首页 > 最新文献

3D Printing and Additive Manufacturing最新文献

英文 中文
The Effect of Thermal Cycle on Hot Cracking Evolution and Formation Mechanism in Thin Wall, Single Layer, and Cubic Samples of High-Strength Al-Cu-Mg-Mn Alloys Fabricated by Laser Powder Bed Fusion 热循环对激光粉末床熔融法制造的高强度铝-铜-镁-锰合金薄壁、单层和立方体样品中热裂纹演变及形成机理的影响
IF 3.1 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-12-13 DOI: 10.1089/3dp.2023.0167
Xiaojia Nie, Fei Peng, Zhiheng Hu, Yang Qi, Haihong Zhu, Hu Zhang
{"title":"The Effect of Thermal Cycle on Hot Cracking Evolution and Formation Mechanism in Thin Wall, Single Layer, and Cubic Samples of High-Strength Al-Cu-Mg-Mn Alloys Fabricated by Laser Powder Bed Fusion","authors":"Xiaojia Nie, Fei Peng, Zhiheng Hu, Yang Qi, Haihong Zhu, Hu Zhang","doi":"10.1089/3dp.2023.0167","DOIUrl":"https://doi.org/10.1089/3dp.2023.0167","url":null,"abstract":"","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"52 12","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139005998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface Structure Modification in Fused Filament Fabrication (FFF) Multi-Material Printing for Medical Applications: Printing of a Hand Prosthesis 用于医疗应用的熔融丝制造(FFF)多材料打印中的表面结构改性:手部假肢的打印
IF 3.1 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-12-12 DOI: 10.1089/3dp.2023.0210
E. Brancewicz-Steinmetz, Natalia Słabęcka, Patryk Śniarowski, Katarzyna Wybrzak, Jacek Sawicki
{"title":"Surface Structure Modification in Fused Filament Fabrication (FFF) Multi-Material Printing for Medical Applications: Printing of a Hand Prosthesis","authors":"E. Brancewicz-Steinmetz, Natalia Słabęcka, Patryk Śniarowski, Katarzyna Wybrzak, Jacek Sawicki","doi":"10.1089/3dp.2023.0210","DOIUrl":"https://doi.org/10.1089/3dp.2023.0210","url":null,"abstract":"","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"33 4","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139006720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detecting Selective Laser Melting Beam Power from Ultrasonic Temporal and Spectral Responses of Phononic Crystal Artifacts Toward In-Situ Real-Time Quality Monitoring 从超声波的时相和频谱响应检测选择性激光熔化光束功率,实现原位实时质量监测
IF 3.1 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-12-12 DOI: 10.1089/3dp.2023.0063
E. H. Rozin, Tipu Sultan, Hossein Taheri, Cetin Cetinkaya
{"title":"Detecting Selective Laser Melting Beam Power from Ultrasonic Temporal and Spectral Responses of Phononic Crystal Artifacts Toward In-Situ Real-Time Quality Monitoring","authors":"E. H. Rozin, Tipu Sultan, Hossein Taheri, Cetin Cetinkaya","doi":"10.1089/3dp.2023.0063","DOIUrl":"https://doi.org/10.1089/3dp.2023.0063","url":null,"abstract":"","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"38 19","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139007867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy Consumption Prediction of Additive Manufactured Tensile Strength Parts Using Artificial Intelligence 利用人工智能预测增材制造拉伸强度部件的能耗
IF 3.1 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-12-11 DOI: 10.1089/3dp.2023.0189
O. Ulkir, Mehmet Said Bayraklilar, M. Kuncan
{"title":"Energy Consumption Prediction of Additive Manufactured Tensile Strength Parts Using Artificial Intelligence","authors":"O. Ulkir, Mehmet Said Bayraklilar, M. Kuncan","doi":"10.1089/3dp.2023.0189","DOIUrl":"https://doi.org/10.1089/3dp.2023.0189","url":null,"abstract":"","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"14 52","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138980985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Additive Manufacturing and Composite Materials for Marine Energy: Case of Tidal Turbine. 用于海洋能源的快速成型制造和复合材料:潮汐涡轮机案例。
IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-12-01 Epub Date: 2023-12-11 DOI: 10.1089/3dp.2021.0194
Marwane Rouway, Mostapha Tarfaoui, Nabil Chakhchaoui, Lhaj El Hachemi Omari, Fouzia Fraija, Omar Cherkaoui

