Cocoa pod husk (CPH) is a by-product of cocoa. Whilst this by-product is converted into animal feed in some countries, it is largely left to decompose and cause environmental issues in most South Pacific countries, including Vanuatu. The husk represent 70%–80% of the whole fruit. Its use as animal feed is limited by the presence of antinutritional factors, of which, theobromine is the most prominent. Other antinutritional factors include tannin and phytate. Feeding value of the CPH is improved by reducing these antinutritional factors through broiling, alkaline, and microbial treatment. Exogenous feed enzymes are used to hydrolyze crude fiber. Up to 10% of this by-product is included in broiler feed and 15% with supplementation of exogenous feed enzymes in layer feed. In pigs, up to 20% can be included into diets of both the sow and growing pig. In ruminants, up to 35% can be used in cattle diet if treated with urea, molasses and/or fermented. The by-product is widely used as an ingredient and/or energy/protein sources in Africa and Asia. There is scanty literature on its use in the South Pacific countries. In this review, I compiled existing literature on its chemical composition, use in livestock and poultry diets, and existing strategies to improve feeding value. The aim of this review is to project cocoa pod husk meal (CPHM) as a potential feed ingredient as well as energy/protein sources for livestock and poultry in the South Pacific countries, including Vanuatu.
{"title":"Cocoa Pod Husk Meal as a Feed Ingredient for Livestock","authors":"Sandy Hoffman Mael","doi":"10.1002/fes3.70003","DOIUrl":"https://doi.org/10.1002/fes3.70003","url":null,"abstract":"<p>Cocoa pod husk (CPH) is a by-product of cocoa. Whilst this by-product is converted into animal feed in some countries, it is largely left to decompose and cause environmental issues in most South Pacific countries, including Vanuatu. The husk represent 70%–80% of the whole fruit. Its use as animal feed is limited by the presence of antinutritional factors, of which, theobromine is the most prominent. Other antinutritional factors include tannin and phytate. Feeding value of the CPH is improved by reducing these antinutritional factors through broiling, alkaline, and microbial treatment. Exogenous feed enzymes are used to hydrolyze crude fiber. Up to 10% of this by-product is included in broiler feed and 15% with supplementation of exogenous feed enzymes in layer feed. In pigs, up to 20% can be included into diets of both the sow and growing pig. In ruminants, up to 35% can be used in cattle diet if treated with urea, molasses and/or fermented. The by-product is widely used as an ingredient and/or energy/protein sources in Africa and Asia. There is scanty literature on its use in the South Pacific countries. In this review, I compiled existing literature on its chemical composition, use in livestock and poultry diets, and existing strategies to improve feeding value. The aim of this review is to project cocoa pod husk meal (CPHM) as a potential feed ingredient as well as energy/protein sources for livestock and poultry in the South Pacific countries, including Vanuatu.</p>","PeriodicalId":54283,"journal":{"name":"Food and Energy Security","volume":"13 5","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.70003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Preethi, R. Swathika, S. Kaliraj, R. Premkumar, J. Yogapriya
Ensuring global food security necessitates innovative solutions for early detection and precise classification of diseases in staple crops like rice. This study introduces an advanced approach for automated rice plant disease detection and classification by integrating deep learning and metaheuristic optimization techniques. Specifically, a deep dense neural network (DNN) is employed for its capacity to capture intricate patterns in images and extreme learning machine (ELM) for classification. To enhance the optimization process, an innovative variant of the Shuffled Shepherd Optimization (SSO) algorithm, known as Enhanced Artificial Shuffled Shepherd Optimization (EASSO), is introduced. EASSO incorporates adaptive strategies and enhanced exploration–exploitation mechanisms, enabling more efficient convergence during the training of the DNN. The proposed system operates by processing high-resolution images of rice plants through the DNN, extracting nuanced features indicative of various diseases, including blast, bacterial blight, and brown spots. EASSO optimizes the DNN's parameters, maximizing its accuracy in disease classification. The synergy between DNN and EASSO ensures a robust and adaptive model capable of handling diverse and complex disease patterns. This automated approach significantly reduces the reliance on manual inspection, enabling timely intervention and improving overall agricultural productivity. Experimental results demonstrate the superiority of the DNN-EASSO framework over traditional methods, showcasing higher accuracy rates and faster convergence. The incorporation of Enhanced Artificial Shuffled Shepherd Optimization enhances the precision and reliability of disease classification, making this integrated system a valuable tool for farmers and agricultural practitioners. This research represents a significant stride toward sustainable agriculture, showcasing the potential of advanced technologies in ensuring food security worldwide.
