首页 > 最新文献

3D Printing and Additive Manufacturing最新文献

英文 中文
Deep Learning-Based Automated Optical Inspection System for the Additive Manufacturing of Diamond Tools 基于深度学习的金刚石工具增材制造自动光学检测系统
IF 3.1 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-12-22 DOI: 10.1089/3dp.2023.0208
Zenghui Feng, Chenyao Dong, Xiangxi Xu, Yibo Liu, Shuangxi Wang
{"title":"Deep Learning-Based Automated Optical Inspection System for the Additive Manufacturing of Diamond Tools","authors":"Zenghui Feng, Chenyao Dong, Xiangxi Xu, Yibo Liu, Shuangxi Wang","doi":"10.1089/3dp.2023.0208","DOIUrl":"https://doi.org/10.1089/3dp.2023.0208","url":null,"abstract":"","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"7 32","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138944074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic Stimulation for Programmed Shape Morphing: Review of Four-Dimensional Printing, Challenges and Opportunities 磁刺激编程塑形:回顾四维打印、挑战与机遇
IF 3.1 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-12-21 DOI: 10.1089/3dp.2023.0198
Vera G. Kortman, Ellen de Vries, J. Jovanova, A. Sakes
{"title":"Magnetic Stimulation for Programmed Shape Morphing: Review of Four-Dimensional Printing, Challenges and Opportunities","authors":"Vera G. Kortman, Ellen de Vries, J. Jovanova, A. Sakes","doi":"10.1089/3dp.2023.0198","DOIUrl":"https://doi.org/10.1089/3dp.2023.0198","url":null,"abstract":"","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"17 2","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138950438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Acetyl Tributyl Citrate on the Mechanical Properties, Abrasion Resistance, and Cytotoxicity of the Light-Cured 3D Printing Polyurethane Resins 柠檬酸乙酰三丁酯对光固化 3D 打印聚氨酯树脂的机械性能、耐磨性和细胞毒性的影响
IF 3.1 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-12-14 DOI: 10.1089/3dp.2023.0161
Hsuan Chen, Chih-Hsin Lin, Shu-Wen Hung, Shyh-Yuan Lee, Yuan-Min Lin
{"title":"Effects of Acetyl Tributyl Citrate on the Mechanical Properties, Abrasion Resistance, and Cytotoxicity of the Light-Cured 3D Printing Polyurethane Resins","authors":"Hsuan Chen, Chih-Hsin Lin, Shu-Wen Hung, Shyh-Yuan Lee, Yuan-Min Lin","doi":"10.1089/3dp.2023.0161","DOIUrl":"https://doi.org/10.1089/3dp.2023.0161","url":null,"abstract":"","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"21 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139002596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effect of Thermal Cycle on Hot Cracking Evolution and Formation Mechanism in Thin Wall, Single Layer, and Cubic Samples of High-Strength Al-Cu-Mg-Mn Alloys Fabricated by Laser Powder Bed Fusion 热循环对激光粉末床熔融法制造的高强度铝-铜-镁-锰合金薄壁、单层和立方体样品中热裂纹演变及形成机理的影响
IF 3.1 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-12-13 DOI: 10.1089/3dp.2023.0167
Xiaojia Nie, Fei Peng, Zhiheng Hu, Yang Qi, Haihong Zhu, Hu Zhang
{"title":"The Effect of Thermal Cycle on Hot Cracking Evolution and Formation Mechanism in Thin Wall, Single Layer, and Cubic Samples of High-Strength Al-Cu-Mg-Mn Alloys Fabricated by Laser Powder Bed Fusion","authors":"Xiaojia Nie, Fei Peng, Zhiheng Hu, Yang Qi, Haihong Zhu, Hu Zhang","doi":"10.1089/3dp.2023.0167","DOIUrl":"https://doi.org/10.1089/3dp.2023.0167","url":null,"abstract":"","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"52 12","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139005998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface Structure Modification in Fused Filament Fabrication (FFF) Multi-Material Printing for Medical Applications: Printing of a Hand Prosthesis 用于医疗应用的熔融丝制造(FFF)多材料打印中的表面结构改性:手部假肢的打印
IF 3.1 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-12-12 DOI: 10.1089/3dp.2023.0210
E. Brancewicz-Steinmetz, Natalia Słabęcka, Patryk Śniarowski, Katarzyna Wybrzak, Jacek Sawicki
