Pub Date : 2023-03-29DOI: 10.1109/JTEHM.2023.3280974
Vincenzo Catrambone;Gaetano Valenza
Objective: The central and autonomic nervous systems are deemed complex dynamic systems, wherein each system as a whole shows features that the individual system sub-components do not. They also continuously interact to maintain body homeostasis and appropriate react to endogenous and exogenous stimuli. Such interactions are comprehensively referred to functional brain–heart interplay (BHI). Nevertheless, it remains uncertain whether this interaction also exhibits complex characteristics, that is, whether the dynamics of the entire nervous system inherently demonstrate complex behavior, or if such complexity is solely a trait of the central and autonomic systems. Here, we performed complexity mapping of the BHI dynamics under mental and physical stress conditions. Methods and procedures: Electroencephalographic and heart rate variability series were obtained from 56 healthy individuals performing mental arithmetic or cold-pressure tasks, and physiological series were properly combined to derive directional BHI series, whose complexity was quantified through fuzzy entropy. Results: The experimental results showed that BHI complexity is mainly modulated in the efferent functional direction from the brain to the heart, and mainly targets vagal oscillations during mental stress and sympathovagal oscillations during physical stress. Conclusion: We conclude that the complexity of BHI mapping may provide insightful information on the dynamics of both central and autonomic activity, as well as on their continuous interaction. Clinical impact: This research enhances our comprehension of the reciprocal interactions between central and autonomic systems, potentially paving the way for more accurate diagnoses and targeted treatments of cardiovascular, neurological, and psychiatric disorders.
{"title":"Complex Brain–Heart Mapping in Mental and Physical Stress","authors":"Vincenzo Catrambone;Gaetano Valenza","doi":"10.1109/JTEHM.2023.3280974","DOIUrl":"10.1109/JTEHM.2023.3280974","url":null,"abstract":"Objective: The central and autonomic nervous systems are deemed complex dynamic systems, wherein each system as a whole shows features that the individual system sub-components do not. They also continuously interact to maintain body homeostasis and appropriate react to endogenous and exogenous stimuli. Such interactions are comprehensively referred to functional brain–heart interplay (BHI). Nevertheless, it remains uncertain whether this interaction also exhibits complex characteristics, that is, whether the dynamics of the entire nervous system inherently demonstrate complex behavior, or if such complexity is solely a trait of the central and autonomic systems. Here, we performed complexity mapping of the BHI dynamics under mental and physical stress conditions. Methods and procedures: Electroencephalographic and heart rate variability series were obtained from 56 healthy individuals performing mental arithmetic or cold-pressure tasks, and physiological series were properly combined to derive directional BHI series, whose complexity was quantified through fuzzy entropy. Results: The experimental results showed that BHI complexity is mainly modulated in the efferent functional direction from the brain to the heart, and mainly targets vagal oscillations during mental stress and sympathovagal oscillations during physical stress. Conclusion: We conclude that the complexity of BHI mapping may provide insightful information on the dynamics of both central and autonomic activity, as well as on their continuous interaction. Clinical impact: This research enhances our comprehension of the reciprocal interactions between central and autonomic systems, potentially paving the way for more accurate diagnoses and targeted treatments of cardiovascular, neurological, and psychiatric disorders.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"11 ","pages":"495-504"},"PeriodicalIF":3.4,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/58/a8/jtehm-catrambone-3280974.PMC10561752.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41220105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-29DOI: 10.1109/JTEHM.2023.3262841
Fu Zou;Yuanhua Liu;Zelyu Chen;Karl Zhanghao;Dayong Jin
The accuracy of image segmentation is critical for quantitative analysis. We report a lightweight network FRUNet based on the U-Net, which combines the advantages of Fourier channel attention (FCA Block) and Residual unit to improve the accuracy. FCA Block automatically assigns the weight of the learned frequency information to the spatial domain, paying more attention to the precise high-frequency information of diverse biomedical images. While FCA is widely used in image super-resolution with residual network backbones, its role in semantic segmentation is less explored. Here we study the combination of FCA and U-Net, the skip connection of which can fuse the encoder information with the decoder. Extensive experimental results of FRUNet on three public datasets show that the method outperforms other advanced medical image segmentation methods in terms of using fewer network parameters and improved accuracy. It excels in pathological Section segmentation of nuclei and glands.
