首页 > 最新文献

3D Printing and Additive Manufacturing最新文献

英文 中文
Finite Element Analysis and Computational Fluid Dynamics Verification of Molten Pool Characteristics During Selective Laser Melting of Ti-6Al-4V Plates. 选择性激光熔化 Ti-6Al-4V 板材过程中熔池特性的有限元分析和计算流体动力学验证。
IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-08-01 Epub Date: 2023-08-09 DOI: 10.1089/3dp.2021.0161
Lv Du, Wu-Gui Jiang, Gao-Gui Xu, Qing-Hua Qin, Duo-Sheng Li

The finite element (FE) method is used to characterize the thermal gradient, solidification rate, and molten pool sizes of Ti-6Al-4V plates in the process of selective laser melting (SLM). The results are verified by using the computational fluid dynamics (CFD) simulation. The proposed FE model contains a series of toolpath information that is directly converted from a G-code file, including hatch spacing, laser power, layer thickness, dwell time, and scanning speed generated by using Slic3r software from a CAD file. A proposed multi-layer, multi-track FE model is used to investigate the influence of the laser power, scanning speed, and scanning path on the microstructure in the Ti-6Al-4V plate built via SLM. The processing window is also determined based on the proposed FE model. The FE results indicate that, with a decrease in the laser power and an increase in the scanning speed, the morphology of the crystal grains, showing fully columnar crystals, gradually deviates from the fully equiaxed region. The formed grains are dependent on the laser power, scanning speed, and deposition position, but they are not sensitive to the scanning path, and with the deposition from the bottom layer to the top layer, the size of the formed grains is gradually increasing, which shows a good agreement with the experimental results.

采用有限元(FE)方法描述了选择性激光熔化(SLM)过程中 Ti-6Al-4V 板材的热梯度、凝固速率和熔池尺寸。计算流体动力学(CFD)模拟对结果进行了验证。所提出的 FE 模型包含一系列直接从 G 代码文件转换而来的刀具路径信息,包括从 CAD 文件使用 Slic3r 软件生成的舱口间距、激光功率、层厚度、停留时间和扫描速度。利用所提出的多层、多轨道 FE 模型来研究激光功率、扫描速度和扫描路径对通过 SLM 制造的 Ti-6Al-4V 板材微观结构的影响。此外,还根据所提出的 FE 模型确定了加工窗口。有限元分析结果表明,随着激光功率的降低和扫描速度的增加,晶体颗粒的形态逐渐偏离完全等轴区域,呈现出完全柱状晶体。形成的晶粒与激光功率、扫描速度和沉积位置有关,但对扫描路径不敏感,而且随着从底层到顶层的沉积,形成的晶粒尺寸逐渐增大,这与实验结果有很好的一致性。
{"title":"Finite Element Analysis and Computational Fluid Dynamics Verification of Molten Pool Characteristics During Selective Laser Melting of Ti-6Al-4V Plates.","authors":"Lv Du, Wu-Gui Jiang, Gao-Gui Xu, Qing-Hua Qin, Duo-Sheng Li","doi":"10.1089/3dp.2021.0161","DOIUrl":"10.1089/3dp.2021.0161","url":null,"abstract":"<p><p>The finite element (FE) method is used to characterize the thermal gradient, solidification rate, and molten pool sizes of Ti-6Al-4V plates in the process of selective laser melting (SLM). The results are verified by using the computational fluid dynamics (CFD) simulation. The proposed FE model contains a series of toolpath information that is directly converted from a G-code file, including hatch spacing, laser power, layer thickness, dwell time, and scanning speed generated by using Slic3r software from a CAD file. A proposed multi-layer, multi-track FE model is used to investigate the influence of the laser power, scanning speed, and scanning path on the microstructure in the Ti-6Al-4V plate built via SLM. The processing window is also determined based on the proposed FE model. The FE results indicate that, with a decrease in the laser power and an increase in the scanning speed, the morphology of the crystal grains, showing fully columnar crystals, gradually deviates from the fully equiaxed region. The formed grains are dependent on the laser power, scanning speed, and deposition position, but they are not sensitive to the scanning path, and with the deposition from the bottom layer to the top layer, the size of the formed grains is gradually increasing, which shows a good agreement with the experimental results.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"711-722"},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440655/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10114896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interface Healing Between Adjacent Tracks in Fused Filament Fabrication Using In-Process Laser Heating. 在熔融金属丝制造过程中使用序中激光加热实现相邻轨道间的界面愈合
IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-08-01 Epub Date: 2023-08-09 DOI: 10.1089/3dp.2022.0127
Pu Han, Alireza Tofangchi, Sihan Zhang, Julio Jair Izquierdo, Keng Hsu

Fused filament fabrication is one of the most desired thermal plastic additive manufacturing processes because of its ability to fabricate complex objects with high accessibility. However, due to the extrusion track-based direct write process mechanism, parts built using this method exhibit anisotropic mechanical properties. In this work, an in-process laser heating method is introduced to heal interface adhesion between adjacent deposited tracks by increasing the interface temperature to promote polymer reptation and enhance bonding strength of the interface of adjacent tracks. With the use of laser heating induced interface healing, the measured flexural strength between adjacent tracks in the same layer increased and exceeded that of the control sample tested along the track direction. The effect of laser on interface healing was also verified by investigating the load-displacement curve and morphology analysis of the fractured surface.