{"title":"Deep Learning–Based Enhanced Optimization for Automated Rice Plant Disease Detection and Classification","authors":"P. Preethi, R. Swathika, S. Kaliraj, R. Premkumar, J. Yogapriya","doi":"10.1002/fes3.70001","DOIUrl":"https://doi.org/10.1002/fes3.70001","url":null,"abstract":"<p>Ensuring global food security necessitates innovative solutions for early detection and precise classification of diseases in staple crops like rice. This study introduces an advanced approach for automated rice plant disease detection and classification by integrating deep learning and metaheuristic optimization techniques. Specifically, a deep dense neural network (DNN) is employed for its capacity to capture intricate patterns in images and extreme learning machine (ELM) for classification. To enhance the optimization process, an innovative variant of the Shuffled Shepherd Optimization (SSO) algorithm, known as Enhanced Artificial Shuffled Shepherd Optimization (EASSO), is introduced. EASSO incorporates adaptive strategies and enhanced exploration–exploitation mechanisms, enabling more efficient convergence during the training of the DNN. The proposed system operates by processing high-resolution images of rice plants through the DNN, extracting nuanced features indicative of various diseases, including blast, bacterial blight, and brown spots. EASSO optimizes the DNN's parameters, maximizing its accuracy in disease classification. The synergy between DNN and EASSO ensures a robust and adaptive model capable of handling diverse and complex disease patterns. This automated approach significantly reduces the reliance on manual inspection, enabling timely intervention and improving overall agricultural productivity. Experimental results demonstrate the superiority of the DNN-EASSO framework over traditional methods, showcasing higher accuracy rates and faster convergence. The incorporation of Enhanced Artificial Shuffled Shepherd Optimization enhances the precision and reliability of disease classification, making this integrated system a valuable tool for farmers and agricultural practitioners. This research represents a significant stride toward sustainable agriculture, showcasing the potential of advanced technologies in ensuring food security worldwide.</p>","PeriodicalId":54283,"journal":{"name":"Food and Energy Security","volume":"13 5","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.70001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142316625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This work analyzes the sustainability status of cash crops (rice, wheat, and sunflower) and feed crops (silage and clover) cultivation in Turkey through thermodynamic sustainability assessment technique, emergy analysis (EA). EA offers insights into agricultural system's dependence on external resources, environmental loading, and renewability by classifying the resources that drive agricultural production as renewable, nonrenewable, and purchased. Data belonging to 17 agricultural systems evaluated in this work are gathered through survey method by interviewing the farmers. EA results reveal that production of cash crops is essentially unsustainable due to high dependence on externally purchased inputs fertilizer, diesel, and nonrenewable input water. Of cash crops, rice production has the lowest system renewability and the highest environmental loading. In feed crops, silage production is mainly unsustainable and clover production is in transition state in terms of sustainability. Feed crop production creates less environmental loading than cash crop production mainly due to being partially integrated with husbandry. Coinciding with this, the level of organic fertilization is found to be the determining factor in the sustainability status of the feed crop systems. Transforming these systems to sustainable ones requires increasing system's self-sufficiency through enhanced circularity (increased nutrient recycling) and functioning of natural processes. Consequently, we recommend growing crops in polycultures rather than monocultures to benefit from sister plant and predator–prey relations, integrating crop production with animal rearing (natural fertilization) and utilizing waste-origin bioenergy. For resource efficiency, we suggest adopting methods such as drip irrigation and utilization of biodegradable polymer-coated fertilizer grains to prevent fertilizer runoffs.
{"title":"Thermodynamic Sustainability Assessment of Turkish Cash and Feed Crops: Evaluations and Recommendations","authors":"Berrin Kursun","doi":"10.1002/fes3.70000","DOIUrl":"https://doi.org/10.1002/fes3.70000","url":null,"abstract":"<p>This work analyzes the sustainability status of cash crops (rice, wheat, and sunflower) and feed crops (silage and clover) cultivation in Turkey through thermodynamic sustainability assessment technique, emergy analysis (EA). EA offers insights into agricultural system's dependence on external resources, environmental loading, and renewability by classifying the resources that drive agricultural production as renewable, nonrenewable, and purchased. Data belonging to 17 agricultural systems evaluated in this work are gathered through survey method by interviewing the farmers. EA results reveal that production of cash crops is essentially unsustainable due to high dependence on externally purchased inputs fertilizer, diesel, and nonrenewable input water. Of cash crops, rice production has the lowest system renewability and the