{"title":"Surface Structure Modification in Fused Filament Fabrication (FFF) Multi-Material Printing for Medical Applications: Printing of a Hand Prosthesis","authors":"E. Brancewicz-Steinmetz, Natalia Słabęcka, Patryk Śniarowski, Katarzyna Wybrzak, Jacek Sawicki","doi":"10.1089/3dp.2023.0210","DOIUrl":"https://doi.org/10.1089/3dp.2023.0210","url":null,"abstract":"","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"33 4","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139006720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detecting Selective Laser Melting Beam Power from Ultrasonic Temporal and Spectral Responses of Phononic Crystal Artifacts Toward In-Situ Real-Time Quality Monitoring 从超声波的时相和频谱响应检测选择性激光熔化光束功率,实现原位实时质量监测
IF 3.1 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-12-12 DOI: 10.1089/3dp.2023.0063
E. H. Rozin, Tipu Sultan, Hossein Taheri, Cetin Cetinkaya
{"title":"Detecting Selective Laser Melting Beam Power from Ultrasonic Temporal and Spectral Responses of Phononic Crystal Artifacts Toward In-Situ Real-Time Quality Monitoring","authors":"E. H. Rozin, Tipu Sultan, Hossein Taheri, Cetin Cetinkaya","doi":"10.1089/3dp.2023.0063","DOIUrl":"https://doi.org/10.1089/3dp.2023.0063","url":null,"abstract":"","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"38 19","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139007867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy Consumption Prediction of Additive Manufactured Tensile Strength Parts Using Artificial Intelligence 利用人工智能预测增材制造拉伸强度部件的能耗
IF 3.1 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-12-11 DOI: 10.1089/3dp.2023.0189
O. Ulkir, Mehmet Said Bayraklilar, M. Kuncan
{"title":"Energy Consumption Prediction of Additive Manufactured Tensile Strength Parts Using Artificial Intelligence","authors":"O. Ulkir, Mehmet Said Bayraklilar, M. Kuncan","doi":"10.1089/3dp.2023.0189","DOIUrl":"https://doi.org/10.1089/3dp.2023.0189","url":null,"abstract":"","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"14 52","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138980985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Additive Manufacturing and Composite Materials for Marine Energy: Case of Tidal Turbine. 用于海洋能源的快速成型制造和复合材料:潮汐涡轮机案例。
IF 3.1 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-12-01 Epub Date: 2023-12-11 DOI: 10.1089/3dp.2021.0194
Marwane Rouway, Mostapha Tarfaoui, Nabil Chakhchaoui, Lhaj El Hachemi Omari, Fouzia Fraija, Omar Cherkaoui

The global trend in additive manufacturing is the technology of three-dimensional (3D) printing with a high potential to avoid some of the weaknesses of conventional fabrication techniques. This new technology has been used to manufacture small tidal and wind turbines. In isolated areas, small turbines can be manufactured and assembled on-site for green energy production. The purpose of this document is to evaluate the thermomechanical behavior of a printed tidal turbine using Digimat-AM (Additive Manufacturing) with fused filament fabrication method. The finite element computes the mechanical deflection, temperature, residual stresses, and warpage fields of the printed part. The composites used during printing are thermoplastic polymers (acrylonitrile butadiene styrene, polyamide 6 [PA6], polyamide 12 [PA12], and polyetherimide [PEI]) reinforced with carbon and glass fillers in the form of fibers and beads (CF/GF and CB/GB). Through the simulation, one could show that the blade printed with PEI-CB/CF has excellent mechanical performance of low mechanical deflection and warpage, compared to PA6-CB/CF. In addition, the fiber-shaped fillers are better than the bead-shaped ones for the 3D printing process. In general, this study has shown the potential and feasibility of 3D printing as an excellent opportunity in the fabrication of small blades in the future, but more studies are required to understand this potential.