熔融长丝制造是最受欢迎的热塑料增材制造工艺之一,因为它能够制造出复杂的物体,并具有很高的可及性。然而,由于基于挤出轨道的直接写入工艺机制,使用这种方法制造的零件表现出各向异性的机械性能。在这项工作中,引入了一种序中激光加热方法,通过提高界面温度来愈合相邻沉积轨道之间的界面粘合力,从而促进聚合物的再塑化并增强相邻轨道界面的粘合强度。使用激光加热诱导界面愈合后,同一层相邻轨道之间的测量抗弯强度增加,并超过了沿轨道方向测试的对照样品。通过研究载荷-位移曲线和断裂表面的形态分析,也验证了激光对界面愈合的影响。
{"title":"Interface Healing Between Adjacent Tracks in Fused Filament Fabrication Using In-Process Laser Heating.","authors":"Pu Han, Alireza Tofangchi, Sihan Zhang, Julio Jair Izquierdo, Keng Hsu","doi":"10.1089/3dp.2022.0127","DOIUrl":"10.1089/3dp.2022.0127","url":null,"abstract":"<p><p>Fused filament fabrication is one of the most desired thermal plastic additive manufacturing processes because of its ability to fabricate complex objects with high accessibility. However, due to the extrusion track-based direct write process mechanism, parts built using this method exhibit anisotropic mechanical properties. In this work, an in-process laser heating method is introduced to heal interface adhesion between adjacent deposited tracks by increasing the interface temperature to promote polymer reptation and enhance bonding strength of the interface of adjacent tracks. With the use of laser heating induced interface healing, the measured flexural strength between adjacent tracks in the same layer increased and exceeded that of the control sample tested along the track direction. The effect of laser on interface healing was also verified by investigating the load-displacement curve and morphology analysis of the fractured surface.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"808-815"},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440681/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10414378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Centrifugation-Assisted Three-Dimensional Printing of Devices Embedded with Fully Enclosed Microchannels. 离心辅助三维打印嵌入全封闭微通道的器件。
IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-08-01 Epub Date: 2023-08-09 DOI: 10.1089/3dp.2021.0133
Chia-Heng Chu, Enerelt Burentugs, Dohwan Lee, Jacob M Owens, Ruxiu Liu, Albert B Frazier, A Fatih Sarioglu

The challenges in reliably removing the sacrificial material from fully enclosed microfluidic channels hinder the use of three-dimensional (3D) printing to create microfluidic devices with intricate geometries. With advances in printer resolution, the etching of sacrificial materials from increasingly smaller channels is poised to be a bottleneck using the existing techniques. In this study, we introduce a microfabrication approach that utilizes centrifugation to effortlessly and efficiently remove the sacrificial materials from 3D-printed microfluidic devices with densely packed microfeatures. We characterize the process by measuring the etch rate under different centrifugal forces and developed a theoretical model to estimate process parameters for a given geometry. The effect of the device layout on the centrifugal etching process is also investigated. We demonstrate the applicability of our approach on devices fabricated using inkjet 3D printing and stereolithography. Finally, the advantages of the introduced approach over commonly used injection-based etching of sacrificial material are experimentally demonstrated in direct comparisons. A robust method to postprocess additively manufactured geometries composed of intricate microfluidic channels can help utilize both the large printing volume and high spatial resolution afforded by 3D printing in creating a variety of devices ranging from scaffolds to large-scale microfluidic assays.

从全封闭微流体通道中可靠地去除牺牲材料是一项挑战,它阻碍了利用三维(3D)打印技术制造具有复杂几何形状的微流体设备。随着打印机分辨率的提高,利用现有技术从越来越小的通道中蚀刻牺牲材料将成为一个瓶颈。在本研究中,我们介绍了一种微制造方法,利用离心分离技术轻松高效地从具有密集微特征的 3D 打印微流控器件中去除牺牲材料。我们通过测量不同离心力下的蚀刻率来描述该工艺,并开发了一个理论模型来估算给定几何形状的工艺参数。我们还研究了器件布局对离心蚀刻过程的影响。我们在使用喷墨 3D 打印和立体光刻技术制造的器件上演示了我们的方法的适用性。最后,通过直接比较,实验证明了所介绍的方法与常用的基于注射的牺牲材料蚀刻方法相比所具有的优势。一种对由错综复杂的微流体通道组成的添加式制造几何形状进行后处理的可靠方法有助于利用三维打印的大打印量和高空间分辨率来制造从支架到大规模微流体检测的各种设备。
{"title":"Centrifugation-Assisted Three-Dimensional Printing of Devices Embedded with Fully Enclosed Microchannels.","authors":"Chia-Heng Chu, Enerelt Burentugs, Dohwan Lee, Jacob M Owens, Ruxiu Liu, Albert B Frazier, A Fatih Sarioglu","doi":"10.1089/3dp.2021.0133","DOIUrl":"10.1089/3dp.2021.0133","url":null,"abstract":"<p><p>The challenges in reliably removing the sacrificial material from fully enclosed microfluidic channels hinder the use of three-dimensional (3D) printing to create microfluidic devices with intricate geometries. With advances in printer resolution, the etching of sacrificial materials from increasingly smaller channels is poised to be a bottleneck using the existing techniques. In this study, we introduce a microfabrication approach that utilizes centrifugation to effortlessly and efficiently remove the sacrificial materials from 3D-printed microfluidic devices with densely packed microfeatures. We characterize the process by measuring the etch rate under different centrifugal forces and developed a theoretical model to estimate process parameters for a given geometry. The effect of the device layout on the centrifugal etching process is also investigated. We demonstrate the applicability of our approach on devices fabricated using inkjet 3D printing and stereolithography. Finally, the advantages of the introduced approach over commonly used injection-based etching of sacrificial material are experimentally demonstrated in direct comparisons. A robust method to postprocess additively manufactured geometries composed of intricate microfluidic channels can help utilize both the large printing volume and high spatial resolution afforded by 3D printing in creating a variety of devices ranging from scaffolds to large-scale microfluidic assays.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"609-618"},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440665/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10059363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iodine-Based Sensitization of Copper Alloys to Enable Self-Terminating Etching for Support Removal and Surface Improvements of Additively Manufactured Components. 对铜合金进行碘基敏化,以实现自淬火蚀刻,从而去除支撑物并改善快速成型部件的表面。
IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-08-01 Epub Date: 2023-08-09 DOI: 10.1089/3dp.2021.0242
Sanaz Yazdanparast, Subbarao Raikar, Meredith Heilig, Owen J Hildreth

