首页 > 最新文献

IEEE Journal of Translational Engineering in Health and Medicine-Jtehm最新文献

英文 中文
Benefits From Different Modes of Slow and Deep Breathing on Vagal Modulation 不同模式的慢速深呼吸对迷走神经调节的益处
IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-06-27 DOI: 10.1109/JTEHM.2024.3419805
Deshan Ma;Conghui Li;Wenbin Shi;Yong Fan;Hong Liang;Lixuan Li;Zhengbo Zhang;Chien-Hung Yeh
Slow and deep breathing (SDB) is a relaxation technique that can increase vagal activity. Respiratory sinus arrhythmia (RSA) serves as an index of vagal function usually quantified by the high-frequency power of heart rate variability (HRV). However, the low breathing rate during SDB results in deviations when estimating RSA by HRV. Besides, the impact of the inspiration-expiration (I: E) ratio and guidelines ways (fixed breathing rate or intelligent guidance) on SDB is not yet clear. In our study, 30 healthy people (mean age = 26.5 years, 17 females) participated in three SDB modes, including 6 breaths per minute (bpm) with an I:E ratio of 1:1/ 1:2, and intelligent guidance mode (I:E ratio of 1:2 with guiding to gradually lower breathing rate to 6 bpm). Parameters derived from HRV, multimodal coupling analysis (MMCA), Poincaré plot, and detrended fluctuation analysis were introduced to examine the effects of SDB exercises. Besides, multiple machine learning methods were applied to classify breathing patterns (spontaneous breathing vs. SDB) after feature selection by max-relevance and min-redundancy. All vagal-activity markers, especially MMCA-derived RSA, statistically increased during SDB. Among all SDB modes, breathing at 6 bpm with a 1:1 I:E ratio activated the vagal function the most statistically, while the intelligent guidance mode had more indicators that still significantly increased after training, including SDRR and MMCA-derived RSA, etc. About the classification of breathing patterns, the Naive Bayes classifier has the highest accuracy (92.2%) with input features including LFn, CPercent, pNN50, $alpha 2$ , SDRatio, $alpha 1$ , and LF. Our study proposed a system that can be applied to medical devices for automatic SDB identification and real-time feedback on the training effect. We demonstrated that breathing at 6 bpm with an I:E ratio of 1:1 performed best during the training phase, while intelligent guidance mode had a more long-lasting effect.
慢而深的呼吸(SDB)是一种可以增加迷走神经活动的放松技术。呼吸窦性心律失常(RSA)是迷走神经功能的一个指标,通常通过心率变异性(HRV)的高频功率进行量化。然而,SDB 期间的低呼吸频率会导致用心率变异估计 RSA 时出现偏差。此外,吸呼比(I:E)和指导方式(固定呼吸频率或智能指导)对 SDB 的影响也尚未明确。在我们的研究中,30 名健康人(平均年龄 = 26.5 岁,17 名女性)参与了三种 SDB 模式,包括 I:E 比为 1:1/ 1:2 的每分钟 6 次呼吸(bpm)和智能引导模式(I:E 比为 1:2,引导呼吸频率逐渐降低至 6 bpm)。研究人员引入了心率变异、多模态耦合分析(MMCA)、Poincaré图和去趋势波动分析等参数来检验 SDB 运动的效果。此外,在通过最大相关性和最小冗余度选择特征后,多种机器学习方法被用于对呼吸模式(自主呼吸与 SDB)进行分类。所有迷走神经活动标记物,尤其是MMCA衍生的RSA,在SDB期间均有统计学意义的增加。在所有SDB模式中,以1:1的I:E比例进行6 bpm的呼吸在统计学上最能激活迷走神经功能,而智能引导模式有更多的指标在训练后仍显著增加,包括SDRR和MMCA衍生RSA等。关于呼吸模式的分类,Naive Bayes 分类器的准确率最高(92.2%),输入特征包括 LFn、CPercent、pNN50、$alpha 2$ 、SDRatio、$alpha 1$ 和 LF。我们的研究提出了一种可应用于医疗设备的系统,用于自动识别 SDB 并实时反馈训练效果。我们证明,在训练阶段,呼吸频率为 6 bpm、I:E 比为 1:1 的呼吸效果最好,而智能引导模式的效果更持久。
{"title":"Benefits From Different Modes of Slow and Deep Breathing on Vagal Modulation","authors":"Deshan Ma;Conghui Li;Wenbin Shi;Yong Fan;Hong Liang;Lixuan Li;Zhengbo Zhang;Chien-Hung Yeh","doi":"10.1109/JTEHM.2024.3419805","DOIUrl":"10.1109/JTEHM.2024.3419805","url":null,"abstract":"Slow and deep breathing (SDB) is a relaxation technique that can increase vagal activity. Respiratory sinus arrhythmia (RSA) serves as an index of vagal function usually quantified by the high-frequency power of heart rate variability (HRV). However, the low breathing rate during SDB results in deviations when estimating RSA by HRV. Besides, the impact of the inspiration-expiration (I: E) ratio and guidelines ways (fixed breathing rate or intelligent guidance) on SDB is not yet clear. In our study, 30 healthy people (mean age = 26.5 years, 17 females) participated in three SDB modes, including 6 breaths per minute (bpm) with an I:E ratio of 1:1/ 1:2, and intelligent guidance mode (I:E ratio of 1:2 with guiding to gradually lower breathing rate to 6 bpm). Parameters derived from HRV, multimodal coupling analysis (MMCA), Poincaré plot, and detrended fluctuation analysis were introduced to examine the effects of SDB exercises. Besides, multiple machine learning methods were applied to classify breathing patterns (spontaneous breathing vs. SDB) after feature selection by max-relevance and min-redundancy. All vagal-activity markers, especially MMCA-derived RSA, statistically increased during SDB. Among all SDB modes, breathing at 6 bpm with a 1:1 I:E ratio activated the vagal function the most statistically, while the intelligent guidance mode had more indicators that still significantly increased after training, including SDRR and MMCA-derived RSA, etc. About the classification of breathing patterns, the Naive Bayes classifier has the highest accuracy (92.2%) with input features including LFn, CPercent, pNN50, \u0000<inline-formula> <tex-math>$alpha 2$ </tex-math></inline-formula>\u0000, SDRatio, \u0000<inline-formula> <tex-math>$alpha 1$ </tex-math></inline-formula>\u0000, and LF. Our study proposed a system that can be applied to medical devices for automatic SDB identification and real-time feedback on the training effect. We demonstrated that breathing at 6 bpm with an I:E ratio of 1:1 performed best during the training phase, while intelligent guidance mode had a more long-lasting effect.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"520-532"},"PeriodicalIF":3.7,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10574824","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141501595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probabilistic Estimation of Cadence and Walking Speed From Floor Vibrations 从地板振动中概率估计步频和行走速度
IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-06-20 DOI: 10.1109/JTEHM.2024.3415412
Yohanna MejiaCruz;Juan M. Caicedo;Zhaoshuo Jiang;Jean M. Franco
Objective: This research aims to extract human gait parameters from floor vibrations. The proposed approach provides an innovative methodology on occupant activity, contributing to a broader understanding of how human movements interact within their built environment.Methods and Procedures: A multilevel probabilistic model was developed to estimate cadence and walking speed through the analysis of floor vibrations induced by walking. The model addresses challenges related to missing or incomplete information in the floor acceleration signals. Following the Bayesian Analysis Reporting Guidelines (BARG) for reproducibility, the model was evaluated through twenty-seven walking experiments, capturing floor vibration and data from Ambulatory Parkinson’s Disease Monitoring (APDM) wearable sensors. The model was tested in a real-time implementation where ten individuals were recorded walking at their own selected pace.Results: Using a rigorous combined decision criteria of 95% high posterior density (HPD) and the Range of Practical Equivalence (ROPE) following BARG, the results demonstrate satisfactory alignment between estimations and target values for practical purposes. Notably, with over 90% of the 95% HPD falling within the region of practical equivalence, there is a solid basis for accepting the estimations as probabilistically aligned with the estimations using the APDM sensors and video recordings.Conclusion: This research validates the probabilistic multilevel model in estimating cadence and walking speed by analyzing floor vibrations, demonstrating its satisfactory comparability with established technologies such as APDM sensors and video recordings. The close alignment between the estimations and target values emphasizes the approach’s efficacy. The proposed model effectively tackles prevalent challenges associated with missing or incomplete data in real-world scenarios, enhancing the accuracy of gait parameter estimations derived from floor vibrations.Clinical impact: Extracting gait parameters from floor vibrations could provide a non-intrusive and continuous means of monitoring an individual’s gait, offering valuable insights into mobility and potential indicators of neurological conditions. The implications of this research extend to the development of advanced gait analysis tools, offering new perspectives on assessing and understanding walking patterns for improved diagnostics and personalized healthcare.Clinical and Translational Impact Statement: This manuscript introduces an innovative approach for unattended gait assessments with potentially significant implications for clinical decision-making. By utilizing floor vibrations to estimate cadence and walking speed, the technology can provide clinicians with valuable insights into their patients’ mobility and functional abilities in real-life settings. The strategic installation of accelerometers beneath the flooring of homes or care facilities allows for uninterrupted daily activities