The global trend in additive manufacturing is the technology of three-dimensional (3D) printing with a high potential to avoid some of the weaknesses of conventional fabrication techniques. This new technology has been used to manufacture small tidal and wind turbines. In isolated areas, small turbines can be manufactured and assembled on-site for green energy production. The purpose of this document is to evaluate the thermomechanical behavior of a printed tidal turbine using Digimat-AM (Additive Manufacturing) with fused filament fabrication method. The finite element computes the mechanical deflection, temperature, residual stresses, and warpage fields of the printed part. The composites used during printing are thermoplastic polymers (acrylonitrile butadiene styrene, polyamide 6 [PA6], polyamide 12 [PA12], and polyetherimide [PEI]) reinforced with carbon and glass fillers in the form of fibers and beads (CF/GF and CB/GB). Through the simulation, one could show that the blade printed with PEI-CB/CF has excellent mechanical performance of low mechanical deflection and warpage, compared to PA6-CB/CF. In addition, the fiber-shaped fillers are better than the bead-shaped ones for the 3D printing process. In general, this study has shown the potential and feasibility of 3D printing as an excellent opportunity in the fabrication of small blades in the future, but more studies are required to understand this potential.

三维(3D)打印技术是增材制造技术的全球趋势,具有很大的潜力,可以避免传统制造技术的一些弱点。这种新技术已被用于制造小型潮汐和风力涡轮机。在偏远地区,可以现场制造和组装小型涡轮机,用于绿色能源生产。本文旨在评估使用 Digimat-AM(增材制造)和熔融长丝制造方法打印的潮汐涡轮机的热机械性能。有限元计算了打印部件的机械挠度、温度、残余应力和翘曲场。打印过程中使用的复合材料为热塑性聚合物(丙烯腈-丁二烯-苯乙烯、聚酰胺 6 [PA6]、聚酰胺 12 [PA12] 和聚醚酰亚胺 [PEI]),并以纤维和微珠(CF/GF 和 CB/GB)的形式添加了碳和玻璃填料。模拟结果表明,与 PA6-CB/CF 相比,用 PEI-CB/CF 印刷的叶片具有优异的机械性能,机械变形和翘曲较小。此外,在三维打印过程中,纤维状填料比珠子状填料的效果更好。总的来说,这项研究表明了三维打印技术的潜力和可行性,是未来制造小型叶片的绝佳机会,但要了解这种潜力还需要更多的研究。
{"title":"Additive Manufacturing and Composite Materials for Marine Energy: Case of Tidal Turbine.","authors":"Marwane Rouway, Mostapha Tarfaoui, Nabil Chakhchaoui, Lhaj El Hachemi Omari, Fouzia Fraija, Omar Cherkaoui","doi":"10.1089/3dp.2021.0194","DOIUrl":"10.1089/3dp.2021.0194","url":null,"abstract":"<p><p>The global trend in additive manufacturing is the technology of three-dimensional (3D) printing with a high potential to avoid some of the weaknesses of conventional fabrication techniques. This new technology has been used to manufacture small tidal and wind turbines. In isolated areas, small turbines can be manufactured and assembled on-site for green energy production. The purpose of this document is to evaluate the thermomechanical behavior of a printed tidal turbine using Digimat-AM (Additive Manufacturing) with fused filament fabrication method. The finite element computes the mechanical deflection, temperature, residual stresses, and warpage fields of the printed part. The composites used during printing are thermoplastic polymers (acrylonitrile butadiene styrene, polyamide 6 [PA6], polyamide 12 [PA12], and polyetherimide [PEI]) reinforced with carbon and glass fillers in the form of fibers and beads (CF/GF and CB/GB). Through the simulation, one could show that the blade printed with PEI-CB/CF has excellent mechanical performance of low mechanical deflection and warpage, compared to PA6-CB/CF. In addition, the fiber-shaped fillers are better than the bead-shaped ones for the 3D printing process. In general, this study has shown the potential and feasibility of 3D printing as an excellent opportunity in the fabrication of small blades in the future, but more studies are required to understand this potential.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 6","pages":"1309-1319"},"PeriodicalIF":2.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10726194/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138809876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finding Ideal Parameters for Recycled Material Fused Particle Fabrication-Based 3D Printing Using an Open Source Software Implementation of Particle Swarm Optimization. 利用粒子群优化的开源软件实现,为基于回收材料熔融粒子制造的三维打印找到理想参数。
IF 3.1 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-12-01 Epub Date: 2023-12-11 DOI: 10.1089/3dp.2022.0012
Shane Oberloier, Nicholas G Whisman, Joshua M Pearce