Advances in selective laser melting (SLM) of metals in the past two decades have made metals additive manufacturing more accessible for industrial adoption. Despite printing process improvements, post-processing of SLM components has not improved much, resulting in considerable costs, delay, and design limitations. Building upon recent advances in sensitization-based self-terminating etching processes, this work details a new set iodine-based sensitization and etching chemistries that simplify the post-processing of copper (Cu) alloy components fabricated using SLM. This work demonstrates that iodine can be used to "sensitize" the surface of copper alloy components to form soluble copper iodide salt that can be then dissolved in common solvents, such as acetonitrile. This process removes a predefined amount of material from all interior and exterior surfaces in a self-terminating manner, enabling facile removal of internal and external supports, removal of any trapped powder, and the smoothing of interior and exterior surfaces. We demonstrate this process on GRCop (Cu-chromium-niobium) alloys due to their widespread use by the rocket propulsion industry along with a demonstration in copper (110) for applications in heat exchangers and electromagnetic transmitters/receivers. Our results provide the first systematic study on the effect of iodization temperature and duration on the thickness of the iodide region in GRCop-84 components. Additionally, the surface roughness before and after each iodization-dissolution was also quantified for GRCop-84 and showed 70% reduction in Ra roughness from a high of 10 μm as-printed to a low of 3 μm after four iodization-dissolution cycles.

过去二十年来,金属选择性激光熔融(SLM)技术的进步使金属快速成型制造技术更容易被工业界采用。尽管打印工艺有所改进,但 SLM 组件的后处理却没有太大改进,导致了相当高的成本、延迟和设计限制。在基于敏化的自终止蚀刻工艺的最新进展基础上,本研究详细介绍了一套新的基于碘的敏化和蚀刻化学工艺,可简化使用 SLM 制造的铜(Cu)合金部件的后处理。这项工作证明,碘可用来 "敏化 "铜合金元件表面,形成可溶性碘化铜盐,然后将其溶解在乙腈等普通溶剂中。这种工艺能以自终止的方式从所有内外表面去除预定数量的材料,从而方便地去除内部和外部支撑物、去除任何残留粉末以及平滑内外表面。我们在 GRCop(铜-铬-铌)合金上演示了这一工艺,因为这种合金在火箭推进行业得到了广泛应用,同时还在铜 (110) 上进行了演示,因为铜在热交换器和电磁发射器/接收器中得到了应用。我们的研究结果首次系统地研究了碘化温度和持续时间对 GRCop-84 部件碘化区厚度的影响。此外,我们还对 GRCop-84 在每次加碘-溶解前后的表面粗糙度进行了量化,结果表明,经过四个加碘-溶解周期后,Ra 粗糙度降低了 70%,从印刷时的 10 μm 降低到 3 μm。
{"title":"Iodine-Based Sensitization of Copper Alloys to Enable Self-Terminating Etching for Support Removal and Surface Improvements of Additively Manufactured Components.","authors":"Sanaz Yazdanparast, Subbarao Raikar, Meredith Heilig, Owen J Hildreth","doi":"10.1089/3dp.2021.0242","DOIUrl":"10.1089/3dp.2021.0242","url":null,"abstract":"<p><p>Advances in selective laser melting (SLM) of metals in the past two decades have made metals additive manufacturing more accessible for industrial adoption. Despite printing process improvements, post-processing of SLM components has not improved much, resulting in considerable costs, delay, and design limitations. Building upon recent advances in sensitization-based self-terminating etching processes, this work details a new set iodine-based sensitization and etching chemistries that simplify the post-processing of copper (Cu) alloy components fabricated using SLM. This work demonstrates that iodine can be used to \"sensitize\" the surface of copper alloy components to form soluble copper iodide salt that can be then dissolved in common solvents, such as acetonitrile. This process removes a predefined amount of material from all interior and exterior surfaces in a self-terminating manner, enabling facile removal of internal and external supports, removal of any trapped powder, and the smoothing of interior and exterior surfaces. We demonstrate this process on GRCop (Cu-chromium-niobium) alloys due to their widespread use by the rocket propulsion industry along with a demonstration in copper (110) for applications in heat exchangers and electromagnetic transmitters/receivers. Our results provide the first systematic study on the effect of iodization temperature and duration on the thickness of the iodide region in GRCop-84 components. Additionally, the surface roughness before and after each iodization-dissolution was also quantified for GRCop-84 and showed 70% reduction in R<sub>a</sub> roughness from a high of 10 μm as-printed to a low of 3 μm after four iodization-dissolution cycles.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"619-630"},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440683/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10052245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct Ink Writing of Carbon-Doped Polymeric Composite Ink: A Review on Its Requirements and Applications. 掺碳聚合物复合油墨的直接油墨书写:需求与应用综述
IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-08-01 Epub Date: 2023-08-09 DOI: 10.1089/3dp.2021.0209
Ratnesh Raj, Amit Rai Dixit