研究目的本研究旨在从地板振动中提取人体步态参数。所提出的方法提供了一种关于居住者活动的创新方法,有助于更广泛地了解人类运动如何在建筑环境中相互作用:开发了一种多层次概率模型,通过分析步行引起的地面振动来估算步频和步行速度。该模型解决了地面加速度信号中信息缺失或不完整的难题。按照《贝叶斯分析报告指南》(BARG)的可重复性要求,该模型通过 27 项步行实验进行了评估,实验中采集了地面振动和非卧床帕金森病监测(APDM)可穿戴传感器的数据。该模型在实时实施中进行了测试,记录了十个人按自己选定的步伐行走的情况:结果:使用 95% 高后验密度(HPD)和 BARG 之后的实用等效范围(ROPE)的严格综合决策标准,结果表明估计值和目标值之间的一致性令人满意。值得注意的是,超过 90% 的 95% HPD 都在实际等效区域内,因此有充分的理由认为估计值与使用 APDM 传感器和视频记录的估计值在概率上是一致的:这项研究验证了通过分析地面振动来估算步频和步行速度的概率多层次模型,证明其与 APDM 传感器和视频记录等成熟技术具有令人满意的可比性。估算值与目标值之间的密切吻合强调了该方法的有效性。所提出的模型有效地解决了现实世界中数据缺失或不完整的难题,提高了从地面振动中提取步态参数的准确性:临床影响:从地板振动中提取步态参数可以提供一种非侵入性的连续监测个人步态的方法,为了解活动能力和神经系统疾病的潜在指标提供宝贵的信息。这项研究的意义延伸到先进步态分析工具的开发,为评估和理解行走模式提供了新的视角,从而改善诊断和个性化医疗:本手稿介绍了一种创新的无人值守步态评估方法,对临床决策具有潜在的重大意义。通过利用地面振动来估算步速和行走速度,该技术可为临床医生提供有价值的信息,帮助他们了解患者在现实生活中的行动能力和功能能力。在家庭或护理设施的地板下战略性地安装加速度计,可以在评估期间不间断地进行日常活动,减少对专门临床环境的依赖。这项技术可对步态模式进行长期连续监测,并有可能集成到医疗保健平台中。这种整合可以加强远程监控,从而进行及时干预和制定个性化护理计划,最终改善临床疗效。我们的模型具有概率性质,可以对估计参数的不确定性进行量化,让临床医生对数据的可靠性有细致入微的了解。
{"title":"Probabilistic Estimation of Cadence and Walking Speed From Floor Vibrations","authors":"Yohanna MejiaCruz;Juan M. Caicedo;Zhaoshuo Jiang;Jean M. Franco","doi":"10.1109/JTEHM.2024.3415412","DOIUrl":"https://doi.org/10.1109/JTEHM.2024.3415412","url":null,"abstract":"Objective: This research aims to extract human gait parameters from floor vibrations. The proposed approach provides an innovative methodology on occupant activity, contributing to a broader understanding of how human movements interact within their built environment.Methods and Procedures: A multilevel probabilistic model was developed to estimate cadence and walking speed through the analysis of floor vibrations induced by walking. The model addresses challenges related to missing or incomplete information in the floor acceleration signals. Following the Bayesian Analysis Reporting Guidelines (BARG) for reproducibility, the model was evaluated through twenty-seven walking experiments, capturing floor vibration and data from Ambulatory Parkinson’s Disease Monitoring (APDM) wearable sensors. The model was tested in a real-time implementation where ten individuals were recorded walking at their own selected pace.Results: Using a rigorous combined decision criteria of 95% high posterior density (HPD) and the Range of Practical Equivalence (ROPE) following BARG, the results demonstrate satisfactory alignment between estimations and target values for practical purposes. Notably, with over 90% of the 95% HPD falling within the region of practical equivalence, there is a solid basis for accepting the estimations as probabilistically aligned with the estimations using the APDM sensors and video recordings.Conclusion: This research validates the probabilistic multilevel model in estimating cadence and walking speed by analyzing floor vibrations, demonstrating its satisfactory comparability with established technologies such as APDM sensors and video recordings. The close alignment between the estimations and target values emphasizes the approach’s efficacy. The proposed model effectively tackles prevalent challenges associated with missing or incomplete data in real-world scenarios, enhancing the accuracy of gait parameter estimations derived from floor vibrations.Clinical impact: Extracting gait parameters from floor vibrations could provide a non-intrusive and continuous means of monitoring an individual’s gait, offering valuable insights into mobility and potential indicators of neurological conditions. The implications of this research extend to the development of advanced gait analysis tools, offering new perspectives on assessing and understanding walking patterns for improved diagnostics and personalized healthcare.Clinical and Translational Impact Statement: This manuscript introduces an innovative approach for unattended gait assessments with potentially significant implications for clinical decision-making. By utilizing floor vibrations to estimate cadence and walking speed, the technology can provide clinicians with valuable insights into their patients’ mobility and functional abilities in real-life settings. The strategic installation of accelerometers beneath the flooring of homes or care facilities allows for uninterrupted daily activities","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"508-519"},"PeriodicalIF":3.7,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10566478","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141453423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Scalp to Ear-EEG: A Generalizable Transfer Learning Model for Automatic Sleep Scoring in Older People 从头皮到耳部电子脑电图:用于老年人自动睡眠评分的通用迁移学习模型
IF 3.4 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-04-17 DOI: 10.1109/JTEHM.2024.3388852
Ghena Hammour;Harry Davies;Giuseppe Atzori;Ciro Della Monica;Kiran K. G. Ravindran;Victoria Revell;Derk-Jan Dijk;Danilo P. Mandic
Objective: Sleep monitoring has extensively utilized electroencephalogram (EEG) data collected from the scalp, yielding very large data repositories and well-trained analysis models. Yet, this wealth of data is lacking for emerging, less intrusive modalities, such as ear-EEG.Methods and procedures: The current study seeks to harness the abundance of open-source scalp EEG datasets by applying models pre-trained on data, either directly or with minimal fine-tuning; this is achieved in the context of effective sleep analysis from ear-EEG data that was recorded using a single in-ear electrode, referenced to the ipsilateral mastoid, and developed in-house as described in our previous work. Unlike previous studies, our research uniquely focuses on an older cohort (17 subjects aged 65-83, mean age 71.8 years, some with health conditions), and employs LightGBM for transfer learning, diverging from previous deep learning approaches. Results: Results show that the initial accuracy of the pre-trained model on ear-EEG was 70.1%, but fine-tuning the model with ear-EEG data improved its classification accuracy to 73.7%. The fine-tuned model exhibited a statistically significant improvement (p < 0.05, dependent t-test) for 10 out of the 13 participants, as reflected by an enhanced average Cohen’s kappa score (a statistical measure of inter-rater agreement for categorical items) of 0.639, indicating a stronger agreement between automated and expert classifications of sleep stages. Comparative SHAP value analysis revealed a shift in feature importance for the N3 sleep stage, underscoring the effectiveness of the fine-tuning process.Conclusion: Our findings underscore the potential of fine-tuning pre-trained scalp EEG models on ear-EEG data to enhance classification accuracy, particularly within an older population and using feature-based methods for transfer learning. This approach presents a promising avenue for ear-EEG analysis in sleep studies, offering new insights into the applicability of transfer learning across different populations and computational techniques.Clinical impact: An enhanced ear-EEG method could be pivotal in remote monitoring settings, allowing for continuous, non-invasive sleep quality assessment in elderly patients with conditions like dementia or sleep apnea.