highest environmental loading. In feed crops, silage production is mainly unsustainable and clover production is in transition state in terms of sustainability. Feed crop production creates less environmental loading than cash crop production mainly due to being partially integrated with husbandry. Coinciding with this, the level of organic fertilization is found to be the determining factor in the sustainability status of the feed crop systems. Transforming these systems to sustainable ones requires increasing system's self-sufficiency through enhanced circularity (increased nutrient recycling) and functioning of natural processes. Consequently, we recommend growing crops in polycultures rather than monocultures to benefit from sister plant and predator–prey relations, integrating crop production with animal rearing (natural fertilization) and utilizing waste-origin bioenergy. For resource efficiency, we suggest adopting methods such as drip irrigation and utilization of biodegradable polymer-coated fertilizer grains to prevent fertilizer runoffs.</p>","PeriodicalId":54283,"journal":{"name":"Food and Energy Security","volume":"13 5","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.70000","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Decreasing antenna size is considered a potential option for improving photosynthesis and increasing yield potential. Reducing chlorophyll content has been employed as a strategy to decrease antenna size. One of the commonly mentioned advantages of this approach is its ability to enhance crop nitrogen use efficiency (NUE); however, there is limited field evidence supporting this claim. In this study, we utilized a rice mutant called p35s-Ami-YGL1, which exhibits lower chlorophyll content and smaller antenna size, to investigate the effects of modifying leaf chlorophyll content on tissue nitrogen content and NUE. Our results demonstrate that the nitrogen contents in various tissues, including seed tissue, increased on a weight basis in p35s-Ami-YGL1 mutants while exhibiting a decrease in C:N ratio. Simultaneously, we observed a reduction in tissue carbon content along with an increase in the levels of chlorophyll precursors such as Proto IX. Specifically, we observed an upregulation in the expression of genes associated with photosynthetic light reactions and chlorophyll metabolism, while there was no increase in the expression of genes involved in the CBB cycle and nitrogen metabolism. In addition, p35s-Ami-YGL1 experienced increased photodamage. These findings suggest that the alterations in the C:N ratio and nitrogen content in plants may be attributed to Proto IX-mediated photodamage and chloroplast reverse transduction signaling. Besides, these results suggest that the observed increase in tissue nitrogen content in p35s-Ami-YGL1 does not reflect an increase in plant nitrogen absorption or use efficiency, rather it is a result of stunted carbon fixation capacity.
缩小触角尺寸被认为是改善光合作用和提高产量潜力的一个潜在选择。降低叶绿素含量已被用作缩小触角的一种策略。通常提到的这种方法的优点之一是能够提高作物的氮利用效率(NUE);然而,支持这种说法的实地证据却很有限。在本研究中,我们利用叶绿素含量较低、触角较小的水稻突变体 p35s-Ami-YGL1,研究了改变叶片叶绿素含量对组织氮含量和氮利用效率的影响。我们的研究结果表明,p35s-Ami-YGL1 突变体中各种组织(包括种子组织)的氮含量在重量基础上都有所增加,同时表现出 C:N 比值的下降。同时,我们还观察到组织碳含量的减少以及叶绿素前体(如 Proto IX)含量的增加。具体来说,我们观察到与光合光反应和叶绿素代谢相关的基因表达上调,而与 CBB 循环和氮代谢相关的基因表达没有增加。此外,p35s-Ami-YGL1 的光损伤也有所增加。这些发现表明,植物中 C:N 比率和氮含量的改变可能是由于 Proto IX 介导的光损伤和叶绿体反向传导信号所致。此外,这些结果表明,在 p35s-Ami-YGL1 中观察到的组织氮含量增加并不反映植物氮吸收或利用效率的提高,而是碳固定能力受阻的结果。
{"title":"Would reducing chlorophyll content result in a higher photosynthesis nitrogen use efficiency in crops?","authors":"Linxiong Mao, Qingfeng Song, Xiaoya Li, Huiqiong Zheng, Xin-Guang Zhu","doi":"10.1002/fes3.576","DOIUrl":"https://doi.org/10.1002/fes3.576","url":null,"abstract":"<p>Decreasing antenna size is considered a potential option for improving photosynthesis and increasing yield potential. Reducing chlorophyll content has been employed as a strategy to decrease antenna size. One of the commonly mentioned advantages of this approach is its ability to enhance crop nitrogen use efficiency (NUE); however, there is limited field evidence supporting this claim. In this study, we utilized a rice mutant called <i>p35s-Ami-YGL1</i>, which exhibits lower chlorophyll content and smaller antenna size, to investigate the effects of modifying leaf chlorophyll content on tissue nitrogen content and NUE. Our results demonstrate that the nitrogen contents in various tissues, including seed tissue, increased on a weight basis in <i>p35s-Ami-YGL1</i> mutants while exhibiting a decrease in C:N ratio. Simultaneously, we observed a reduction in tissue carbon content along with an increase in the levels of chlorophyll precursors such as Proto IX. Specifically, we observed an upregulation in the expression of genes associated with photosynthetic light reactions and chlorophyll metabolism, while there was no increase in the expression of genes involved in the CBB cycle and nitrogen metabolism. In addition, <i>p35s-Ami-YGL1</i> experienced increased photodamage. These findings suggest that the alterations in the C:N ratio and nitrogen content in plants may be attributed to Proto IX-mediated photodamage and chloroplast reverse transduction signaling. Besides, these results suggest that the observed increase in tissue nitrogen content in <i>p35s-Ami-YGL1</i> does not reflect an increase in plant nitrogen absorption or use efficiency, rather it is a result of stunted carbon fixation capacity.</p>","PeriodicalId":54283,"journal":{"name":"Food and Energy Security","volume":"13 4","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.576","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142013548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jacinta Nyaika, Louise Abayomi, Aditya Parmar, Onoriode Coast