Direct Ink Writing (DIW) opens new possibilities in three-dimensional (3D) printing of carbon-based polymeric ink. This is due to its ability in design flexibility, structural complexity, and environmental sustainability. This area requires exhaustive study because of its wide application in different manufacturing sectors. The present article is related to the variant emerging 3D printing techniques and DIW of carbonaceous materials. Carbon-based materials, extensively used for various applications in 3D printing, possess impressive chemical stability, strength, and flexible nanostructure. Fine printable inks consist predominantly of uniform solutions of carbon materials, such as graphene, graphene oxide (GO), carbon fibers (CFs), carbon nanotubes (CNTs), and solvents. It also contains compatible polymers and suitable additives. This review article elaborately discusses the fundamental requirements of DIW in structuring carbon-doped polymeric inks viz. ink formulation, required ink rheology, extrusion parameters, print fidelity prediction, layer bonding examination, substrate selection, and curing method to achieve fine functional composites. A detailed description of its application in the fields of electronics, medical, and mechanical segments have also been focused in this study.

直接油墨写入(DIW)为碳基聚合物油墨的三维(3D)打印提供了新的可能性。这得益于它在设计灵活性、结构复杂性和环境可持续性方面的能力。由于其在不同制造领域的广泛应用,这一领域需要详尽的研究。本文涉及碳基材料的新型 3D 打印技术和 DIW。碳基材料广泛应用于三维打印的各种领域,具有令人印象深刻的化学稳定性、强度和灵活的纳米结构。精细可打印墨水主要由石墨烯、氧化石墨烯(GO)、碳纤维(CF)、碳纳米管(CNT)等碳材料的均匀溶液和溶剂组成。它还包含兼容的聚合物和合适的添加剂。这篇综述文章详细讨论了 DIW 在掺碳聚合物油墨结构中的基本要求,即油墨配方、所需的油墨流变性、挤出参数、印刷保真度预测、层粘合检查、基材选择和固化方法,以实现精细的功能复合材料。本研究还重点详细介绍了其在电子、医疗和机械领域的应用。
{"title":"Direct Ink Writing of Carbon-Doped Polymeric Composite Ink: A Review on Its Requirements and Applications.","authors":"Ratnesh Raj, Amit Rai Dixit","doi":"10.1089/3dp.2021.0209","DOIUrl":"10.1089/3dp.2021.0209","url":null,"abstract":"<p><p>Direct Ink Writing (DIW) opens new possibilities in three-dimensional (3D) printing of carbon-based polymeric ink. This is due to its ability in design flexibility, structural complexity, and environmental sustainability. This area requires exhaustive study because of its wide application in different manufacturing sectors. The present article is related to the variant emerging 3D printing techniques and DIW of carbonaceous materials. Carbon-based materials, extensively used for various applications in 3D printing, possess impressive chemical stability, strength, and flexible nanostructure. Fine printable inks consist predominantly of uniform solutions of carbon materials, such as graphene, graphene oxide (GO), carbon fibers (CFs), carbon nanotubes (CNTs), and solvents. It also contains compatible polymers and suitable additives. This review article elaborately discusses the fundamental requirements of DIW in structuring carbon-doped polymeric inks viz. ink formulation, required ink rheology, extrusion parameters, print fidelity prediction, layer bonding examination, substrate selection, and curing method to achieve fine functional composites. A detailed description of its application in the fields of electronics, medical, and mechanical segments have also been focused in this study.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"828-854"},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440670/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10059367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective Laser Sintering Parameter Optimization of Prosopis Chilensis/Polyethersulfone Composite Fabricated by AFS-360 SLS. AFS-360 SLS 制造的千层塔/聚醚砜复合材料的选择性激光烧结参数优化
IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-08-01 Epub Date: 2023-08-09 DOI: 10.1089/3dp.2021.0118
Aboubaker I B Idriss, Jian Li, Yanling Guo, Tong Shuhui, Yangwei Wang, Elkhawad A Elfaki, Gafer A Ahmed

The current available selective laser sintering (SLS) materials are often high in cost and limited in variety; the mechanical properties of wood-composite SLS parts are low quality, which restricts the development of SLS technology. This article aims to optimize the SLS processing parameters to enhance the mechanical properties of the Prosopis chilensis powder (PCP)/polyethersulfone (PES) composite (PCPC) part fabricated via SLS. The PCP and PES powder were proposed as the feedstock of the PCPC powder bed for SLS. First, the thermal decomposition and glass transition temperatures (Tg) of PCP and PES powder were estimated to reduce the produced PCPC parts from warping and deformation during SLS. An orthogonal experimental methodology with five factors and four levels was used to optimize the SLS parameters for the PCPC SLS test. The scanning speed, preheating temperature, and laser power are selected as the main affecting factors on this study. The influence of these factors on dimension accuracies, bending and tensile strengths, and surface roughness quality of the produced PCPC parts was studied. The PCPC particle distribution and microstructure were inspected via scanning electron microscopy. Furthermore, the synthesis weighted scoring methods were utilized to determine the optimal SLS processing parameters of the produced PCPC parts. The combined results of tests showed that the optimal SLS parameters were as follows: the scanning speed is 1.8 m/s, preheating temperature is 80°C, and the laser power is 12 W. Thus, the quality of PCPC SLS parts was significantly enhanced when the optimal parameters were utilized in the SLS process. This article provided the main reference values of SLS parameters of the PCPC. To further enhance the surface roughness quality and mechanical strengths, the postprocessing infiltration with wax was introduced; after wax infiltration, the surface roughness and mechanical strengths were significantly improved.