目的:睡眠监测广泛使用了从头皮收集的脑电图(EEG)数据,从而产生了非常庞大的数据存储库和训练有素的分析模型。然而,对于新兴的、侵入性较低的模式,如耳部脑电图,却缺乏这种丰富的数据:目前的研究试图通过直接或通过最小微调应用数据预训练模型来利用大量的开源头皮脑电图数据集;这是在使用单个耳内电极记录的耳部脑电图数据进行有效睡眠分析的背景下实现的,该数据以同侧乳突为参照,并在我们之前的工作中进行了内部开发。与之前的研究不同,我们的研究独特地将重点放在了老年人群(17 名受试者,年龄在 65-83 岁之间,平均年龄为 71.8 岁,其中一些人患有健康疾病)上,并采用 LightGBM 进行迁移学习,与之前的深度学习方法有所不同。结果结果显示,预训练模型在耳-EEG 上的初始准确率为 70.1%,但利用耳-EEG 数据对模型进行微调后,其分类准确率提高到 73.7%。微调后的模型对 13 位参与者中的 10 位有显著的统计学改进(P < 0.05,依赖性 t 检验),这体现在平均科恩卡帕分数(衡量分类项目中评分者之间一致性的统计学指标)提高到了 0.639,表明睡眠阶段的自动分类与专家分类之间的一致性更强了。SHAP值比较分析表明,N3睡眠阶段的特征重要性发生了变化,凸显了微调过程的有效性:我们的研究结果凸显了在耳部脑电图数据上微调预训练头皮脑电图模型以提高分类准确性的潜力,尤其是在老年人群中使用基于特征的迁移学习方法。这种方法为睡眠研究中的耳部脑电图分析提供了一个前景广阔的途径,为迁移学习在不同人群和计算技术中的适用性提供了新的见解:临床影响:增强型耳部电子脑电图方法在远程监测设置中可能会起到关键作用,可对患有痴呆症或睡眠呼吸暂停等疾病的老年患者进行连续、无创的睡眠质量评估。
{"title":"From Scalp to Ear-EEG: A Generalizable Transfer Learning Model for Automatic Sleep Scoring in Older People","authors":"Ghena Hammour;Harry Davies;Giuseppe Atzori;Ciro Della Monica;Kiran K. G. Ravindran;Victoria Revell;Derk-Jan Dijk;Danilo P. Mandic","doi":"10.1109/JTEHM.2024.3388852","DOIUrl":"10.1109/JTEHM.2024.3388852","url":null,"abstract":"Objective: Sleep monitoring has extensively utilized electroencephalogram (EEG) data collected from the scalp, yielding very large data repositories and well-trained analysis models. Yet, this wealth of data is lacking for emerging, less intrusive modalities, such as ear-EEG.Methods and procedures: The current study seeks to harness the abundance of open-source scalp EEG datasets by applying models pre-trained on data, either directly or with minimal fine-tuning; this is achieved in the context of effective sleep analysis from ear-EEG data that was recorded using a single in-ear electrode, referenced to the ipsilateral mastoid, and developed in-house as described in our previous work. Unlike previous studies, our research uniquely focuses on an older cohort (17 subjects aged 65-83, mean age 71.8 years, some with health conditions), and employs LightGBM for transfer learning, diverging from previous deep learning approaches. Results: Results show that the initial accuracy of the pre-trained model on ear-EEG was 70.1%, but fine-tuning the model with ear-EEG data improved its classification accuracy to 73.7%. The fine-tuned model exhibited a statistically significant improvement (p < 0.05, dependent t-test) for 10 out of the 13 participants, as reflected by an enhanced average Cohen’s kappa score (a statistical measure of inter-rater agreement for categorical items) of 0.639, indicating a stronger agreement between automated and expert classifications of sleep stages. Comparative SHAP value analysis revealed a shift in feature importance for the N3 sleep stage, underscoring the effectiveness of the fine-tuning process.Conclusion: Our findings underscore the potential of fine-tuning pre-trained scalp EEG models on ear-EEG data to enhance classification accuracy, particularly within an older population and using feature-based methods for transfer learning. This approach presents a promising avenue for ear-EEG analysis in sleep studies, offering new insights into the applicability of transfer learning across different populations and computational techniques.Clinical impact: An enhanced ear-EEG method could be pivotal in remote monitoring settings, allowing for continuous, non-invasive sleep quality assessment in elderly patients with conditions like dementia or sleep apnea.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"448-456"},"PeriodicalIF":3.4,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10504255","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140612025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of Statistical Analysis and Machine Learning to Identify Infants’ Abnormal Suckling Behavior 应用统计分析和机器学习识别婴儿异常吸吮行为
IF 3.4 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-04-17 DOI: 10.1109/JTEHM.2024.3390589
Phuong Truong;Erin Walsh;Vanessa P. Scott;Michelle Leff;Alice Chen;James Friend
Objective: Identify infants with abnormal suckling behavior from simple non-nutritive suckling devices.Background: While it is well known breastfeeding is beneficial to the health of both mothers and infants, breastfeeding ceases in 75 percent of mother-child dyads by 6 months. The current standard of care lacks objective measurements to screen infant suckling abnormalities within the first few days of life, a critical time to establish milk supply and successful breastfeeding practices.Materials and Methods: A non-nutritive suckling vacuum measurement system, previously developed by the authors, is used to gather data from 91 healthy full-term infants under thirty days old. Non-nutritive suckling was recorded for a duration of sixty seconds. We establish normative data for the mean suck vacuum, maximum suck vacuum, suckling frequency, burst duration, sucks per burst, and vacuum signal shape. We then apply computational methods (Mahalanobis distance, KNN) to detect anomalies in the data to identify infants with abnormal suckling. We finally provide case studies of healthy newborn infants and infants diagnosed with ankyloglossia.Results: In a series of case evaluations, we demonstrate the ability to detect abnormal suckling behavior using statistical analysis and machine learning. We evaluate cases of ankyloglossia to determine how oral dysfunction and surgical interventions affect non-nutritive suckling measurements.Conclusions: Statistical analysis (Mahalanobis Distance) and machine learning [K nearest neighbor (KNN)] can be viable approaches to rapidly interpret infant suckling measurements. Particularly in practices using the digital suck assessment with a gloved finger, it can provide a more objective, early stage screening method to identify abnormal infant suckling vacuum. This approach for identifying those at risk for breastfeeding complications is crucial to complement complex emerging clinical evaluation technology.Clinical Impact: By analyzing non-nutritive suckling using computational methods, we demonstrate the ability to detect abnormal and normal behavior in infant suckling that can inform breastfeeding intervention pathways in clinic.Clinical and Translational Impact Statement: The work serves to shed light on the lack of consensus for determining appropriate intervention pathways for infant oral dysfunction. We demonstrate using statistical analysis and machine learning that normal and abnormal infant suckling can be identified and used in determining if surgical intervention is a necessary solution to resolve infant feeding difficulties.