The consumption of cassava, a vital staple food for more than 1 billion people worldwide, holds particular significance in sub-Saharan Africa (SSA). Expansion in cassava production in SSA is driven by increasing market demand, local consumption, and adaptability to diverse environments. However, cyanide concentration in cassava tubers and products across SSA ranges from 9 to 1148 ppm – most exceed the World Health Organisation's recommended safe level of 10 ppm. Such variation and high cyanide concentrations in cassava products are expected to be exacerbated by climate-induced increases in the frequency, intensity and occurrence of drought, heat waves and biotic stresses, further jeopardising regional food security. Thus, it is essential to examine cassava production and cyanide toxicity under climate change and their implications for food security in SSA. In this review, we look at the drivers of cassava production and spatial variation in cyanide concentrations across SSA, impacts of climate variability and biotic stresses on cassava cyanide concentrations in SSA, and crop management practices for reducing cyanogenic glucosides in cassava tubers. We surmise that urgent actions are required to adopt improved cassava varieties and management strategies that reduce cassava cyanide toxicity amid climate-induced challenges in SSA.
{"title":"Cyanide in cassava: Understanding the drivers, impacts of climate variability, and strategies for food security","authors":"Jacinta Nyaika, Louise Abayomi, Aditya Parmar, Onoriode Coast","doi":"10.1002/fes3.573","DOIUrl":"https://doi.org/10.1002/fes3.573","url":null,"abstract":"<p>The consumption of cassava, a vital staple food for more than 1 billion people worldwide, holds particular significance in sub-Saharan Africa (SSA). Expansion in cassava production in SSA is driven by increasing market demand, local consumption, and adaptability to diverse environments. However, cyanide concentration in cassava tubers and products across SSA ranges from 9 to 1148 ppm – most exceed the World Health Organisation's recommended safe level of 10 ppm. Such variation and high cyanide concentrations in cassava products are expected to be exacerbated by climate-induced increases in the frequency, intensity and occurrence of drought, heat waves and biotic stresses, further jeopardising regional food security. Thus, it is essential to examine cassava production and cyanide toxicity under climate change and their implications for food security in SSA. In this review, we look at the drivers of cassava production and spatial variation in cyanide concentrations across SSA, impacts of climate variability and biotic stresses on cassava cyanide concentrations in SSA, and crop management practices for reducing cyanogenic glucosides in cassava tubers. We surmise that urgent actions are required to adopt improved cassava varieties and management strategies that reduce cassava cyanide toxicity amid climate-induced challenges in SSA.</p>","PeriodicalId":54283,"journal":{"name":"Food and Energy Security","volume":"13 4","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.573","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142013524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Helen Onyeaka, Keru Duan, Taghi Miri, Gu Pang, Eric Shiu, Irina Pokhilenko, Özlem Ögtem-Young, Liza Jabbour, Kathryn Miles, Amil Khan, Christine H. Foyer, Emma Frew, Lin Fu, Bisola Osifowora
The challenge of feeding an additional 2 billion people by 2050 is one of the most pressing issues of our generation. The required changes in the current food system must be achieved while reducing the negative environmental impacts of current farming practices on our climate and biodiversity and avoiding deforestation. This formidable challenge must be overcome in a projected climate that is more variable and where extreme weather events are increasingly common. While the green revolution, agricultural land expansion and agrotechnological innovations have significantly increased crop productivity over the last 50 years, the gains in the yields of most major crops have reached a plateau. Moreover, global hunger remains at a record high. Climate change-associated changes in weather patterns have decreased the yields of major crops. Further land expansion is impossible without severe trade-offs with biodiversity and climate change mitigation. Wars and pandemics are currently severely disrupting the global agri-food system, increasing prices and exacerbating food insecurity, with the world's poorest suffering the most. The climate change–social instability nexus will continue to cause additional stress to the agri-food system. Here, we consider the inequities in the current food system, highlighting the weak interconnection among research, policy and societal action that is hindering mitigation and adaptation efforts. We argue that improved interconnections among research, policy, governance and societal action will unlock the potential to achieve food security while supporting climate change mitigation targets. Our analysis includes specific strategies such as strengthening small-scale farmers, promoting fair trade practices and reducing food waste to achieve these goals.