目前可用的选择性激光烧结(SLS)材料往往成本高、品种少;木质复合材料 SLS 零件的力学性能质量低,制约了 SLS 技术的发展。本文旨在优化 SLS 加工参数,以提高通过 SLS 制造的木质复合材料零件(PCPC)的机械性能。本研究建议将 PCP 和 PES 粉末作为 SLS 制造 PCPC 粉床的原料。首先,估算了 PCP 和 PES 粉末的热分解温度和玻璃化转变温度 (Tg),以减少 SLS 过程中 PCPC 部件的翘曲和变形。在 PCPC SLS 试验中,采用了五因素四水平的正交实验方法来优化 SLS 参数。本研究选择扫描速度、预热温度和激光功率作为主要影响因素。研究了这些因素对所生产的 PCPC 零件的尺寸精度、弯曲和拉伸强度以及表面粗糙度质量的影响。通过扫描电子显微镜检查了 PCPC 颗粒分布和微观结构。此外,还利用合成加权评分法确定了所生产 PCPC 零件的最佳 SLS 加工参数。综合测试结果表明,最佳 SLS 参数如下:扫描速度为 1.8 m/s,预热温度为 80°C,激光功率为 12 W。本文提供了 PCPC SLS 参数的主要参考值。为了进一步提高表面粗糙度质量和机械强度,引入了后处理渗蜡工艺;渗蜡后,表面粗糙度和机械强度得到了明显改善。
{"title":"Selective Laser Sintering Parameter Optimization of Prosopis Chilensis/Polyethersulfone Composite Fabricated by AFS-360 SLS.","authors":"Aboubaker I B Idriss, Jian Li, Yanling Guo, Tong Shuhui, Yangwei Wang, Elkhawad A Elfaki, Gafer A Ahmed","doi":"10.1089/3dp.2021.0118","DOIUrl":"10.1089/3dp.2021.0118","url":null,"abstract":"<p><p>The current available selective laser sintering (SLS) materials are often high in cost and limited in variety; the mechanical properties of wood-composite SLS parts are low quality, which restricts the development of SLS technology. This article aims to optimize the SLS processing parameters to enhance the mechanical properties of the Prosopis chilensis powder (PCP)/polyethersulfone (PES) composite (PCPC) part fabricated via SLS. The PCP and PES powder were proposed as the feedstock of the PCPC powder bed for SLS. First, the thermal decomposition and glass transition temperatures (Tg) of PCP and PES powder were estimated to reduce the produced PCPC parts from warping and deformation during SLS. An orthogonal experimental methodology with five factors and four levels was used to optimize the SLS parameters for the PCPC SLS test. The scanning speed, preheating temperature, and laser power are selected as the main affecting factors on this study. The influence of these factors on dimension accuracies, bending and tensile strengths, and surface roughness quality of the produced PCPC parts was studied. The PCPC particle distribution and microstructure were inspected via scanning electron microscopy. Furthermore, the synthesis weighted scoring methods were utilized to determine the optimal SLS processing parameters of the produced PCPC parts. The combined results of tests showed that the optimal SLS parameters were as follows: the scanning speed is 1.8 m/s, preheating temperature is 80°C, and the laser power is 12 W. Thus, the quality of PCPC SLS parts was significantly enhanced when the optimal parameters were utilized in the SLS process. This article provided the main reference values of SLS parameters of the PCPC. To further enhance the surface roughness quality and mechanical strengths, the postprocessing infiltration with wax was introduced; after wax infiltration, the surface roughness and mechanical strengths were significantly improved.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"697-710"},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440679/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10433422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of Surface Roughness and Density of Overhang Structures Fabricated by Laser Powder Bed Fusion. 优化激光粉末床熔融技术制造的悬挂结构的表面粗糙度和密度
IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-08-01 Epub Date: 2023-08-09 DOI: 10.1089/3dp.2021.0180
Hong-You Lin, Hong-Chuong Tran, Yu-Lung Lo, Trong-Nhan Le, Kuo-Chi Chiu, Yuan-Yao Hsu

Laser powder bed fusion (LPBF) provides a rapid and versatile approach for producing parts with complex geometries. However, many parts with intricate geometries have overhang structures, which are not easily fabricated by using LPBF and are often downgraded by staircase effects, warpage, cracks, and dross formation. Thus, the present study proposes a combined numerical and experimental approach for determining the optimal settings of the laser power and scanning speed that minimize the surface roughness and maximize the density of Inconel 718 LPBF overhang structures. In the proposed approach, the heat transfer simulations are employed to determine the melt pool depth, the melt pool length, and the solid cooling rate within the feasible input space of laser power and scanning speed combinations. Notably, the simulations take account of both the difference in the material properties of the solid and powder materials, respectively, and the variation of the laser absorptivity in the depth direction of the powder layer. The simulation results are then used to train artificial neural networks for predicting the melt pool depth for 3600 combinations of the laser power and scanning speed within the input space. The resulting processing maps are screened in accordance with three quality criteria (namely the melt pool depth, the melt pool length, and the solid cooling rate) to determine the optimal processing region, which improves the surface roughness. The feasibility of the proposed approach is demonstrated by fabricating 10 × 10 and 20 × 20 mm2 horizontal overhang structures using parameter settings chosen from the optimal processing map. It shows that the optimal processing conditions result in a low surface roughness and a maximum density of 99.78%.