三维(3D)打印技术是增材制造技术的全球趋势,具有很大的潜力,可以避免传统制造技术的一些弱点。这种新技术已被用于制造小型潮汐和风力涡轮机。在偏远地区,可以现场制造和组装小型涡轮机,用于绿色能源生产。本文旨在评估使用 Digimat-AM(增材制造)和熔融长丝制造方法打印的潮汐涡轮机的热机械性能。有限元计算了打印部件的机械挠度、温度、残余应力和翘曲场。打印过程中使用的复合材料为热塑性聚合物(丙烯腈-丁二烯-苯乙烯、聚酰胺 6 [PA6]、聚酰胺 12 [PA12] 和聚醚酰亚胺 [PEI]),并以纤维和微珠(CF/GF 和 CB/GB)的形式添加了碳和玻璃填料。模拟结果表明,与 PA6-CB/CF 相比,用 PEI-CB/CF 印刷的叶片具有优异的机械性能,机械变形和翘曲较小。此外,在三维打印过程中,纤维状填料比珠子状填料的效果更好。总的来说,这项研究表明了三维打印技术的潜力和可行性,是未来制造小型叶片的绝佳机会,但要了解这种潜力还需要更多的研究。
{"title":"Additive Manufacturing and Composite Materials for Marine Energy: Case of Tidal Turbine.","authors":"Marwane Rouway, Mostapha Tarfaoui, Nabil Chakhchaoui, Lhaj El Hachemi Omari, Fouzia Fraija, Omar Cherkaoui","doi":"10.1089/3dp.2021.0194","DOIUrl":"10.1089/3dp.2021.0194","url":null,"abstract":"<p><p>The global trend in additive manufacturing is the technology of three-dimensional (3D) printing with a high potential to avoid some of the weaknesses of conventional fabrication techniques. This new technology has been used to manufacture small tidal and wind turbines. In isolated areas, small turbines can be manufactured and assembled on-site for green energy production. The purpose of this document is to evaluate the thermomechanical behavior of a printed tidal turbine using Digimat-AM (Additive Manufacturing) with fused filament fabrication method. The finite element computes the mechanical deflection, temperature, residual stresses, and warpage fields of the printed part. The composites used during printing are thermoplastic polymers (acrylonitrile butadiene styrene, polyamide 6 [PA6], polyamide 12 [PA12], and polyetherimide [PEI]) reinforced with carbon and glass fillers in the form of fibers and beads (CF/GF and CB/GB). Through the simulation, one could show that the blade printed with PEI-CB/CF has excellent mechanical performance of low mechanical deflection and warpage, compared to PA6-CB/CF. In addition, the fiber-shaped fillers are better than the bead-shaped ones for the 3D printing process. In general, this study has shown the potential and feasibility of 3D printing as an excellent opportunity in the fabrication of small blades in the future, but more studies are required to understand this potential.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 6","pages":"1309-1319"},"PeriodicalIF":3.1,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10726194/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138809876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finding Ideal Parameters for Recycled Material Fused Particle Fabrication-Based 3D Printing Using an Open Source Software Implementation of Particle Swarm Optimization. 利用粒子群优化的开源软件实现,为基于回收材料熔融粒子制造的三维打印找到理想参数。
IF 3.1 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-12-01 Epub Date: 2023-12-11 DOI: 10.1089/3dp.2022.0012
Shane Oberloier, Nicholas G Whisman, Joshua M Pearce

As additive manufacturing rapidly expands the number of materials including waste plastics and composites, there is an urgent need to reduce the experimental time needed to identify optimized printing parameters for novel materials. Computational intelligence (CI) in general and particle swarm optimization (PSO) algorithms in particular have been shown to accelerate finding optimal printing parameters. Unfortunately, the implementation of CI has been prohibitively complex for noncomputer scientists. To overcome these limitations, this article develops, tests, and validates PSO Experimenter, an easy-to-use open-source platform based around the PSO algorithm and applies it to optimizing recycled materials. Specifically, PSO Experimenter is used to find optimal printing parameters for a relatively unexplored potential distributed recycling and additive manufacturing (DRAM) material that is widely available: low-density polyethylene (LDPE). LDPE has been used to make filament, but in this study for the first time it was used in the open source fused particle fabrication/fused granular fabrication system. PSO Experimenter successfully identified functional printing parameters for this challenging-to-print waste plastic. The results indicate that PSO Experimenter can provide 97% reduction in research time for 3D printing parameter optimization. It is concluded that the PSO Experimenter is a user-friendly and effective free software for finding ideal parameters for the burgeoning challenge of DRAM as well as a wide range of other fields and processes.