{"title":"Achieving fairness in the food system","authors":"Helen Onyeaka, Keru Duan, Taghi Miri, Gu Pang, Eric Shiu, Irina Pokhilenko, Özlem Ögtem-Young, Liza Jabbour, Kathryn Miles, Amil Khan, Christine H. Foyer, Emma Frew, Lin Fu, Bisola Osifowora","doi":"10.1002/fes3.572","DOIUrl":"https://doi.org/10.1002/fes3.572","url":null,"abstract":"<p>The challenge of feeding an additional 2 billion people by 2050 is one of the most pressing issues of our generation. The required changes in the current food system must be achieved while reducing the negative environmental impacts of current farming practices on our climate and biodiversity and avoiding deforestation. This formidable challenge must be overcome in a projected climate that is more variable and where extreme weather events are increasingly common. While the green revolution, agricultural land expansion and agrotechnological innovations have significantly increased crop productivity over the last 50 years, the gains in the yields of most major crops have reached a plateau. Moreover, global hunger remains at a record high. Climate change-associated changes in weather patterns have decreased the yields of major crops. Further land expansion is impossible without severe trade-offs with biodiversity and climate change mitigation. Wars and pandemics are currently severely disrupting the global agri-food system, increasing prices and exacerbating food insecurity, with the world's poorest suffering the most. The climate change–social instability nexus will continue to cause additional stress to the agri-food system. Here, we consider the inequities in the current food system, highlighting the weak interconnection among research, policy and societal action that is hindering mitigation and adaptation efforts. We argue that improved interconnections among research, policy, governance and societal action will unlock the potential to achieve food security while supporting climate change mitigation targets. Our analysis includes specific strategies such as strengthening small-scale farmers, promoting fair trade practices and reducing food waste to achieve these goals.</p>","PeriodicalId":54283,"journal":{"name":"Food and Energy Security","volume":"13 4","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.572","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141994265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aims to explore the formation mechanism of starch structure and the relationships between the appearance quality and starch structure of soft rice under different nitrogen levels. We comprehensively investigated the physiological aspects, starch structure variations, and appearance quality of soft rice in response to different nitrogen applications. The results showed that under the moderate nitrogen application (270 N), the soft rice exhibited the highest AGPase activity, the highest large-starch granule content, and the lowest chalkiness. Under the highest nitrogen application (360 N), the soft rice exhibited the highest GBSS and DBE activity and the lowest SBE activity, the highest content of long-branched amylopectin, the lowest relative crystallinity, the fewest ordered structures, the most amorphous structures, the largest semi-crystalline lamellar thicknesses, and the highest transparency of chalk-free rice. In conclusion, moderate nitrogen fertilization (270 N) improved the AGPase activity, which leaded to fuller starch granules and more compact endosperm in soft rice. Thus, the grain chalkiness of soft rice decreased. Continuous nitrogen application (0-360 N) constantly increased the GBSS and DBE activity and reduced the SBE activity in soft rice, leading a lower content of short-branched amylopectin and a higher content of long-branched amylopectin in soft rice. Thus, the relative crystallinity and ordered structures of soft rice were reduced. These structures improved the transparency phenotype of soft rice.
{"title":"Relationships between the appearance quality and starch structure of soft rice under different nitrogen levels","authors":"Peng Fan, Ying Zhu, Jian Xu, Qun Hu, Hongcheng Zhang, Haiyan Wei, Guodong Liu","doi":"10.1002/fes3.574","DOIUrl":"https://doi.org/10.1002/fes3.574","url":null,"abstract":"<p>This study aims to explore the formation mechanism of starch structure and the relationships between the appearance quality and starch structure of soft rice under different nitrogen levels. We comprehensively investigated the physiological aspects, starch structure variations, and appearance quality of soft rice in response to different nitrogen applications. The results showed that under the moderate nitrogen application (270 N), the soft rice exhibited the highest AGPase activity, the highest large-starch granule content, and the lowest chalkiness. Under the highest nitrogen application (360 N), the soft rice exhibited the highest GBSS and DBE activity and the lowest SBE activity, the highest content of long-branched amylopectin, the lowest relative crystallinity, the fewest ordered structures, the most amorphous structures, the largest semi-crystalline lamellar thicknesses, and the highest transparency of chalk-free rice. In conclusion, moderate nitrogen fertilization (270 N) improved the AGPase activity, which leaded to fuller starch granules and more compact endosperm in soft rice. Thus, the grain chalkiness of soft rice decreased. Continuous nitrogen application (0-360 N) constantly increased the GBSS and DBE activity and reduced the SBE activity in soft rice, leading a lower content of short-branched amylopectin and a higher content of long-branched amylopectin in soft rice. Thus, the relative crystallinity and ordered structures of soft rice were reduced. These structures improved the transparency phenotype of soft rice.