激光粉末床熔融技术(LPBF)为生产复杂几何形状的零件提供了一种快速、通用的方法。然而,许多几何形状复杂的零件都有悬空结构,使用 LPBF 不容易制造,而且往往会因阶梯效应、翘曲、裂纹和渣滓的形成而降级。因此,本研究提出了一种数值和实验相结合的方法,用于确定激光功率和扫描速度的最佳设置,使因科镍合金 718 LPBF 悬伸结构的表面粗糙度最小,密度最大。在所提出的方法中,热传导模拟用于确定熔池深度、熔池长度以及激光功率和扫描速度组合的可行输入空间内的固体冷却速率。值得注意的是,模拟既考虑了固体材料和粉末材料在材料特性上的差异,也考虑了激光吸收率在粉末层深度方向上的变化。模拟结果用于训练人工神经网络,以预测输入空间内 3600 种激光功率和扫描速度组合的熔池深度。根据三个质量标准(即熔池深度、熔池长度和固体冷却速度)对得到的加工图进行筛选,以确定最佳加工区域,从而改善表面粗糙度。通过使用从最佳加工图中选择的参数设置制造 10 × 10 和 20 × 20 mm2 水平悬伸结构,证明了所提方法的可行性。结果表明,最佳加工条件可实现较低的表面粗糙度和 99.78% 的最大密度。
{"title":"Optimization of Surface Roughness and Density of Overhang Structures Fabricated by Laser Powder Bed Fusion.","authors":"Hong-You Lin, Hong-Chuong Tran, Yu-Lung Lo, Trong-Nhan Le, Kuo-Chi Chiu, Yuan-Yao Hsu","doi":"10.1089/3dp.2021.0180","DOIUrl":"10.1089/3dp.2021.0180","url":null,"abstract":"<p><p>Laser powder bed fusion (LPBF) provides a rapid and versatile approach for producing parts with complex geometries. However, many parts with intricate geometries have overhang structures, which are not easily fabricated by using LPBF and are often downgraded by staircase effects, warpage, cracks, and dross formation. Thus, the present study proposes a combined numerical and experimental approach for determining the optimal settings of the laser power and scanning speed that minimize the surface roughness and maximize the density of Inconel 718 LPBF overhang structures. In the proposed approach, the heat transfer simulations are employed to determine the melt pool depth, the melt pool length, and the solid cooling rate within the feasible input space of laser power and scanning speed combinations. Notably, the simulations take account of both the difference in the material properties of the solid and powder materials, respectively, and the variation of the laser absorptivity in the depth direction of the powder layer. The simulation results are then used to train artificial neural networks for predicting the melt pool depth for 3600 combinations of the laser power and scanning speed within the input space. The resulting processing maps are screened in accordance with three quality criteria (namely the melt pool depth, the melt pool length, and the solid cooling rate) to determine the optimal processing region, which improves the surface roughness. The feasibility of the proposed approach is demonstrated by fabricating 10 × 10 and 20 × 20 mm<sup>2</sup> horizontal overhang structures using parameter settings chosen from the optimal processing map. It shows that the optimal processing conditions result in a low surface roughness and a maximum density of 99.78%.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"732-748"},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440661/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10052246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of Temperature- and Humidity-Independent Silver Nanoparticle's Carbon Composite-Based Strain Sensor Through Additive Manufacturing Process. 通过增材制造工艺制作与温度和湿度无关的银纳米粒子碳复合材料应变传感器
IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-08-01 Epub Date: 2023-08-09 DOI: 10.1089/3dp.2021.0032
Iqbal Nadeem, Sajid Memoon, Rahman Khalid, Amin Qausaria Tahseen, Muhammad Shakeel, Ahmad Salman, Amin Mohsin

A highly sensitive low-cost strain sensor was fabricated in this research study based on microdispensing direct write (MDDW) technique. MDDW is an additive manufacturing approach that involves direct deposition of functional material to the substrate. The devices were printed directly onto a polymeric substrate by optimizing the fabrication parameters. A composite of silver and carbon was used as active sensor material where both materials in the composite have opposite resistance temperature coefficients. The ratio of materials in the composite was selected so that the effect of temperature on the resistance of overall composite was canceled out. This resulted in achieving temperature compensation or inherent independence of the strain sensor resistance on temperature without requiring any additional sensors and components. The sensor was further encapsulated by electrospray deposition, which is also an additive manufacturing approach, to eliminate the effect of humidity as well. Electrical and morphological characterizations were performed to investigate the output response of the sensors and their physical and structural properties. An analog signal conditioning circuit was developed for seamless interfacing of the sensor with any electronic system. The sensor had an excellent gauge factor of 45 and a strain sensitivity of 45 Ω/μɛ that is higher than most of the conventional strain sensors. The sensor's response showed excellent temperature and humidity compensation reducing the relative effect of temperature on the resistance by ∼99.5% and humidity by ∼99.8%.