随着增材制造技术迅速扩展到包括废塑料和复合材料在内的各种材料,迫切需要缩短为新型材料确定优化打印参数所需的实验时间。一般的计算智能(CI),特别是粒子群优化(PSO)算法,已被证明可以加快找到最佳打印参数。遗憾的是,对于非计算机科学家来说,CI 的实现过于复杂。为了克服这些限制,本文开发、测试并验证了 PSO Experimenter,这是一个基于 PSO 算法的易用开源平台,并将其应用于再生材料的优化。具体来说,PSO Experimenter 用于为一种相对尚未开发的潜在分布式回收和增材制造(DRAM)材料找到最佳打印参数,这种材料可广泛获得:低密度聚乙烯(LDPE)。低密度聚乙烯已被用于制造长丝,但在本研究中,它首次被用于开源熔融颗粒制造/熔融颗粒制造系统。PSO Experimenter 成功确定了这种具有挑战性的废塑料的功能性打印参数。结果表明,PSO Experimenter 可以将三维打印参数优化的研究时间缩短 97%。结论是,PSO Experimenter 是一款用户友好且高效的免费软件,可用于为 DRAM 以及其他广泛领域和工艺的新兴挑战寻找理想参数。
{"title":"Finding Ideal Parameters for Recycled Material Fused Particle Fabrication-Based 3D Printing Using an Open Source Software Implementation of Particle Swarm Optimization.","authors":"Shane Oberloier, Nicholas G Whisman, Joshua M Pearce","doi":"10.1089/3dp.2022.0012","DOIUrl":"10.1089/3dp.2022.0012","url":null,"abstract":"<p><p>As additive manufacturing rapidly expands the number of materials including waste plastics and composites, there is an urgent need to reduce the experimental time needed to identify optimized printing parameters for novel materials. Computational intelligence (CI) in general and particle swarm optimization (PSO) algorithms in particular have been shown to accelerate finding optimal printing parameters. Unfortunately, the implementation of CI has been prohibitively complex for noncomputer scientists. To overcome these limitations, this article develops, tests, and validates PSO Experimenter, an easy-to-use open-source platform based around the PSO algorithm and applies it to optimizing recycled materials. Specifically, PSO Experimenter is used to find optimal printing parameters for a relatively unexplored potential distributed recycling and additive manufacturing (DRAM) material that is widely available: low-density polyethylene (LDPE). LDPE has been used to make filament, but in this study for the first time it was used in the open source fused particle fabrication/fused granular fabrication system. PSO Experimenter successfully identified functional printing parameters for this challenging-to-print waste plastic. The results indicate that PSO Experimenter can provide 97% reduction in research time for 3D printing parameter optimization. It is concluded that the PSO Experimenter is a user-friendly and effective free software for finding ideal parameters for the burgeoning challenge of DRAM as well as a wide range of other fields and processes.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 6","pages":"1287-1300"},"PeriodicalIF":3.1,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10726196/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138809884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine Learning-Based Operational State Recognition and Compressive Property Prediction in Fused Filament Fabrication. 基于机器学习的熔丝制造中的运行状态识别和压缩特性预测。
IF 3.1 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-12-01 Epub Date: 2023-12-11 DOI: 10.1089/3dp.2021.0185
Yongxiang Li, Guoning Xu, Wei Zhao, Tongcai Wang, Haochen Li, Yifei Liu, Gong Wang