目的: 通过简单的非营养性吸吮装置识别吸吮行为异常的婴儿:通过简单的非营养性吸吮装置识别吸吮行为异常的婴儿:背景:众所周知,母乳喂养有益于母亲和婴儿的健康,但 75% 的母婴家庭在婴儿 6 个月时就停止了母乳喂养。目前的护理标准缺乏客观的测量方法来筛查婴儿出生后几天内的吸吮异常,而这正是建立奶水供应和成功母乳喂养的关键时期:作者之前开发的非营养性吸吮真空测量系统用于收集 91 名出生不到 30 天的健康足月婴儿的数据。非营养性吸吮的记录时间为六十秒。我们建立了平均吸吮真空度、最大吸吮真空度、吸吮频率、爆发持续时间、每次爆发吸吮次数和真空信号形状的标准数据。然后,我们采用计算方法(马哈罗诺比距离、KNN)检测数据中的异常情况,以识别吸吮异常的婴儿。最后,我们提供了健康新生儿和被诊断为无吮吸症婴儿的案例研究:在一系列病例评估中,我们展示了利用统计分析和机器学习检测异常吸吮行为的能力。我们对口颌畸形病例进行了评估,以确定口腔功能障碍和手术干预对非营养性吸吮测量的影响:统计分析(Mahalanobis Distance)和机器学习[K nearest neighbor (KNN)]是快速解释婴儿吸吮测量结果的可行方法。特别是在使用戴手套的手指进行数字吸吮评估的实践中,它可以提供一种更客观的早期筛查方法,以识别异常的婴儿真空吸吮。这种识别母乳喂养并发症高危人群的方法对于补充复杂的新兴临床评估技术至关重要:通过使用计算方法分析非营养性吸吮,我们展示了检测婴儿吸吮中异常和正常行为的能力,这可以为临床中的母乳喂养干预路径提供依据:这项工作有助于阐明在确定婴儿口腔功能障碍的适当干预途径方面缺乏共识的问题。我们利用统计分析和机器学习证明,可以识别正常和异常的婴儿吸吮行为,并用于确定手术干预是否是解决婴儿喂养困难的必要方案。
{"title":"Application of Statistical Analysis and Machine Learning to Identify Infants’ Abnormal Suckling Behavior","authors":"Phuong Truong;Erin Walsh;Vanessa P. Scott;Michelle Leff;Alice Chen;James Friend","doi":"10.1109/JTEHM.2024.3390589","DOIUrl":"10.1109/JTEHM.2024.3390589","url":null,"abstract":"Objective: Identify infants with abnormal suckling behavior from simple non-nutritive suckling devices.Background: While it is well known breastfeeding is beneficial to the health of both mothers and infants, breastfeeding ceases in 75 percent of mother-child dyads by 6 months. The current standard of care lacks objective measurements to screen infant suckling abnormalities within the first few days of life, a critical time to establish milk supply and successful breastfeeding practices.Materials and Methods: A non-nutritive suckling vacuum measurement system, previously developed by the authors, is used to gather data from 91 healthy full-term infants under thirty days old. Non-nutritive suckling was recorded for a duration of sixty seconds. We establish normative data for the mean suck vacuum, maximum suck vacuum, suckling frequency, burst duration, sucks per burst, and vacuum signal shape. We then apply computational methods (Mahalanobis distance, KNN) to detect anomalies in the data to identify infants with abnormal suckling. We finally provide case studies of healthy newborn infants and infants diagnosed with ankyloglossia.Results: In a series of case evaluations, we demonstrate the ability to detect abnormal suckling behavior using statistical analysis and machine learning. We evaluate cases of ankyloglossia to determine how oral dysfunction and surgical interventions affect non-nutritive suckling measurements.Conclusions: Statistical analysis (Mahalanobis Distance) and machine learning [K nearest neighbor (KNN)] can be viable approaches to rapidly interpret infant suckling measurements. Particularly in practices using the digital suck assessment with a gloved finger, it can provide a more objective, early stage screening method to identify abnormal infant suckling vacuum. This approach for identifying those at risk for breastfeeding complications is crucial to complement complex emerging clinical evaluation technology.Clinical Impact: By analyzing non-nutritive suckling using computational methods, we demonstrate the ability to detect abnormal and normal behavior in infant suckling that can inform breastfeeding intervention pathways in clinic.Clinical and Translational Impact Statement: The work serves to shed light on the lack of consensus for determining appropriate intervention pathways for infant oral dysfunction. We demonstrate using statistical analysis and machine learning that normal and abnormal infant suckling can be identified and used in determining if surgical intervention is a necessary solution to resolve infant feeding difficulties.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"435-447"},"PeriodicalIF":3.4,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10504251","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140611932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling Physical Forces Experienced by Cancer and Stromal Cells Within Different Organ-Specific Tumor Tissue 模拟不同器官特异性肿瘤组织内癌细胞和基质细胞所经历的物理力
IF 3.4 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-04-15 DOI: 10.1109/JTEHM.2024.3388561
Morgan Connaughton;Mahsa Dabagh
Mechanical force exerted on cancer cells by their microenvironment have been reported to drive cells toward invasive phenotypes by altering cells’ motility, proliferation, and apoptosis. These mechanical forces include compressive, tensile, hydrostatic, and shear forces. The importance of forces is then hypothesized to be an alteration of cancer cells’ and their microenvironment’s biophysical properties as the indicator of a tumor’s malignancy state. Our objective is to investigate and quantify the correlation between a tumor’s malignancy state and forces experienced by the cancer cells and components of the microenvironment. In this study, we have developed a multicomponent, three-dimensional model of tumor tissue consisting of a cancer cell surrounded by fibroblasts and extracellular matrix (ECM). Our results on three different organs including breast, kidney, and pancreas show that: A) the stresses within tumor tissue are impacted by the organ specific ECM’s biophysical properties, B) more invasive cancer cells experience higher stresses, C) in pancreas which has a softer ECM (Young modulus of 1.0 kPa) and stiffer cancer cells (Young modulus of 2.4 kPa and 1.7 kPa) than breast and kidney, cancer cells experienced significantly higher stresses, D) cancer cells in contact with ECM experienced higher stresses compared to cells surrounded by fibroblasts but the area of tumor stroma experiencing high stresses has a maximum length of $40 ~mu text{m}$ when the cancer cell is surrounded by fibroblasts and $12 ~mu text{m}$ for when the cancer cell is in vicinity of ECM. This study serves as an important first step in understanding of how the stresses experienced by cancer cells, fibroblasts, and ECM are associated with malignancy states of cancer cells in different organs. The quantification of forces exerted on cancer cells by different organ-specific ECM and at different stages of malignancy will help, first to develop theranostic strategies, second to predict accurately which tumors will become highly malignant, and third to establish accurate criteria controlling the progression of cancer cells malignancy. Furthermore, our in silico model of tumor tissue can yield critical, useful information for guiding ex vivo or in vitro experiments, narrowing down variables to be investigated, understanding what factors could be impacting cancer treatments or even biomarkers to be looking for.
