breastfeeding ceases in 75 percent of mother-child dyads by 6 months. The current standard of care lacks objective measurements to screen infant suckling abnormalities within the first few days of life, a critical time to establish milk supply and successful breastfeeding practices.Materials and Methods: A non-nutritive suckling vacuum measurement system, previously developed by the authors, is used to gather data from 91 healthy full-term infants under thirty days old. Non-nutritive suckling was recorded for a duration of sixty seconds. We establish normative data for the mean suck vacuum, maximum suck vacuum, suckling frequency, burst duration, sucks per burst, and vacuum signal shape. We then apply computational methods (Mahalanobis distance, KNN) to detect anomalies in the data to identify infants with abnormal suckling. We finally provide case studies of healthy newborn infants and infants diagnosed with ankyloglossia.Results: In a series of case evaluations, we demonstrate the ability to detect abnormal suckling behavior using statistical analysis and machine learning. We evaluate cases of ankyloglossia to determine how oral dysfunction and surgical interventions affect non-nutritive suckling measurements.Conclusions: Statistical analysis (Mahalanobis Distance) and machine learning [K nearest neighbor (KNN)] can be viable approaches to rapidly interpret infant suckling measurements. Particularly in practices using the digital suck assessment with a gloved finger, it can provide a more objective, early stage screening method to identify abnormal infant suckling vacuum. This approach for identifying those at risk for breastfeeding complications is crucial to complement complex emerging clinical evaluation technology.Clinical Impact: By analyzing non-nutritive suckling using computational methods, we demonstrate the ability to detect abnormal and normal behavior in infant suckling that can inform breastfeeding intervention pathways in clinic.Clinical and Translational Impact Statement: The work serves to shed light on the lack of consensus for determining appropriate intervention pathways for infant oral dysfunction. We demonstrate using statistical analysis and machine learning that normal and abnormal infant suckling can be identified and used in determining if surgical intervention is a necessary solution to resolve infant feeding difficulties.
{"title":"Application of Statistical Analysis and Machine Learning to Identify Infants’ Abnormal Suckling Behavior","authors":"Phuong Truong;Erin Walsh;Vanessa P. Scott;Michelle Leff;Alice Chen;James Friend","doi":"10.1109/JTEHM.2024.3390589","DOIUrl":"10.1109/JTEHM.2024.3390589","url":null,"abstract":"Objective: Identify infants with abnormal suckling behavior from simple non-nutritive suckling devices.Background: While it is well known breastfeeding is beneficial to the health of both mothers and infants, breastfeeding ceases in 75 percent of mother-child dyads by 6 months. The current standard of care lacks objective measurements to screen infant suckling abnormalities within the first few days of life, a critical time to establish milk supply and successful breastfeeding practices.Materials and Methods: A non-nutritive suckling vacuum measurement system, previously developed by the authors, is used to gather data from 91 healthy full-term infants under thirty days old. Non-nutritive suckling was recorded for a duration of sixty seconds. We establish normative data for the mean suck vacuum, maximum suck vacuum, suckling frequency, burst duration, sucks per burst, and vacuum signal shape. We then apply computational methods (Mahalanobis distance, KNN) to detect anomalies in the data to identify infants with abnormal suckling. We finally provide case studies of healthy newborn infants and infants diagnosed with ankyloglossia.Results: In a series of case evaluations, we demonstrate the ability to detect abnormal suckling behavior using statistical analysis and machine learning. We evaluate cases of ankyloglossia to determine how oral dysfunction and surgical interventions affect non-nutritive suckling measurements.Conclusions: Statistical analysis (Mahalanobis Distance) and machine learning [K nearest neighbor (KNN)] can be viable approaches to rapidly interpret infant suckling measurements. Particularly in practices using the digital suck assessment with a gloved finger, it can provide a more objective, early stage screening method to identify abnormal infant suckling vacuum. This approach for identifying those at risk for breastfeeding complications is crucial to complement complex emerging clinical evaluation technology.Clinical Impact: By analyzing non-nutritive suckling using computational methods, we demonstrate the ability to detect abnormal and normal behavior in infant suckling that can inform breastfeeding intervention pathways in clinic.Clinical and Translational Impact Statement: The work serves to shed light on the lack of consensus for determining appropriate intervention pathways for infant oral dysfunction. We demonstrate using statistical analysis and machine learning that normal and abnormal infant suckling can be identified and used in determining if surgical intervention is a necessary solution to resolve infant feeding difficulties.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"435-447"},"PeriodicalIF":3.4,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10504251","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140611932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-15DOI: 10.1109/JTEHM.2024.3388561
Morgan Connaughton;Mahsa Dabagh
Mechanical force exerted on cancer cells by their microenvironment have been reported to drive cells toward invasive phenotypes by altering cells’ motility, proliferation, and apoptosis. These mechanical forces include compressive, tensile, hydrostatic, and shear forces. The importance of forces is then hypothesized to be an alteration of cancer cells’ and their microenvironment’s biophysical properties as the indicator of a tumor’s malignancy state. Our objective is to investigate and quantify the correlation between a tumor’s malignancy state and forces experienced by the cancer cells and components of the microenvironment. In this study, we have developed a multicomponent, three-dimensional model of tumor tissue consisting of a cancer cell surrounded by fibroblasts and extracellular matrix (ECM). Our results on three different organs including breast, kidney, and pancreas show that: A) the stresses within tumor tissue are impacted by the organ specific ECM’s biophysical properties, B) more invasive cancer cells experience higher stresses, C) in pancreas which has a softer ECM (Young modulus of 1.0 kPa) and stiffer cancer cells (Young modulus of 2.4 kPa and 1.7 kPa) than breast and kidney, cancer cells experienced significantly higher stresses, D) cancer cells in contact with ECM experienced higher stresses compared to cells surrounded by fibroblasts but the area of tumor stroma experiencing high stresses has a maximum length of $40 ~mu text{m}$