{"title":"Fourier Channel Attention Powered Lightweight Network for Image Segmentation","authors":"Fu Zou;Yuanhua Liu;Zelyu Chen;Karl Zhanghao;Dayong Jin","doi":"10.1109/JTEHM.2023.3262841","DOIUrl":"10.1109/JTEHM.2023.3262841","url":null,"abstract":"The accuracy of image segmentation is critical for quantitative analysis. We report a lightweight network FRUNet based on the U-Net, which combines the advantages of Fourier channel attention (FCA Block) and Residual unit to improve the accuracy. FCA Block automatically assigns the weight of the learned frequency information to the spatial domain, paying more attention to the precise high-frequency information of diverse biomedical images. While FCA is widely used in image super-resolution with residual network backbones, its role in semantic segmentation is less explored. Here we study the combination of FCA and U-Net, the skip connection of which can fuse the encoder information with the decoder. Extensive experimental results of FRUNet on three public datasets show that the method outperforms other advanced medical image segmentation methods in terms of using fewer network parameters and improved accuracy. It excels in pathological Section segmentation of nuclei and glands.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"11 ","pages":"252-260"},"PeriodicalIF":3.4,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10086528","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9421977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: Long term behavioural disturbances and interventions in healthy habits (mainly eating and physical activity) are the primary cause of childhood obesity. Current approaches for obesity prevention based on health information extraction lack the integration of multi-modal datasets and the provision of a dedicated Decision Support System (DSS) for health behaviour assessment and coaching of children. Methods: Continuous co-creation process has been applied in the frame of the Design Thinking Methodology, involving children, educators and healthcare professional in the whole process. Such considerations were used to derive the user needs and the technical requirements needed for the conception of the Internet of Things (IoT) platform based on microservices. Results: To promote the adoption of healthy habits and the prevention of the obesity onset for children (9-12 years old), the proposed solution empowers children -including families and educators- in taking control of their health by collecting and following-up real-time information about nutrition, physical activity data coming from IoT devices, and interconnecting healthcare professionals to provide a personalised coaching solution. The validation has two phases involving +400 children (control/intervention group), on four schools in three countries: Spain, Greece and Brazil. The prevalence of obesity decreased in 75.5% from baseline levels in the intervention group. The proposed solution created a positive impression and satisfaction from the technology acceptance perspective. Conclusions: Main findings confirm that this ecosystem can assess behaviours of children, motivating and guiding them towards achieving personal goals. Clinical and Translational Impact Statement—This study presents Early Research on the adoption of a smart childhood obesity caring solution adopting a multidisciplinary approach; it involves researchers from biomedical engineering, medicine, computer science, ethics and education. The solution has the potential to decrease the obesity rates in children aiming to impact to get a better global health.
{"title":"Promoting Obesity Prevention and Healthy Habits in Childhood: The OCARIoT Experience","authors":"Leire Bastida;Gloria Cea;Ana Moya;Alba Gallego;Eugenio Gaeta;Sara Sillaurren;Paulo Barbosa;Sabrina Souto;Eujessika Rodrigues;Macarena Torrego-Ellacuría;Andreas Triantafyllidis;Anastasios Alexiadis;Konstantinos Votis;Dimitrios Tzovaras;Cleilton Rocha;Lucas Alves;Pedro Maló;Márcio Mateus;Fernando Ferreira;María Teresa Arredondo","doi":"10.1109/JTEHM.2023.3261899","DOIUrl":"10.1109/JTEHM.2023.3261899","url":null,"abstract":"Objective: Long term behavioural disturbances and interventions in healthy habits (mainly eating and physical activity) are the primary cause of childhood obesity. Current approaches for obesity prevention based on health information extraction lack the integration of multi-modal datasets and the provision of a dedicated Decision Support System (DSS) for health behaviour assessment and coaching of children. Methods: Continuous co-creation process has been applied in the frame of the Design Thinking Methodology, involving children, educators and healthcare professional in the whole process. Such considerations were used to derive the user needs and the technical requirements needed for the conception of the Internet of Things (IoT) platform based on microservices. Results: To promote the adoption of healthy habits and the prevention of the obesity onset for children (9-12 years old), the proposed solution empowers children -including families and educators- in taking control of their health by collecting and following-up real-time information about nutrition, physical activity data coming from IoT devices, and interconnecting healthcare professionals to provide a personalised coaching solution. The validation has two phases involving +400 children (control/intervention group), on four schools in three countries: Spain, Greece and Brazil. The prevalence of obesity decreased in 75.5% from baseline levels in the intervention group. The proposed solution created a positive impression and satisfaction from the technology acceptance perspective. Conclusions: Main findings confirm that this ecosystem can assess behaviours of children, motivating and guiding them towards achieving personal goals. Clinical and Translational Impact Statement—This study presents Early Research on the adoption of a smart childhood obesity caring solution adopting a multidisciplinary approach; it involves researchers from biomedical engineering, medicine, computer science, ethics and education. The solution has the potential to decrease the obesity rates in children aiming to impact to get a better global health.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"11 ","pages":"261-270"},"PeriodicalIF":3.4,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10081348","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9360298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-19DOI: 10.1109/JTEHM.2023.3277890
Michel Hackbarth;Jessica Koschate;Sandra Lau;Tania Zieschang
Background: Accidental falls are a major health issue in older people. One significant and potentially modifiable risk factor is reduced gait stability. Clinicians do not have sophisticated kinematic options to measure this risk factor with simple and affordable systems. Depth-imaging with AI-pose estimation can be used for gait analysis in young healthy adults. However, is it applicable for measuring gait in older adults at a risk of falling? Methods: In this methodological comparison 59 older adults with and without a history of falls walked on a treadmill while their gait pattern was recorded with multiple inertial measurement units and with an Azure Kinect depth-camera. Spatiotemporal gait parameters of both systems were compared for convergent validity and with a Bland-Altman plot. Results: Correlation between systems for stride length (r=.992, $text{p} < 0.001$