据报道,微环境对癌细胞施加的机械力会改变细胞的运动、增殖和凋亡,从而促使细胞形成侵袭性表型。这些机械力包括压缩力、拉伸力、静水压和剪切力。这些力的重要性被推测为改变癌细胞及其微环境的生物物理特性,是肿瘤恶性程度的指标。我们的目标是研究和量化肿瘤的恶性程度与癌细胞和微环境成分所受作用力之间的相关性。在这项研究中,我们建立了一个多成分三维肿瘤组织模型,该模型由被成纤维细胞和细胞外基质(ECM)包围的癌细胞组成。我们对包括乳腺、肾脏和胰腺在内的三种不同器官的研究结果表明A) 肿瘤组织内的应力受器官特定 ECM 生物物理特性的影响;B) 侵袭性更强的癌细胞会承受更高的应力;C) 与乳腺和肾脏相比,胰腺的 ECM 更软(杨氏模量为 1.0 kPa),癌细胞更硬(杨氏模量分别为 2.4 kPa 和 1.7 kPa)。D) 与被成纤维细胞包围的细胞相比,与 ECM 接触的癌细胞承受更高的应力,但当癌细胞被成纤维细胞包围时,承受高应力的肿瘤基质区域的最大长度为 40 ~mu text{m}$,而当癌细胞位于 ECM 附近时,最大长度为 12 ~mu text{m}$。这项研究为了解癌细胞、成纤维细胞和 ECM 所承受的应力如何与不同器官中癌细胞的恶性状态相关联迈出了重要的第一步。量化不同器官特异性 ECM 在不同恶性阶段对癌细胞施加的作用力将有助于:第一,开发治疗策略;第二,准确预测哪些肿瘤将高度恶性;第三,建立控制癌细胞恶性进展的准确标准。此外,我们的肿瘤组织硅学模型还能提供关键的有用信息,用于指导体外或体内实验,缩小需要研究的变量范围,了解哪些因素可能会影响癌症治疗,甚至是需要寻找的生物标志物。
{"title":"Modeling Physical Forces Experienced by Cancer and Stromal Cells Within Different Organ-Specific Tumor Tissue","authors":"Morgan Connaughton;Mahsa Dabagh","doi":"10.1109/JTEHM.2024.3388561","DOIUrl":"10.1109/JTEHM.2024.3388561","url":null,"abstract":"Mechanical force exerted on cancer cells by their microenvironment have been reported to drive cells toward invasive phenotypes by altering cells’ motility, proliferation, and apoptosis. These mechanical forces include compressive, tensile, hydrostatic, and shear forces. The importance of forces is then hypothesized to be an alteration of cancer cells’ and their microenvironment’s biophysical properties as the indicator of a tumor’s malignancy state. Our objective is to investigate and quantify the correlation between a tumor’s malignancy state and forces experienced by the cancer cells and components of the microenvironment. In this study, we have developed a multicomponent, three-dimensional model of tumor tissue consisting of a cancer cell surrounded by fibroblasts and extracellular matrix (ECM). Our results on three different organs including breast, kidney, and pancreas show that: A) the stresses within tumor tissue are impacted by the organ specific ECM’s biophysical properties, B) more invasive cancer cells experience higher stresses, C) in pancreas which has a softer ECM (Young modulus of 1.0 kPa) and stiffer cancer cells (Young modulus of 2.4 kPa and 1.7 kPa) than breast and kidney, cancer cells experienced significantly higher stresses, D) cancer cells in contact with ECM experienced higher stresses compared to cells surrounded by fibroblasts but the area of tumor stroma experiencing high stresses has a maximum length of \u0000<inline-formula> <tex-math>$40 ~mu text{m}$ </tex-math></inline-formula>\u0000 when the cancer cell is surrounded by fibroblasts and \u0000<inline-formula> <tex-math>$12 ~mu text{m}$ </tex-math></inline-formula>\u0000 for when the cancer cell is in vicinity of ECM. This study serves as an important first step in understanding of how the stresses experienced by cancer cells, fibroblasts, and ECM are associated with malignancy states of cancer cells in different organs. The quantification of forces exerted on cancer cells by different organ-specific ECM and at different stages of malignancy will help, first to develop theranostic strategies, second to predict accurately which tumors will become highly malignant, and third to establish accurate criteria controlling the progression of cancer cells malignancy. Furthermore, our in silico model of tumor tissue can yield critical, useful information for guiding ex vivo or in vitro experiments, narrowing down variables to be investigated, understanding what factors could be impacting cancer treatments or even biomarkers to be looking for.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"413-434"},"PeriodicalIF":3.4,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10499240","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140579954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Actuated Variable-View Rigid Scope System to Assist Visualization in Diagnostic Procedures 辅助诊断程序可视化的可变视角刚性显微镜系统
IF 3.4 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-03-31 DOI: 10.1109/JTEHM.2024.3407951
Sofia Basha;Mohammad Khorasani;Nihal Abdurahiman;Jhasketan Padhan;Victor Baez;Abdulla Al-Ansari;Panagiotis Tsiamyrtzis;Aaron T. Becker;Nikhil V. Navkar
Objective: Variable-view rigid scopes offer advantages compared to traditional angled laparoscopes for examining a diagnostic site. However, altering the scope’s view requires a high level of dexterity and understanding of spatial orientation. This requires an intuitive mechanism to allow an operator to easily understand the anatomical surroundings and smoothly adjust the scope’s focus during diagnosis. To address this challenge, the objective of this work is to develop a mechanized arm that assists in visualization using variable-view rigid scopes during diagnostic procedures.Methods: A system with a mechanized arm to maneuver a variable-view rigid scope (EndoCAMeleon - Karl Storz) was developed. A user study was conducted to assess the ability of the proposed mechanized arm for diagnosis in a preclinical navigation task and a simulated cystoscopy procedure.Results: The mechanized arm performed significantly better than direct maneuvering of the rigid scope. In the preclinical navigation task, it reduced the percentage of time the scope’s focus shifted outside a predefined track. Similarly, for simulated cystoscopy procedure, it reduced the duration and the perceived workload.Conclusion: The proposed mechanized arm enhances the operator’s ability to accurately maneuver a variable-view rigid scope and reduces the effort in performing diagnostic procedures.Clinical and Translational Impact Statement: The preclinical research introduces a mechanized arm to intuitively maneuver a variable-view rigid scope during diagnostic procedures, while minimizing the mental and physical workload to the operator.