本研究基于微点直接写入(MDDW)技术制造了一种高灵敏度、低成本的应变传感器。MDDW 是一种增材制造方法,涉及将功能材料直接沉积到基底上。通过优化制造参数,器件被直接打印在聚合物基底上。银和碳的复合材料被用作活性传感器材料,复合材料中的两种材料具有相反的电阻温度系数。选择复合材料的比例是为了抵消温度对整个复合材料电阻的影响。这就实现了温度补偿或应变传感器电阻对温度的固有独立性,而不需要任何额外的传感器和元件。通过电喷沉积(也是一种增材制造方法)对传感器进行了进一步封装,以消除湿度的影响。为了研究传感器的输出响应及其物理和结构特性,对其进行了电学和形态学表征。还开发了模拟信号调节电路,以便将传感器与任何电子系统无缝连接。传感器的测量系数为 45,应变灵敏度为 45 Ω/μɛ,高于大多数传统应变传感器。传感器的响应显示出出色的温度和湿度补偿能力,温度对电阻的相对影响降低了 ∼ 99.5%,湿度降低了 ∼ 99.8%。
{"title":"Fabrication of Temperature- and Humidity-Independent Silver Nanoparticle's Carbon Composite-Based Strain Sensor Through Additive Manufacturing Process.","authors":"Iqbal Nadeem, Sajid Memoon, Rahman Khalid, Amin Qausaria Tahseen, Muhammad Shakeel, Ahmad Salman, Amin Mohsin","doi":"10.1089/3dp.2021.0032","DOIUrl":"10.1089/3dp.2021.0032","url":null,"abstract":"<p><p>A highly sensitive low-cost strain sensor was fabricated in this research study based on microdispensing direct write (MDDW) technique. MDDW is an additive manufacturing approach that involves direct deposition of functional material to the substrate. The devices were printed directly onto a polymeric substrate by optimizing the fabrication parameters. A composite of silver and carbon was used as active sensor material where both materials in the composite have opposite resistance temperature coefficients. The ratio of materials in the composite was selected so that the effect of temperature on the resistance of overall composite was canceled out. This resulted in achieving temperature compensation or inherent independence of the strain sensor resistance on temperature without requiring any additional sensors and components. The sensor was further encapsulated by electrospray deposition, which is also an additive manufacturing approach, to eliminate the effect of humidity as well. Electrical and morphological characterizations were performed to investigate the output response of the sensors and their physical and structural properties. An analog signal conditioning circuit was developed for seamless interfacing of the sensor with any electronic system. The sensor had an excellent gauge factor of 45 and a strain sensitivity of 45 Ω/μɛ that is higher than most of the conventional strain sensors. The sensor's response showed excellent temperature and humidity compensation reducing the relative effect of temperature on the resistance by ∼99.5% and humidity by ∼99.8%.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"674-683"},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440668/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10059366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Facile Three-Dimensional Printing of the Composite of Copper Nanosized Powder and Micron Powder with Enhanced Properties. 纳米铜粉与微米铜粉复合材料的便捷三维打印与性能提升。
IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-08-01 Epub Date: 2023-08-09 DOI: 10.1089/3dp.2021.0122
Youzhi Zhou, Huijun He, Jingjie Xu, Minghui Liang, Limin Wang, Ligen Wang, Xu Pan, Qiang Hu, Jingguo Zhang

Three-dimensional (3D) printing of Cu items is a new way to build up the structured Cu materials, but 3D printing of Cu items is usually a challenge because of the high melting point, high thermal conductivity, and high light reflection rate of Cu material. In this study, the composite of Cu microspheres powder and Cu nanoparticles (micro/nano Cu powder) is used to realize the 3D printing of Cu items with the selective laser melting technology. The sintering temperature and the thermal conductivity of micro/nano Cu powder are evidently decreased due to Cu nanoparticles' addition in the micron Cu powder. The results reveal that the 3D printing of 50%/50% micro/nano Cu powder needs laser power range of 100-240 W, which is in contrast to 200-340 W for 3D printing of 100% Cu microspheres powder. Furthermore, the conductivity, mechanical strength, and density of 3D-printed Cu items are improved with the addition of Cu nanoparticles into the micron Cu powder. The increasement of 34% on electrical conductivity and 17% on tensile strength are reached by the addition of 50% Cu nanoparticles with the laser power of 240 W.

三维(3D)打印铜制品是构建铜结构材料的一种新方法,但由于铜材料的高熔点、高导热性和高光反射率,三维打印铜制品通常是一项挑战。本研究采用选择性激光熔融技术,将铜微球粉末和铜纳米颗粒(微/纳米铜粉)复合在一起,实现了铜材料的三维打印。在微米铜粉中加入纳米铜粒子后,微米/纳米铜粉的烧结温度和导热系数明显降低。结果表明,50%/50% 微米/纳米铜粉的 3D 打印所需的激光功率范围为 100-240 W,而 100% 微球铜粉的 3D 打印所需的激光功率范围为 200-340 W。此外,在微米铜粉中加入纳米铜粒子后,三维打印铜制品的导电性、机械强度和密度都得到了改善。在激光功率为 240 W 的情况下,添加 50%的纳米铜微粒后,导电率提高了 34%,拉伸强度提高了 17%。
{"title":"The Facile Three-Dimensional Printing of the Composite of Copper Nanosized Powder and Micron Powder with Enhanced Properties.","authors":"Youzhi Zhou, Huijun He, Jingjie Xu, Minghui Liang, Limin Wang, Ligen Wang, Xu Pan, Qiang Hu, Jingguo Zhang","doi":"10.1089/3dp.2021.0122","DOIUrl":"10.1089/3dp.2021.0122","url":null,"abstract":"<p><p>Three-dimensional (3D) printing of Cu items is a new way to build up the structured Cu materials, but 3D printing of Cu items is usually a challenge because of the high melting point, high thermal conductivity, and high light reflection rate of Cu material. In this study, the composite of Cu microspheres powder and Cu nanoparticles (micro/nano Cu powder) is used to realize the 3D printing of Cu items with the selective laser melting technology. The sintering temperature and the thermal conductivity of micro/nano Cu powder are evidently decreased due to Cu nanoparticles' addition in the micron Cu powder. The results reveal that the 3D printing of 50%/50% micro/nano Cu powder needs laser power range of 100-240 W, which is in contrast to 200-340 W for 3D printing of 100% Cu microspheres powder. Furthermore, the conductivity, mechanical strength, and density of 3D-printed Cu items are improved with the addition of Cu nanoparticles into the micron Cu powder. The increasement of 34% on electrical conductivity and 17% on tensile strength are reached by the addition of 50% Cu nanoparticles with the laser power of 240 W.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"631-639"},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440659/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10433425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing Process Parameters of Direct Ink Writing for Dimensional Accuracy of Printed Layers. 优化直接油墨写入工艺参数,实现印刷层的尺寸精度。
IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-08-01 Epub Date: 2023-08-09 DOI: 10.1089/3dp.2021.0208
Yongqiang Tu, Javier A Arrieta-Escobar, Alaa Hassan, Uzair Khaleeq Uz Zaman, Ali Siadat, Gongliu Yang