As additive manufacturing rapidly expands the number of materials including waste plastics and composites, there is an urgent need to reduce the experimental time needed to identify optimized printing parameters for novel materials. Computational intelligence (CI) in general and particle swarm optimization (PSO) algorithms in particular have been shown to accelerate finding optimal printing parameters. Unfortunately, the implementation of CI has been prohibitively complex for noncomputer scientists. To overcome these limitations, this article develops, tests, and validates PSO Experimenter, an easy-to-use open-source platform based around the PSO algorithm and applies it to optimizing recycled materials. Specifically, PSO Experimenter is used to find optimal printing parameters for a relatively unexplored potential distributed recycling and additive manufacturing (DRAM) material that is widely available: low-density polyethylene (LDPE). LDPE has been used to make filament, but in this study for the first time it was used in the open source fused particle fabrication/fused granular fabrication system. PSO Experimenter successfully identified functional printing parameters for this challenging-to-print waste plastic. The results indicate that PSO Experimenter can provide 97% reduction in research time for 3D printing parameter optimization. It is concluded that the PSO Experimenter is a user-friendly and effective free software for finding ideal parameters for the burgeoning challenge of DRAM as well as a wide range of other fields and processes.

随着增材制造技术迅速扩展到包括废塑料和复合材料在内的各种材料,迫切需要缩短为新型材料确定优化打印参数所需的实验时间。一般的计算智能(CI),特别是粒子群优化(PSO)算法,已被证明可以加快找到最佳打印参数。遗憾的是,对于非计算机科学家来说,CI 的实现过于复杂。为了克服这些限制,本文开发、测试并验证了 PSO Experimenter,这是一个基于 PSO 算法的易用开源平台,并将其应用于再生材料的优化。具体来说,PSO Experimenter 用于为一种相对尚未开发的潜在分布式回收和增材制造(DRAM)材料找到最佳打印参数,这种材料可广泛获得:低密度聚乙烯(LDPE)。低密度聚乙烯已被用于制造长丝,但在本研究中,它首次被用于开源熔融颗粒制造/熔融颗粒制造系统。PSO Experimenter 成功确定了这种具有挑战性的废塑料的功能性打印参数。结果表明,PSO Experimenter 可以将三维打印参数优化的研究时间缩短 97%。结论是,PSO Experimenter 是一款用户友好且高效的免费软件,可用于为 DRAM 以及其他广泛领域和工艺的新兴挑战寻找理想参数。
{"title":"Finding Ideal Parameters for Recycled Material Fused Particle Fabrication-Based 3D Printing Using an Open Source Software Implementation of Particle Swarm Optimization.","authors":"Shane Oberloier, Nicholas G Whisman, Joshua M Pearce","doi":"10.1089/3dp.2022.0012","DOIUrl":"10.1089/3dp.2022.0012","url":null,"abstract":"<p><p>As additive manufacturing rapidly expands the number of materials including waste plastics and composites, there is an urgent need to reduce the experimental time needed to identify optimized printing parameters for novel materials. Computational intelligence (CI) in general and particle swarm optimization (PSO) algorithms in particular have been shown to accelerate finding optimal printing parameters. Unfortunately, the implementation of CI has been prohibitively complex for noncomputer scientists. To