目的:与传统的倾斜腹腔镜相比,可变视角刚性腹腔镜在检查诊断部位方面具有优势。然而,改变瞄准镜的视角需要高度的灵活性和对空间方位的理解。这就需要一种直观的机制,让操作员能够轻松了解周围的解剖环境,并在诊断过程中顺利调整瞄准镜的焦点。为了应对这一挑战,这项工作的目标是开发一种机械化手臂,在诊断过程中使用可变视角刚性显微镜辅助观察:方法:开发了一种带有机械臂的系统,用于操纵可变视角硬镜(EndoCAMeleon - Karl Storz)。结果:机械化手臂在临床前导航任务和模拟膀胱镜检查过程中的表现明显优于机械化手臂:结果:机械化手臂的表现明显优于直接操纵硬镜。在临床前导航任务中,它减少了瞄准镜焦点偏离预定轨道的时间百分比。同样,在模拟膀胱镜检查过程中,机械臂缩短了持续时间,减轻了感知工作量:结论:拟议的机械化手臂提高了操作员准确操纵可变视角刚性镜的能力,并减少了执行诊断程序的工作量:临床前研究引入了一种机械化手臂,可在诊断过程中直观地操纵可变视角硬镜,同时最大限度地减轻操作者的脑力和体力负担。
{"title":"An Actuated Variable-View Rigid Scope System to Assist Visualization in Diagnostic Procedures","authors":"Sofia Basha;Mohammad Khorasani;Nihal Abdurahiman;Jhasketan Padhan;Victor Baez;Abdulla Al-Ansari;Panagiotis Tsiamyrtzis;Aaron T. Becker;Nikhil V. Navkar","doi":"10.1109/JTEHM.2024.3407951","DOIUrl":"10.1109/JTEHM.2024.3407951","url":null,"abstract":"Objective: Variable-view rigid scopes offer advantages compared to traditional angled laparoscopes for examining a diagnostic site. However, altering the scope’s view requires a high level of dexterity and understanding of spatial orientation. This requires an intuitive mechanism to allow an operator to easily understand the anatomical surroundings and smoothly adjust the scope’s focus during diagnosis. To address this challenge, the objective of this work is to develop a mechanized arm that assists in visualization using variable-view rigid scopes during diagnostic procedures.Methods: A system with a mechanized arm to maneuver a variable-view rigid scope (EndoCAMeleon - Karl Storz) was developed. A user study was conducted to assess the ability of the proposed mechanized arm for diagnosis in a preclinical navigation task and a simulated cystoscopy procedure.Results: The mechanized arm performed significantly better than direct maneuvering of the rigid scope. In the preclinical navigation task, it reduced the percentage of time the scope’s focus shifted outside a predefined track. Similarly, for simulated cystoscopy procedure, it reduced the duration and the perceived workload.Conclusion: The proposed mechanized arm enhances the operator’s ability to accurately maneuver a variable-view rigid scope and reduces the effort in performing diagnostic procedures.Clinical and Translational Impact Statement: The preclinical research introduces a mechanized arm to intuitively maneuver a variable-view rigid scope during diagnostic procedures, while minimizing the mental and physical workload to the operator.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"499-507"},"PeriodicalIF":3.4,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10543117","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141190485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Study on Intelligent Optical Bone Densitometry 智能光学骨密度测量法研究
IF 3.4 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-03-21 DOI: 10.1109/JTEHM.2024.3368106
Takhellambam Gautam Meitei;Wei-Chun Chang;Pou-Leng Cheong;Yi-Min Wang;Chia-Wei Sun
Osteoporosis is a prevalent chronic disease worldwide, particularly affecting the aging population. The gold standard diagnostic tool for osteoporosis is Dual-energy X-ray Absorptiometry (DXA). However, the expensive cost of the DXA machine and the need for skilled professionals to operate it restrict its accessibility to the general public. This paper builds upon previous research and proposes a novel approach for rapidly screening bone density. The method involves utilizing near-infrared light to capture local body information within the human body. Deep learning techniques are employed to analyze the obtained data and extract meaningful insights related to bone density. Our initial prediction, utilizing multi-linear regression, demonstrated a strong correlation (r = 0.98, p-value = 0.003**) with the measured Bone Mineral Density (BMD) obtained from Dual-energy X-ray Absorptiometry (DXA). This indicates a highly significant relationship between the predicted values and the actual BMD measurements. A deep learning-based algorithm is applied to analyze the underlying information further to predict bone density at the wrist, hip, and spine. The prediction of bone densities in the hip and spine holds significant importance due to their status as gold-standard sites for assessing an individual’s bone density. Our prediction rate had an error margin below 10% for the wrist and below 20% for the hip and spine bone density.
骨质疏松症是一种全球流行的慢性疾病,对老龄人口的影响尤为严重。骨质疏松症的金标准诊断工具是双能 X 射线吸收测定法(DXA)。然而,DXA 仪器价格昂贵,而且需要熟练的专业人员操作,这限制了普通大众对它的使用。本文在以往研究的基础上,提出了一种快速筛查骨密度的新方法。该方法利用近红外线捕捉人体局部信息。利用深度学习技术来分析获得的数据,并提取与骨密度相关的有意义的见解。我们利用多线性回归进行的初步预测显示,该预测与通过双能 X 射线吸收仪(DXA)测量的骨密度(BMD)之间存在很强的相关性(r = 0.98,p 值 = 0.003**)。这表明预测值与实际 BMD 测量值之间存在着非常显著的关系。应用基于深度学习的算法进一步分析基础信息,以预测手腕、髋部和脊柱的骨密度。由于髋部和脊柱是评估个人骨密度的黄金标准部位,因此预测这两个部位的骨密度具有重要意义。我们对腕部骨密度的预测误差率低于 10%,对髋部和脊柱骨密度的预测误差率低于 20%。
{"title":"A Study on Intelligent Optical Bone Densitometry","authors":"Takhellambam Gautam Meitei;Wei-Chun Chang;Pou-Leng Cheong;Yi-Min Wang;Chia-Wei Sun","doi":"10.1109/JTEHM.2024.3368106","DOIUrl":"10.1109/JTEHM.2024.3368106","url":null,"abstract":"Osteoporosis is a prevalent chronic disease worldwide, particularly affecting the aging population. The gold standard diagnostic tool for osteoporosis is Dual-energy X-ray Absorptiometry (DXA). However, the expensive cost of the DXA machine and the need for skilled professionals to operate it restrict its accessibility to the general public. This paper builds upon previous research and proposes a novel approach for rapidly screening bone density. The method involves utilizing near-infrared light to capture local body information within the human body. Deep learning techniques are employed to analyze the obtained data and extract meaningful insights related to bone density. Our initial prediction, utilizing multi-linear regression, demonstrated a strong correlation (r = 0.98, p-value = 0.003**) with the measured Bone Mineral Density (BMD) obtained from Dual-energy X-ray Absorptiometry (DXA). This indicates a highly significant relationship between the predicted values and the actual BMD measurements. A deep learning-based algorithm is applied to analyze the underlying information further to predict bone density at the wrist, hip, and spine. The prediction of bone densities in the hip and spine holds significant importance due to their status as gold-standard sites for assessing an individual’s bone density. Our prediction rate had an error margin below 10% for the wrist and below 20% for the hip and spine bone density.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"401-412"},"PeriodicalIF":3.4,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10477504","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140202996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CHIVID: A Rapid Deployment of Community and Home Isolation During COVID-19 Pandemics CHIVID:COVID-19 大流行期间社区和家庭隔离的快速部署
IF 3.4 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-03-13 DOI: 10.1109/JTEHM.2024.3377258
Parpada Piamjinda;Chiraphat Boonnag;Piyalitt Ittichaiwong;Seandee Rattanasonrerk;Kanyakorn Veerakanjana;Khanita Duangchaemkarn;Warissara Limpornchitwilai;Kamonwan Thanontip;Napasara Asawalertsak;Thitikorn Kaewlee;Theerawit Wilaiprasitporn
Background: CHIVID is a telemedicine solution developed under tight time constraints that assists Thai healthcare practitioners in monitoring non-severe COVID-19 patients in isolation programs during crises. It assesses patient health and notifies healthcare practitioners of high-risk scenarios through a chatbot. The system was designed to integrate with the famous Thai messaging app LINE, reducing development time and enhancing user-friendliness, and the system allowed patients to upload a pulse oximeter image automatically processed by the PACMAN function to extract oxygen saturation and heart rate values to reduce patient input errors. Methods: This article describes the proposed system and presents a mixed-methods study that evaluated the system’s performance by collecting survey responses from 70 healthcare practitioners and analyzing 14,817 patient records. Results: Approximately 71.4% of healthcare practitioners use the system more than twice daily, with the majority managing 1–10 patients, while 11.4% handle over 101 patients. The progress note is a function that healthcare practitioners most frequently use and are satisfied with. Regarding patient data, 58.9%(8,724/14,817) are male, and 49.7%(7,367/14,817) within the 18 to 34 age range. The average length of isolation was 7.6 days, and patients submitted progress notes twice daily on average. Notably, individuals aged 18 to 34 demonstrated the highest utilization rates for the PACMAN function. Furthermore, most patients, totaling over 95.52%(14,153/14,817), were discharged normally. Conclusion: The findings indicate that CHIVID could be one of the telemedicine solutions for hospitals with patient overflow and healthcare practitioners unfamiliar with telemedicine technology to improve patient care during a critical crisis. Clinical and Translational Impact Statement— CHIVID’s success arises from seamlessly integrating telemedicine into third-party application within a limited timeframe and effectively using clinical decision support systems to address challenges during the COVID-19 crisis.