</p>","PeriodicalId":54283,"journal":{"name":"Food and Energy Security","volume":"13 4","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.574","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141991659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The effects of different nitrogen (N) application levels on seed endophytes and grain nutritional quality are not yet clear. The impact of four N application levels on endophytes and amino acid accumulation in purple rice seeds was examined using 16S rRNA and ITS amplicon sequencing technology. This study integrates 16S rRNA, ITS amplicon sequencing technology and amino acid-targeted detection to explore the effects of four different nitrogen application levels (0 kg hm−2, Y1N0; 180 kg hm−2, Y1N1; 270 kg hm−2, Y1N2; 360 kg hm−2, Y1N3) on the accumulation of endophytic bacteria, fungi and amino acid content in purple rice seeds and their interaction mechanisms. The findings indicated an increase in the contents of most amino acids with increasing N application. The dominant bacterial species in the community were mainly from the phyla Proteobacteria and Actinobacteriota, while the dominant fungal species were from the phyla Ascomycota and Basidiomycota. There was a significant difference in the richness of endophytic fungal communities between Y1N0 and Y1N2. Y1N1 showed significant differences in Mucoromycota compared to Y1N3. The quantity of operational taxonomic units (OTUs) in the bacterial and fungal community co-occurrence network increased with increasing N fertilizer, showing strong correlations with Sporidiobolus, Chaetomium, Humicola, Botryotrichum, Ophiosphaeria and Dioszegia for most amino acids. These findings indicate that a high amount of N fertilizer greatly increases amino acid contents in purple rice seeds and improves the diversity and stability of endophytic fungal populations.
不同施氮水平对种子内生菌和谷物营养品质的影响尚不清楚。本研究利用 16S rRNA 和 ITS 扩增片测序技术研究了四种施氮水平对紫色水稻种子内生菌和氨基酸积累的影响。本研究综合运用16S rRNA、ITS扩增片测序技术和氨基酸靶向检测技术,探讨了4种不同施氮水平(0 kg hm-2,Y1N0;180 kg hm-2,Y1N1;270 kg hm-2,Y1N2;360 kg hm-2,Y1N3)对紫稻种子内生细菌、真菌和氨基酸积累的影响及其相互作用机制。研究结果表明,随着施氮量的增加,大多数氨基酸的含量都有所增加。群落中的优势细菌主要来自变形菌门和放线菌门,优势真菌来自子囊菌门和担子菌门。Y1N0 和 Y1N2 的内生真菌群落丰富度有显著差异。与 Y1N3 相比,Y1N1 的粘菌群差异显著。细菌和真菌群落共生网络中的操作分类单元(OTUs)数量随着氮肥用量的增加而增加,在大多数氨基酸方面与孢子菌、Chaetomium、Humicola、Botryotrichum、Ophiosphaeria 和 Dioszegia 显示出很强的相关性。这些研究结果表明,大量施用氮肥可大大提高紫米种子中氨基酸的含量,并改善内生真菌种群的多样性和稳定性。
{"title":"Nitrogen fertilizer regulates purple rice seed endophytes and grain amino acid accumulation","authors":"Yanyao Lu, Runnan Wang, Shuai Wang, Han Wu, Jinyan Zhu, Qiangqiang Xiong","doi":"10.1002/fes3.575","DOIUrl":"https://doi.org/10.1002/fes3.575","url":null,"abstract":"<p>The effects of different nitrogen (N) application levels on seed endophytes and grain nutritional quality are not yet clear. The impact of four N application levels on endophytes and amino acid accumulation in purple rice seeds was examined using 16S rRNA and ITS amplicon sequencing technology. This study integrates 16S rRNA, ITS amplicon sequencing technology and amino acid-targeted detection to explore the effects of four different nitrogen application levels (0 kg hm<sup>−2</sup>, Y1N0; 180 kg hm<sup>−2</sup>, Y1N1; 270 kg hm<sup>−2</sup>, Y1N2; 360 kg hm<sup>−2</sup>, Y1N3) on the accumulation of endophytic bacteria, fungi and amino acid content in purple rice seeds and their interaction mechanisms. The findings indicated an increase in the contents of most amino acids with increasing N application. The dominant bacterial species in the community were mainly from the phyla <i>Proteobacteria</i> and <i>Actinobacteriota</i>, while the dominant fungal species were from the phyla <i>Ascomycota</i> and <i>Basidiomycota</i>. There was a significant difference in the richness of endophytic fungal communities between Y1N0 and Y1N2. Y1N1 showed significant differences in <i>Mucoromycota</i> compared to Y1N3. The quantity of operational taxonomic units (OTUs) in the bacterial and fungal community co-occurrence network increased with increasing N fertilizer, showing strong correlations with <i>Sporidiobolus</i>, <i>Chaetomium</i>, <i>Humicola</i>, <i>Botryotrichum</i>, <i>Ophiosphaeria</i> and <i>Dioszegia</i> for most amino acids. These findings indicate that a high amount of N fertilizer greatly increases amino acid contents in purple rice seeds and improves the diversity and stability of endophytic fungal populations.</p>","PeriodicalId":54283,"journal":{"name":"Food and Energy Security","volume":"13 4","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.575","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141973667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yichen Kang, Charlotte Rambla, Shanice V. Haeften, Brendan Fu, Oluwaseun Akinlade, Andries B. Potgieter, Andrew K. Borrell, Emma Mace, David R. Jordan, Samir Alahmad, Lee T. Hickey