overcome these limitations, this article develops, tests, and validates PSO Experimenter, an easy-to-use open-source platform based around the PSO algorithm and applies it to optimizing recycled materials. Specifically, PSO Experimenter is used to find optimal printing parameters for a relatively unexplored potential distributed recycling and additive manufacturing (DRAM) material that is widely available: low-density polyethylene (LDPE). LDPE has been used to make filament, but in this study for the first time it was used in the open source fused particle fabrication/fused granular fabrication system. PSO Experimenter successfully identified functional printing parameters for this challenging-to-print waste plastic. The results indicate that PSO Experimenter can provide 97% reduction in research time for 3D printing parameter optimization. It is concluded that the PSO Experimenter is a user-friendly and effective free software for finding ideal parameters for the burgeoning challenge of DRAM as well as a wide range of other fields and processes.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 6","pages":"1287-1300"},"PeriodicalIF":3.1,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10726196/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138809884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine Learning-Based Operational State Recognition and Compressive Property Prediction in Fused Filament Fabrication. 基于机器学习的熔丝制造中的运行状态识别和压缩特性预测。
IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-12-01 Epub Date: 2023-12-11 DOI: 10.1089/3dp.2021.0185
Yongxiang Li, Guoning Xu, Wei Zhao, Tongcai Wang, Haochen Li, Yifei Liu, Gong Wang

3D printing has exhibited significant potential in outer space and medical implants. To use this technology in the specific high-value scenarios, 3D-printed parts need to satisfy quality-related requirements. In this article, the influence of the filament feeder operating states of 3D printer on the compressive properties of 3D-printed parts is studied in the fused filament fabrication process. A machine learning approach, back-propagation neural network with a genetic algorithm (GA-BPNN) optimized by k-fold cross-validation, is proposed to monitor the operating states and predict the compressive properties. Vibration and current sensors are used in situ to monitor the operating states of the filament feeder, and a set of features are extracted and selected from raw sensor data in time and frequency domains. Results show that the operating states of the filament feeder significantly affected the compressive properties of the fabricated samples, the operating states were accurately recognized with 96.3% rate, and compressive properties were successfully predicted by the GA-BPNN. This proposed method has the potential for use in industrial applications after 3D printing without requiring any further quality control.