3D printing has exhibited significant potential in outer space and medical implants. To use this technology in the specific high-value scenarios, 3D-printed parts need to satisfy quality-related requirements. In this article, the influence of the filament feeder operating states of 3D printer on the compressive properties of 3D-printed parts is studied in the fused filament fabrication process. A machine learning approach, back-propagation neural network with a genetic algorithm (GA-BPNN) optimized by k-fold cross-validation, is proposed to monitor the operating states and predict the compressive properties. Vibration and current sensors are used in situ to monitor the operating states of the filament feeder, and a set of features are extracted and selected from raw sensor data in time and frequency domains. Results show that the operating states of the filament feeder significantly affected the compressive properties of the fabricated samples, the operating states were accurately recognized with 96.3% rate, and compressive properties were successfully predicted by the GA-BPNN. This proposed method has the potential for use in industrial applications after 3D printing without requiring any further quality control.

三维打印技术在外层空间和医疗植入方面展现出巨大潜力。要在特定的高价值场景中使用这项技术,3D 打印部件需要满足与质量相关的要求。本文研究了在熔融长丝制造过程中,3D 打印机供丝器的工作状态对 3D 打印部件压缩性能的影响。本文提出了一种机器学习方法,即通过 k 倍交叉验证进行优化的遗传算法反向传播神经网络(GA-BPNN),用于监测工作状态并预测压缩性能。现场使用振动和电流传感器来监测送丝机的运行状态,并从原始传感器数据中提取和选择一组时域和频域特征。结果表明,送丝机的运行状态对制造样品的抗压性能有显著影响,运行状态的准确识别率为 96.3%,GA-BPNN 成功预测了抗压性能。该方法有望在三维打印后的工业应用中使用,而无需进一步的质量控制。
{"title":"Machine Learning-Based Operational State Recognition and Compressive Property Prediction in Fused Filament Fabrication.","authors":"Yongxiang Li, Guoning Xu, Wei Zhao, Tongcai Wang, Haochen Li, Yifei Liu, Gong Wang","doi":"10.1089/3dp.2021.0185","DOIUrl":"10.1089/3dp.2021.0185","url":null,"abstract":"<p><p>3D printing has exhibited significant potential in outer space and medical implants. To use this technology in the specific high-value scenarios, 3D-printed parts need to satisfy quality-related requirements. In this article, the influence of the filament feeder operating states of 3D printer on the compressive properties of 3D-printed parts is studied in the fused filament fabrication process. A machine learning approach, back-propagation neural network with a genetic algorithm (GA-BPNN) optimized by <i>k</i>-fold cross-validation, is proposed to monitor the operating states and predict the compressive properties. Vibration and current sensors are used <i>in situ</i> to monitor the operating states of the filament feeder, and a set of features are extracted and selected from raw sensor data in time and frequency domains. Results show that the operating states of the filament feeder significantly affected the compressive properties of the fabricated samples, the operating states were accurately recognized with 96.3% rate, and compressive properties were successfully predicted by the GA-BPNN. This proposed method has the potential for use in industrial applications after 3D printing without requiring any further quality control.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"1 1","pages":"1347-1360"},"PeriodicalIF":3.1,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10726200/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"60697273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
3D Printing and Additive Manufacturing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1