Direct ink writing (DIW) belongs to extrusion-based three-dimensional (3D) printing techniques. The success of DIW process depends on well-printable ink and optimized process parameters. After ink preparation, DIW process parameters considerably affect the parts' dimensional accuracy, and process parameters optimization for dimensional accuracy of printed layers is necessary for quality control of parts in DIW. In this study, DIW process parameters were identified and divided into two categories as the parameters for printing a line and the parameter from lines to a layer. Then, a two-step method was proposed for optimizing process parameters. Step 1 was to optimize process parameters for printing a line. In Step 1, continuity and uniformity of extruded filaments and printed rectangular objects were observed in screening experiments to determine printability windows for each process parameter. Then, interaction effect tests were conducted and degree of freedom for experiments was calculated followed by orthogonal array selection for the Taguchi design. Next, main experiments of line printing based on the Taguchi method were conducted. Signal-to-noise ratio calculations and analysis of variance were performed to find the optimal combination and evaluate the significance, respectively. Step 2 was to optimize the parameter from lines to a layer. In Step 2, the average width of the printed line under optimal condition was first measured. Then, single-factor tests of rectangular object printing were conducted to find the optimal parameter from lines to a layer. After these two steps, confirmation results were conducted to verify the reliability of the proposed method and the method robustness on other shapes and other materials; parameter adaptability in 3D parts printing from printed layers' analyses for the proposed method; and parameter adaptability in constructs fabricated as 100% infill or with porosities.

直接油墨书写(DIW)属于基于挤压的三维(3D)打印技术。DIW 工艺的成功取决于良好的可印刷性油墨和优化的工艺参数。油墨制备完成后,DIW 工艺参数会对零件的尺寸精度产生很大影响,因此,为了控制 DIW 零件的质量,有必要针对印刷层的尺寸精度进行工艺参数优化。本研究确定了 DIW 工艺参数,并将其分为两类,即印刷线参数和从线到层的参数。然后,提出了一种分两步优化工艺参数的方法。第一步是优化印刷线的工艺参数。在步骤 1 中,通过筛选实验观察挤出长丝和印刷矩形物体的连续性和均匀性,以确定每个工艺参数的可印刷性窗口。然后,进行交互效应测试,计算实验的自由度,然后进行田口设计的正交阵列选择。接着,根据田口方法进行了线性印刷的主要实验。分别进行信噪比计算和方差分析,以找到最佳组合并评估其显著性。第 2 步是优化从线到层的参数。在步骤 2 中,首先测量了最佳条件下印刷线的平均宽度。然后,对矩形物体的印刷进行单因素测试,以找到从线条到图层的最佳参数。在这两个步骤之后,还进行了确认结果,以验证所提方法的可靠性以及该方法在其他形状和其他材料上的鲁棒性;根据所提方法对打印层的分析,验证三维零件打印中的参数适应性;以及以 100% 填充或多孔形式制造的结构中的参数适应性。
{"title":"Optimizing Process Parameters of Direct Ink Writing for Dimensional Accuracy of Printed Layers.","authors":"Yongqiang Tu, Javier A Arrieta-Escobar, Alaa Hassan, Uzair Khaleeq Uz Zaman, Ali Siadat, Gongliu Yang","doi":"10.1089/3dp.2021.0208","DOIUrl":"10.1089/3dp.2021.0208","url":null,"abstract":"<p><p>Direct ink writing (DIW) belongs to extrusion-based three-dimensional (3D) printing techniques. The success of DIW process depends on well-printable ink and optimized process parameters. After ink preparation, DIW process parameters considerably affect the parts' dimensional accuracy, and process parameters optimization for dimensional accuracy of printed layers is necessary for quality control of parts in DIW. In this study, DIW process parameters were identified and divided into two categories as the parameters for printing a line and the parameter from lines to a layer. Then, a two-step method was proposed for optimizing process parameters. Step 1 was to optimize process parameters for printing a line. In Step 1, continuity and uniformity of extruded filaments and printed rectangular objects were observed in screening experiments to determine printability windows for each process parameter. Then, interaction effect tests were conducted and degree of freedom for experiments was calculated followed by orthogonal array selection for the Taguchi design. Next, main experiments of line printing based on the Taguchi method were conducted. Signal-to-noise ratio calculations and analysis of variance were performed to find the optimal combination and evaluate the significance, respectively. Step 2 was to optimize the parameter from lines to a layer. In Step 2, the average width of the printed line under optimal condition was first measured. Then, single-factor tests of rectangular object printing were conducted to find the optimal parameter from lines to a layer. After these two steps, confirmation results were conducted to verify the reliability of the proposed method and the method robustness on other shapes and other materials; parameter adaptability in 3D parts printing from printed layers' analyses for the proposed method; and parameter adaptability in constructs fabricated as 100% infill or with porosities.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"816-827"},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440672/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10059368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
3D Printing and Additive Manufacturing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1