Pub Date : 2023-11-06DOI: 10.1109/JTEHM.2023.3327691
Andrea Sabo;Nimish Mittal;Amol Deshpande;Hance Clarke;Babak Taati
Generalized joint hypermobility (GJH) often leads clinicians to suspect a diagnosis of Ehlers Danlos Syndrome (EDS), but it can be difficult to objectively assess. Video-based goniometry has been proposed to objectively estimate joint range of motion in hyperextended joints. As part of an exam of joint hypermobility at a specialized EDS clinic, a mobile phone was used to record short videos of 97 adults (89 female, 35.0 ± 9.9 years old) undergoing assessment of the elbows, knees, shoulders, ankles, and fifth fingers. Five body keypoint pose-estimation libraries (AlphaPose, Detectron, MediaPipe-Body, MoveNet – Thunder, OpenPose) and two hand keypoint pose-estimation libraries (AlphaPose, MediaPipe-Hands) were used to geometrically calculate the maximum angle of hyperextension or hyperflexion of each joint. A custom domain-specific model with a MobileNet-v2 backbone finetuned on data collected as part of this study was also evaluated for the fifth finger movement. Spearman’s correlation was used to analyze the angles calculated from the tracked joint positions, the angles calculated from manually annotated keypoints, and the angles measured using a goniometer. Moderate correlations between the angles estimated using pose-tracked keypoints and the goniometer measurements were identified for the elbow (rho =.722; Detectron), knee (rho =.608; MoveNet – Thunder), shoulder (rho =.632; MoveNet – Thunder), and fifth finger (rho =.786; custom model) movements. The angles estimated from keypoints predicted by open-source libraries at the ankles were not significantly correlated with the goniometer measurements. Manually annotated angles at the elbows, knees, shoulders, and fifth fingers were moderately to strongly correlated to goniometer measurements but were weakly correlated for the ankles. There was not one pose-estimation library which performed best across all joints, so the library of choice must be selected separately for each joint of interest. This work evaluates several pose-estimation models as part of a vision-based system for estimating joint angles in individuals with suspected joint hypermobility. Future applications of the proposed system could facilitate objective assessment and screening of individuals referred to specialized EDS clinics.
{"title":"Automated, Vision-Based Goniometry and Range of Motion Calculation in Individuals With Suspected Ehlers-Danlos Syndromes/Generalized Hypermobility Spectrum Disorders: A Comparison of Pose-Estimation Libraries to Goniometric Measurements","authors":"Andrea Sabo;Nimish Mittal;Amol Deshpande;Hance Clarke;Babak Taati","doi":"10.1109/JTEHM.2023.3327691","DOIUrl":"10.1109/JTEHM.2023.3327691","url":null,"abstract":"Generalized joint hypermobility (GJH) often leads clinicians to suspect a diagnosis of Ehlers Danlos Syndrome (EDS), but it can be difficult to objectively assess. Video-based goniometry has been proposed to objectively estimate joint range of motion in hyperextended joints. As part of an exam of joint hypermobility at a specialized EDS clinic, a mobile phone was used to record short videos of 97 adults (89 female, 35.0 ± 9.9 years old) undergoing assessment of the elbows, knees, shoulders, ankles, and fifth fingers. Five body keypoint pose-estimation libraries (AlphaPose, Detectron, MediaPipe-Body, MoveNet – Thunder, OpenPose) and two hand keypoint pose-estimation libraries (AlphaPose, MediaPipe-Hands) were used to geometrically calculate the maximum angle of hyperextension or hyperflexion of each joint. A custom domain-specific model with a MobileNet-v2 backbone finetuned on data collected as part of this study was also evaluated for the fifth finger movement. Spearman’s correlation was used to analyze the angles calculated from the tracked joint positions, the angles calculated from manually annotated keypoints, and the angles measured using a goniometer. Moderate correlations between the angles estimated using pose-tracked keypoints and the goniometer measurements were identified for the elbow (rho =.722; Detectron), knee (rho =.608; MoveNet – Thunder), shoulder (rho =.632; MoveNet – Thunder), and fifth finger (rho =.786; custom model) movements. The angles estimated from keypoints predicted by open-source libraries at the ankles were not significantly correlated with the goniometer measurements. Manually annotated angles at the elbows, knees, shoulders, and fifth fingers were moderately to strongly correlated to goniometer measurements but were weakly correlated for the ankles. There was not one pose-estimation library which performed best across all joints, so the library of choice must be selected separately for each joint of interest. This work evaluates several pose-estimation models as part of a vision-based system for estimating joint angles in individuals with suspected joint hypermobility. Future applications of the proposed system could facilitate objective assessment and screening of individuals referred to specialized EDS clinics.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"140-150"},"PeriodicalIF":3.4,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10309843","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135501586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1109/JTEHM.2023.3329031