背景:CHIVID 是在时间紧迫的情况下开发的远程医疗解决方案,可在危机期间协助泰国医疗从业人员监控隔离项目中的非重症 COVID-19 患者。它通过聊天机器人评估病人的健康状况并通知医疗从业人员高风险情况。该系统旨在与泰国著名的消息应用程序 LINE 集成,从而缩短开发时间并提高用户友好性。该系统允许患者上传脉搏血氧仪图像,并由 PACMAN 功能自动处理,以提取血氧饱和度和心率值,从而减少患者输入错误。方法:本文介绍了所提议的系统,并介绍了一项混合方法研究,该研究通过收集 70 名医疗从业人员的调查反馈和分析 14,817 份患者记录来评估该系统的性能。研究结果约 71.4% 的医疗从业人员每天使用该系统两次以上,其中大多数人管理 1-10 名患者,11.4% 的人管理 101 名以上患者。进度记录是医疗从业人员最常用且最满意的功能。在患者数据方面,58.9%(8,724/14,817)为男性,49.7%(7,367/14,817)在 18 至 34 岁之间。平均隔离时间为 7.6 天,患者平均每天提交两次进展记录。值得注意的是,18 至 34 岁人群对 PACMAN 功能的使用率最高。此外,大多数患者(总计超过 95.52%(14,153/14,817))都能正常出院。结论研究结果表明,CHIVID 可以作为远程医疗解决方案之一,帮助病人过多的医院和不熟悉远程医疗技术的医疗从业人员在危急关头改善病人护理。临床和转化影响声明--CHIVID 的成功源于在有限的时间内将远程医疗无缝集成到第三方应用中,并有效利用临床决策支持系统应对 COVID-19 危机期间的挑战。
{"title":"CHIVID: A Rapid Deployment of Community and Home Isolation During COVID-19 Pandemics","authors":"Parpada Piamjinda;Chiraphat Boonnag;Piyalitt Ittichaiwong;Seandee Rattanasonrerk;Kanyakorn Veerakanjana;Khanita Duangchaemkarn;Warissara Limpornchitwilai;Kamonwan Thanontip;Napasara Asawalertsak;Thitikorn Kaewlee;Theerawit Wilaiprasitporn","doi":"10.1109/JTEHM.2024.3377258","DOIUrl":"10.1109/JTEHM.2024.3377258","url":null,"abstract":"Background: CHIVID is a telemedicine solution developed under tight time constraints that assists Thai healthcare practitioners in monitoring non-severe COVID-19 patients in isolation programs during crises. It assesses patient health and notifies healthcare practitioners of high-risk scenarios through a chatbot. The system was designed to integrate with the famous Thai messaging app LINE, reducing development time and enhancing user-friendliness, and the system allowed patients to upload a pulse oximeter image automatically processed by the PACMAN function to extract oxygen saturation and heart rate values to reduce patient input errors. Methods: This article describes the proposed system and presents a mixed-methods study that evaluated the system’s performance by collecting survey responses from 70 healthcare practitioners and analyzing 14,817 patient records. Results: Approximately 71.4% of healthcare practitioners use the system more than twice daily, with the majority managing 1–10 patients, while 11.4% handle over 101 patients. The progress note is a function that healthcare practitioners most frequently use and are satisfied with. Regarding patient data, 58.9%(8,724/14,817) are male, and 49.7%(7,367/14,817) within the 18 to 34 age range. The average length of isolation was 7.6 days, and patients submitted progress notes twice daily on average. Notably, individuals aged 18 to 34 demonstrated the highest utilization rates for the PACMAN function. Furthermore, most patients, totaling over 95.52%(14,153/14,817), were discharged normally. Conclusion: The findings indicate that CHIVID could be one of the telemedicine solutions for hospitals with patient overflow and healthcare practitioners unfamiliar with telemedicine technology to improve patient care during a critical crisis. Clinical and Translational Impact Statement— CHIVID’s success arises from seamlessly integrating telemedicine into third-party application within a limited timeframe and effectively using clinical decision support systems to address challenges during the COVID-19 crisis.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"390-400"},"PeriodicalIF":3.4,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10472531","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140126520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving Dysarthric Speech Segmentation With Emulated and Synthetic Augmentation 利用仿真和合成增强技术改进肢体障害语音分割
IF 3.4 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-03-11 DOI: 10.1109/JTEHM.2024.3375323
Saeid Alavi Naeini;Leif Simmatis;Deniz Jafari;Yana Yunusova;Babak Taati
Acoustic features extracted from speech can help with the diagnosis of neurological diseases and monitoring of symptoms over time. Temporal segmentation of audio signals into individual words is an important pre-processing step needed prior to extracting acoustic features. Machine learning techniques could be used to automate speech segmentation via automatic speech recognition (ASR) and sequence to sequence alignment. While state-of-the-art ASR models achieve good performance on healthy speech, their performance significantly drops when evaluated on dysarthric speech. Fine-tuning ASR models on impaired speech can improve performance in dysarthric individuals, but it requires representative clinical data, which is difficult to collect and may raise privacy concerns. This study explores the feasibility of using two augmentation methods to increase ASR performance on dysarthric speech: 1) healthy individuals varying their speaking rate and loudness (as is often used in assessments of pathological speech); 2) synthetic speech with variations in speaking rate and accent (to ensure more diverse vocal representations and fairness). Experimental evaluations showed that fine-tuning a pre-trained ASR model with data from these two sources outperformed a model fine-tuned only on real clinical data and matched the performance of a model fine-tuned on the combination of real clinical data and synthetic speech. When evaluated on held-out acoustic data from 24 individuals with various neurological diseases, the best performing model achieved an average word error rate of 5.7% and a mean correct count accuracy of 94.4%. In segmenting the data into individual words, a mean intersection-over-union of 89.2% was obtained against manual parsing (ground truth). It can be concluded that emulated and synthetic augmentations can significantly reduce the need for real clinical data of dysarthric speech when fine-tuning ASR models and, in turn, for speech segmentation.