Optimal root system architecture (RSA) is critical for efficient resource capture in soils, hence being an interest in crop breeding. Seminal root angle (SRA) at the seedling stage in durum wheat has been suggested to be a good indicator of RSA. However, research on correlating such laboratory-based seedling root phenotyping to RSA at later phases of plant growth is limited, resulting in the importance of root trait variation seen in seedlings often being overstated. To explore the role of SRA in modifying RSA at later phases of plant growth, we assessed 11 genotypes contrasting in SRA (wide and narrow), grown in a rhizobox designed for phenotyping root systems of plants during late-tillering. Aboveground traits and root dry mass in different soil depths and across the entire soil volume were measured manually, while root architectural traits were extracted using image analysis and summarised by multiple factor analysis to describe RSA. When comparing the wide and narrow genotypes, no differences were detected for aboveground traits and total root dry mass. However, differences were observed in the allocation of root dry mass at different depths. The wide and narrow genotypes showed distinct RSAs, particularly in the upper soil (0–30 cm). The wide genotypes exhibited a ‘spread-out’ root system with dense and thin roots, whereas the narrow genotypes had a compact root system with fewer but thicker roots. Our study demonstrated a clear difference in RSA between the wide and narrow genotypes, highlighting the association between SRA on the direction and distribution of root growth in plants at later growth stages.
{"title":"Seminal root angle is associated with root system architecture in durum wheat","authors":"Yichen Kang, Charlotte Rambla, Shanice V. Haeften, Brendan Fu, Oluwaseun Akinlade, Andries B. Potgieter, Andrew K. Borrell, Emma Mace, David R. Jordan, Samir Alahmad, Lee T. Hickey","doi":"10.1002/fes3.570","DOIUrl":"https://doi.org/10.1002/fes3.570","url":null,"abstract":"<p>Optimal root system architecture (RSA) is critical for efficient resource capture in soils, hence being an interest in crop breeding. Seminal root angle (SRA) at the seedling stage in durum wheat has been suggested to be a good indicator of RSA. However, research on correlating such laboratory-based seedling root phenotyping to RSA at later phases of plant growth is limited, resulting in the importance of root trait variation seen in seedlings often being overstated. To explore the role of SRA in modifying RSA at later phases of plant growth, we assessed 11 genotypes contrasting in SRA (wide and narrow), grown in a rhizobox designed for phenotyping root systems of plants during late-tillering. Aboveground traits and root dry mass in different soil depths and across the entire soil volume were measured manually, while root architectural traits were extracted using image analysis and summarised by multiple factor analysis to describe RSA. When comparing the wide and narrow genotypes, no differences were detected for aboveground traits and total root dry mass. However, differences were observed in the allocation of root dry mass at different depths. The wide and narrow genotypes showed distinct RSAs, particularly in the upper soil (0–30 cm). The wide genotypes exhibited a ‘spread-out’ root system with dense and thin roots, whereas the narrow genotypes had a compact root system with fewer but thicker roots. Our study demonstrated a clear difference in RSA between the wide and narrow genotypes, highlighting the association between SRA on the direction and distribution of root growth in plants at later growth stages.</p>","PeriodicalId":54283,"journal":{"name":"Food and Energy Security","volume":"13 4","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.570","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shaokun Song, Qi Yin, Mohammad Nauman Khan, Tingcheng Zhao, Ke Liu, Matthew Tom Harrison, Ye Tao, Lixiao Nie
Green manuring is the process by which vegetative crops are incorporated into the soil, and it plays a good substitutable role in reducing chemical fertilizer applications while enhancing soil fertility. Field experiments were conducted at Lingao City of Hainan Province in 2020 and 2021, to evaluate the effects of in situ incorporation of different green manures (fallow (as control), rice, sesbania, and stylosanthes) on soil physical and chemical properties, nitrogen (N) uptake, grain yield, and the grain anthocyanin content in colored rice. Treatments included colored rice cultivated with previous fallow (T0), with previous rice straw manure (T1), with previous sesbania manure (T2), and with previous stylosanthes manure (T3). The seedlings of the colored rice variety Suixiangheinuo were transplanted 23 days after the incorporation of green manure. Our results indicated that both the grain yield and grain anthocyanin content of colored rice were significantly increased when green manure was incorporated into the soil compared to that of the control. Therein, grain yields of T1, T2, and T3 were increased by an average of 12.7%, 29.0%, and 24.5%, respectively, across 2 years in comparison with those of T0. And grain anthocyanin content in colored rice under T1, T2, and T3 was increased by 7.2%–7.5%, 13.9%–24.2%, and 9.8%–20.6%, respectively. In addition, in situ incorporation of leguminous green manure in the soil significantly increased soil fertility and partial factor productivity for N fertilizer. The above results suggested that colored rice crops should be followed in rotation with leguminous green manure, which was beneficial to increasing both grain yield and grain anthocyanin content of colored rice. This research elucidated that the incorporation of leguminous green manure sustained the production of colored rice in tropical regions, which was beneficial to reconcile the relationship between rice production and environmental protection.