Yuyang Zhang;Gongning Luo;Wei Wang;Shaodong Cao;Suyu Dong;Daren Yu;Xiaoyun Wang;Kuanquan Wang
Objective: Existing methods for automated coronary artery branch labeling in cardiac CT angiography face two limitations: 1) inability to model overall correlation of branches, since differences between branches cannot be captured directly. 2) a serious class imbalance between main and side branches. Methods and procedures: Inspired by the application of Transformer in sequence data, we propose a topological Transformer network (TTN), which solves the vessel branch labeling from a novel perspective of sequence labeling learning. TTN detects differences between branches by establishing their overall correlation. A topological encoding that represents the positions of vessel segments in the artery tree, is proposed to assist the model in classifying branches. Also, a segment-depth loss is introduced to solve the class imbalance between main and side branches. Results: On a dataset with 325 CCTA, our method obtains the best overall result on all branches, the best result on side branches, and a competitive result on main branches. Conclusion: TTN solves two limitations in existing methods perfectly, thus achieving the best result in coronary artery branch labeling task. It is the first Transformer based vessel branch labeling method and is notably different from previous methods. Clinical impact: This Pre-Clinical Research can be integrated into a computer-aided diagnosis system to generate cardiovascular disease diagnosis report, assisting clinicians in locating the atherosclerotic plaques.
{"title":"TTN: Topological Transformer Network for Automated Coronary Artery Branch Labeling in Cardiac CT Angiography","authors":"Yuyang Zhang;Gongning Luo;Wei Wang;Shaodong Cao;Suyu Dong;Daren Yu;Xiaoyun Wang;Kuanquan Wang","doi":"10.1109/JTEHM.2023.3329031","DOIUrl":"10.1109/JTEHM.2023.3329031","url":null,"abstract":"Objective: Existing methods for automated coronary artery branch labeling in cardiac CT angiography face two limitations: 1) inability to model overall correlation of branches, since differences between branches cannot be captured directly. 2) a serious class imbalance between main and side branches. Methods and procedures: Inspired by the application of Transformer in sequence data, we propose a topological Transformer network (TTN), which solves the vessel branch labeling from a novel perspective of sequence labeling learning. TTN detects differences between branches by establishing their overall correlation. A topological encoding that represents the positions of vessel segments in the artery tree, is proposed to assist the model in classifying branches. Also, a segment-depth loss is introduced to solve the class imbalance between main and side branches. Results: On a dataset with 325 CCTA, our method obtains the best overall result on all branches, the best result on side branches, and a competitive result on main branches. Conclusion: TTN solves two limitations in existing methods perfectly, thus achieving the best result in coronary artery branch labeling task. It is the first Transformer based vessel branch labeling method and is notably different from previous methods. Clinical impact: This Pre-Clinical Research can be integrated into a computer-aided diagnosis system to generate cardiovascular disease diagnosis report, assisting clinicians in locating the atherosclerotic plaques.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"129-139"},"PeriodicalIF":3.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10304172","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135319101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1109/JTEHM.2023.3329344
Sheik Mohammed Ali;Sridhar Poosapadi Arjunan;James Peter;Laura Perju-Dumbrava;Catherine Ding;Michael Eller;Sanjay Raghav;Peter Kempster;Mohammod Abdul Motin;P. J. Radcliffe;Dinesh Kant Kumar
Background: Several validated clinical scales measure the severity of essential tremor (ET). Their assessments are subjective and can depend on familiarity and training with scoring systems. Method: We propose a multi-modal sensing using a wearable inertial measurement unit for estimating scores on the Fahn-Tolosa-Marin tremor rating scale (FTM) and determine the classification accuracy within the tremor type. 17 ET participants and 18 healthy controls were recruited for the study. Two movement disorder neurologists who were blinded to prior clinical information viewed video recordings and scored the FTM. Participants drew a guided Archimedes spiral while wearing an inertial measurement unit placed at the mid-point between the lateral epicondyle of the humerus and the anatomical snuff box. Acceleration and gyroscope recordings were analyzed. The ratio of the power spectral density between frequency bands 0.5-4 Hz and 4–12 Hz, and the sum of power spectrum density over the entire spectrum of 2–74 Hz, for both accelerometer and gyroscope data, were computed. FTM was estimated using regression model and classification using SVM was validated using the leave-one-out method. Results: Regression analysis showed a moderate to good correlation when individual features were used, while correlation was high ( $r^{2}$