从语音中提取声学特征有助于诊断神经系统疾病和监测症状的变化。将音频信号按时间分割成单个单词是提取声学特征前所需的重要预处理步骤。机器学习技术可用于通过自动语音识别(ASR)和序列对序列配准自动进行语音分割。虽然最先进的 ASR 模型在健康语音上取得了良好的性能,但在评估听力障碍语音时,其性能却明显下降。在受损语音上对 ASR 模型进行微调可以提高发育障碍患者的性能,但这需要有代表性的临床数据,而这些数据很难收集,而且可能会引起隐私方面的担忧。本研究探讨了使用两种增强方法提高肢体运动障碍语音的 ASR 性能的可行性:1) 改变健康人的说话速度和响度(病理语音评估中常用的方法);2) 改变说话速度和口音的合成语音(以确保更多样化的声音表现和公平性)。实验评估结果表明,利用这两种来源的数据对预先训练好的 ASR 模型进行微调,其效果优于仅根据真实临床数据进行微调的模型,并且与根据真实临床数据和合成语音组合进行微调的模型效果相当。在对 24 名患有各种神经系统疾病的患者的语音数据进行评估时,表现最好的模型的平均单词错误率为 5.7%,平均正确计数准确率为 94.4%。在将数据分割成单个单词时,与人工解析(地面实况)相比,平均交叉-重合率达到 89.2%。可以得出这样的结论:在微调 ASR 模型时,仿真和合成增强可以大大减少对真实临床语音数据的需求,进而减少对语音分段的需求。
{"title":"Improving Dysarthric Speech Segmentation With Emulated and Synthetic Augmentation","authors":"Saeid Alavi Naeini;Leif Simmatis;Deniz Jafari;Yana Yunusova;Babak Taati","doi":"10.1109/JTEHM.2024.3375323","DOIUrl":"10.1109/JTEHM.2024.3375323","url":null,"abstract":"Acoustic features extracted from speech can help with the diagnosis of neurological diseases and monitoring of symptoms over time. Temporal segmentation of audio signals into individual words is an important pre-processing step needed prior to extracting acoustic features. Machine learning techniques could be used to automate speech segmentation via automatic speech recognition (ASR) and sequence to sequence alignment. While state-of-the-art ASR models achieve good performance on healthy speech, their performance significantly drops when evaluated on dysarthric speech. Fine-tuning ASR models on impaired speech can improve performance in dysarthric individuals, but it requires representative clinical data, which is difficult to collect and may raise privacy concerns. This study explores the feasibility of using two augmentation methods to increase ASR performance on dysarthric speech: 1) healthy individuals varying their speaking rate and loudness (as is often used in assessments of pathological speech); 2) synthetic speech with variations in speaking rate and accent (to ensure more diverse vocal representations and fairness). Experimental evaluations showed that fine-tuning a pre-trained ASR model with data from these two sources outperformed a model fine-tuned only on real clinical data and matched the performance of a model fine-tuned on the combination of real clinical data and synthetic speech. When evaluated on held-out acoustic data from 24 individuals with various neurological diseases, the best performing model achieved an average word error rate of 5.7% and a mean correct count accuracy of 94.4%. In segmenting the data into individual words, a mean intersection-over-union of 89.2% was obtained against manual parsing (ground truth). It can be concluded that emulated and synthetic augmentations can significantly reduce the need for real clinical data of dysarthric speech when fine-tuning ASR models and, in turn, for speech segmentation.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"382-389"},"PeriodicalIF":3.4,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10464345","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140105378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multispectral Imaging-Based System for Detecting Tissue Oxygen Saturation With Wound Segmentation for Monitoring Wound Healing 基于多光谱成像的组织氧饱和度检测系统与用于监测伤口愈合的伤口分割技术
IF 3.4 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-03-09 DOI: 10.1109/JTEHM.2024.3399232
Chih-Lung Lin;Meng-Hsuan Wu;Yuan-Hao Ho;Fang-Yi Lin;Yu-Hsien Lu;Yuan-Yu Hsueh;Chia-Chen Chen
Objective: Blood circulation is an important indicator of wound healing. In this study, a tissue oxygen saturation detecting (TOSD) system that is based on multispectral imaging (MSI) is proposed to quantify the degree of tissue oxygen saturation (StO2) in cutaneous tissues. Methods: A wound segmentation algorithm is used to segment automatically wound and skin areas, eliminating the need for manual labeling and applying adaptive tissue optics. Animal experiments were conducted on six mice in which they were observed seven times, once every two days. The TOSD system illuminated cutaneous tissues with two wavelengths of light - red ( $mathrm {lambda } = 660$ nm) and near-infrared ( $mathrm {lambda } = 880$ nm), and StO2 levels were calculated using images that were captured using a monochrome camera. The wound segmentation algorithm using ResNet34-based U-Net was integrated with computer vision techniques to improve its performance. Results: Animal experiments revealed that the wound segmentation algorithm achieved a Dice score of 93.49%. The StO2 levels that were determined using the TOSD system varied significantly among the phases of wound healing. Changes in StO2 levels were detected before laser speckle contrast imaging (LSCI) detected changes in blood flux. Moreover, statistical features that were extracted from the TOSD system and LSCI were utilized in principal component analysis (PCA) to visualize different wound healing phases. The average silhouette coefficients of the TOSD system with segmentation (ResNet34-based U-Net) and LSCI were 0.2890 and 0.0194, respectively. Conclusion: By detecting the StO2 levels of cutaneous tissues using the TOSD system with segmentation, the phases of wound healing were accurately distinguished. This method can support medical personnel in conducting precise wound assessments. Clinical and Translational Impact Statement—This study supports efforts in monitoring StO2 levels, wound segmentation, and wound healing phase classification to improve the efficiency and accuracy of preclinical research in the field.
目的:血液循环是伤口愈合的重要指标:血液循环是伤口愈合的重要指标。本研究提出了一种基于多光谱成像(MSI)的组织氧饱和度检测(TOSD)系统,用于量化皮肤组织的组织氧饱和度(StO2)。方法:采用伤口分割算法自动分割伤口和皮肤区域,无需人工标记,并应用自适应组织光学技术。对六只小鼠进行了动物实验,每两天观察一次,共观察七次。TOSD系统用两种波长的光--红光($mathrm {lambda } = 660$ nm)和近红外线($mathrm {lambda } = 880$ nm)照射皮肤组织,并使用单色相机捕捉的图像计算StO2水平。使用基于 ResNet34 的 U-Net 的伤口分割算法与计算机视觉技术相结合,以提高其性能。结果显示动物实验表明,伤口分割算法的 Dice 得分为 93.49%。使用 TOSD 系统测定的 StO2 水平在伤口愈合的不同阶段有显著差异。在激光斑点对比成像(LSCI)检测到血流变化之前,就能检测到 StO2 水平的变化。此外,从 TOSD 系统和 LSCI 提取的统计特征被用于主成分分析(PCA),以直观显示不同的伤口愈合阶段。带有分割功能的 TOSD 系统(基于 ResNet34 的 U-Net)和 LSCI 的平均轮廓系数分别为 0.2890 和 0.0194。结论通过使用带分割功能的 TOSD 系统检测皮肤组织的 StO2 水平,可以准确区分伤口愈合的各个阶段。这种方法可帮助医务人员进行精确的伤口评估。临床和转化影响声明--这项研究为监测 StO2 水平、伤口分割和伤口愈合阶段分类提供了支持,从而提高了该领域临床前研究的效率和准确性。
{"title":"Multispectral Imaging-Based System for Detecting Tissue Oxygen Saturation With Wound Segmentation for Monitoring Wound Healing","authors":"Chih-Lung Lin;Meng-Hsuan Wu;Yuan-Hao Ho;Fang-Yi Lin;Yu-Hsien Lu;Yuan-Yu Hsueh;Chia-Chen Chen","doi":"10.1109/JTEHM.2024.3399232","DOIUrl":"10.1109/JTEHM.2024.3399232","url":null,"abstract":"Objective: Blood circulation is an important indicator of wound healing. In this study, a tissue oxygen saturation detecting (TOSD) system that is based on multispectral imaging (MSI) is proposed to quantify the degree of tissue oxygen saturation (StO2) in cutaneous tissues. Methods: A wound segmentation algorithm is used to segment automatically wound and skin areas, eliminating the need for manual labeling and applying adaptive tissue optics. Animal experiments were conducted on six mice in which they were observed seven times, once every two days. The TOSD system illuminated cutaneous tissues with two wavelengths of light - red (\u0000<inline-formula> <tex-math>$mathrm {lambda } = 660$ </tex-math></inline-formula>\u0000 nm) and near-infrared (\u0000<inline-formula> <tex-math>$mathrm {lambda } = 880$ </tex-math></inline-formula>\u0000 nm), and StO2 levels were calculated using images that were captured using a monochrome camera. The wound segmentation algorithm using ResNet34-based U-Net was integrated with computer vision techniques to improve its performance. Results: Animal experiments revealed that the wound segmentation algorithm achieved a Dice score of 93.49%. The StO2 levels that were determined using the TOSD system varied significantly among the phases of wound healing. Changes in StO2 levels were detected before laser speckle contrast imaging (LSCI) detected changes in blood flux. Moreover, statistical features that were extracted from the TOSD system and LSCI were utilized in principal component analysis (PCA) to visualize different wound healing phases. The average silhouette coefficients of the TOSD system with segmentation (ResNet34-based U-Net) and LSCI were 0.2890 and 0.0194, respectively. Conclusion: By detecting the StO2 levels of cutaneous tissues using the TOSD system with segmentation, the phases of wound healing were accurately distinguished. This method can support medical personnel in conducting precise wound assessments. Clinical and Translational Impact Statement—This study supports efforts in monitoring StO2 levels, wound segmentation, and wound healing phase classification to improve the efficiency and accuracy of preclinical research in the field.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"468-479"},"PeriodicalIF":3.4,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10528306","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140925707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Journal of Translational Engineering in Health and Medicine-Jtehm
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1