绿肥是无性系作物融入土壤的过程,在减少化肥施用量、提高土壤肥力方面具有良好的替代作用。2020 年和 2021 年,研究人员在海南省临高市进行了田间试验,以评价不同绿肥(休耕(对照)、水稻、芝麻和花青素)原地拌种对彩色水稻土壤理化性质、氮素吸收、籽粒产量和籽粒花青素含量的影响。处理包括使用以前的休耕地(T0)、以前的稻草粪便(T1)、以前的芝麻粪便(T2)和以前的石蒜粪便(T3)栽培的彩色水稻。彩色水稻品种穗香黑糯(Suixiangheinuo)的秧苗在施用绿肥 23 天后移栽。结果表明,与对照相比,在土壤中施用绿肥后,彩色水稻的谷粒产量和谷粒花青素含量均显著增加。其中,与 T0 相比,T1、T2 和 T3 的粮食产量在两年内分别平均提高了 12.7%、29.0% 和 24.5%。T1、T2 和 T3 彩色水稻的谷粒花青素含量分别增加了 7.2%-7.5%、13.9%-24.2% 和 9.8%-20.6%。此外,在土壤中就地施用豆科绿肥能显著提高土壤肥力和氮肥的部分要素生产率。上述结果表明,彩色水稻应与豆科绿肥轮作,这有利于提高彩色水稻的产量和籽粒花青素含量。该研究阐明,在热带地区施用豆科绿肥可维持彩色水稻的产量,有利于协调水稻生产与环境保护之间的关系。
{"title":"Green manuring improves soil quality, grain yield, and grain anthocyanin content in colored rice cultivated in tropical regions","authors":"Shaokun Song, Qi Yin, Mohammad Nauman Khan, Tingcheng Zhao, Ke Liu, Matthew Tom Harrison, Ye Tao, Lixiao Nie","doi":"10.1002/fes3.571","DOIUrl":"https://doi.org/10.1002/fes3.571","url":null,"abstract":"<p>Green manuring is the process by which vegetative crops are incorporated into the soil, and it plays a good substitutable role in reducing chemical fertilizer applications while enhancing soil fertility. Field experiments were conducted at Lingao City of Hainan Province in 2020 and 2021, to evaluate the effects of in situ incorporation of different green manures (fallow (as control), rice, sesbania, and stylosanthes) on soil physical and chemical properties, nitrogen (N) uptake, grain yield, and the grain anthocyanin content in colored rice. Treatments included colored rice cultivated with previous fallow (T0), with previous rice straw manure (T1), with previous sesbania manure (T2), and with previous stylosanthes manure (T3). The seedlings of the colored rice variety Suixiangheinuo were transplanted 23 days after the incorporation of green manure. Our results indicated that both the grain yield and grain anthocyanin content of colored rice were significantly increased when green manure was incorporated into the soil compared to that of the control. Therein, grain yields of T1, T2, and T3 were increased by an average of 12.7%, 29.0%, and 24.5%, respectively, across 2 years in comparison with those of T0. And grain anthocyanin content in colored rice under T1, T2, and T3 was increased by 7.2%–7.5%, 13.9%–24.2%, and 9.8%–20.6%, respectively. In addition, in situ incorporation of leguminous green manure in the soil significantly increased soil fertility and partial factor productivity for N fertilizer. The above results suggested that colored rice crops should be followed in rotation with leguminous green manure, which was beneficial to increasing both grain yield and grain anthocyanin content of colored rice. This research elucidated that the incorporation of leguminous green manure sustained the production of colored rice in tropical regions, which was beneficial to reconcile the relationship between rice production and environmental protection.</p>","PeriodicalId":54283,"journal":{"name":"Food and Energy Security","volume":"13 4","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.571","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}