三维打印技术在外层空间和医疗植入方面展现出巨大潜力。要在特定的高价值场景中使用这项技术,3D 打印部件需要满足与质量相关的要求。本文研究了在熔融长丝制造过程中,3D 打印机供丝器的工作状态对 3D 打印部件压缩性能的影响。本文提出了一种机器学习方法,即通过 k 倍交叉验证进行优化的遗传算法反向传播神经网络(GA-BPNN),用于监测工作状态并预测压缩性能。现场使用振动和电流传感器来监测送丝机的运行状态,并从原始传感器数据中提取和选择一组时域和频域特征。结果表明,送丝机的运行状态对制造样品的抗压性能有显著影响,运行状态的准确识别率为 96.3%,GA-BPNN 成功预测了抗压性能。该方法有望在三维打印后的工业应用中使用,而无需进一步的质量控制。
{"title":"Machine Learning-Based Operational State Recognition and Compressive Property Prediction in Fused Filament Fabrication.","authors":"Yongxiang Li, Guoning Xu, Wei Zhao, Tongcai Wang, Haochen Li, Yifei Liu, Gong Wang","doi":"10.1089/3dp.2021.0185","DOIUrl":"10.1089/3dp.2021.0185","url":null,"abstract":"<p><p>3D printing has exhibited significant potential in outer space and medical implants. To use this technology in the specific high-value scenarios, 3D-printed parts need to satisfy quality-related requirements. In this article, the influence of the filament feeder operating states of 3D printer on the compressive properties of 3D-printed parts is studied in the fused filament fabrication process. A machine learning approach, back-propagation neural network with a genetic algorithm (GA-BPNN) optimized by <i>k</i>-fold cross-validation, is proposed to monitor the operating states and predict the compressive properties. Vibration and current sensors are used <i>in situ</i> to monitor the operating states of the filament feeder, and a set of features are extracted and selected from raw sensor data in time and frequency domains. Results show that the operating states of the filament feeder significantly affected the compressive properties of the fabricated samples, the operating states were accurately recognized with 96.3% rate, and compressive properties were successfully predicted by the GA-BPNN. This proposed method has the potential for use in industrial applications after 3D printing without requiring any further quality control.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"1 1","pages":"1347-1360"},"PeriodicalIF":2.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10726200/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"60697273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biobased Resin for Sustainable Stereolithography: 3D Printed Vegetable Oil Acrylate Reinforced with Ultra-Low Content of Nanocellulose for Fossil Resin Substitution. 用于可持续立体光刻的生物基树脂:用超低含量纳米纤维素增强的植物油丙烯酸酯三维打印化石树脂替代物。
IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-12-01 Epub Date: 2023-12-11 DOI: 10.1089/3dp.2021.0294
Anda Barkane, Maksims Jurinovs, Sabine Briede, Oskars Platnieks, Pavels Onufrijevs, Zane Zelca, Sergejs Gaidukovs

The use of biobased materials in additive manufacturing is a promising long-term strategy for advancing the polymer industry toward a circular economy and reducing the environmental impact. In commercial 3D printing formulations, there is still a scarcity of efficient biobased polymer resins. This research proposes vegetable oils as biobased components to formulate the stereolithography (SLA) resin. Application of nanocellulose filler, prepared from agricultural waste, remarkably improves the printed material's performance properties. The strong bonding of nanofibrillated celluloses' (NFCs') matrix helps develop a strong interface and produce a polymer nanocomposite with enhanced thermal properties and dynamical mechanical characteristics. The ultra-low NFC content of 0.1-1.0 wt% (0.07-0.71 vol%) was examined in printed samples, with the lowest concentration yielding some of the most promising results. The developed SLA resins showed good printability, and the printing accuracy was not decreased by adding NFC. At the same time, an increase in the resin viscosity with higher filler loading was observed. Resins maintained high transparency in the 500-700 nm spectral region. The glass transition temperature for the 0.71 vol% composition increased by 28°C when compared to the nonreinforced composition. The nanocomposite's stiffness has increased fivefold for the 0.71 vol% composition. The thermal stability of printed compositions was retained after cellulose incorporation, and thermal conductivity was increased by 11%. Strong interfacial interactions were observed between the cellulose and the polymer in the form of hydrogen bonding between hydroxyl and ester groups, which were confirmed by Fourier-transform infrared spectroscopy. This research demonstrates a great potential to use acrylated vegetable oils and nanocellulose fillers as a feedstock to produce high-performance resins for sustainable SLA 3D printing.

在增材制造中使用生物基材料是一项大有可为的长期战略,可推动聚合物行业实现循环经济并减少对环境的影响。在商业 3D 打印配方中,高效的生物基聚合物树脂仍然稀缺。本研究提出用植物油作为生物基成分来配制立体光刻(SLA)树脂。利用农业废弃物制备的纳米纤维素填料可显著改善印刷材料的性能。纳米纤维素(NFCs)基质的强粘合性有助于形成一个坚固的界面,并产生一种具有更强热性能和动态机械特性的聚合物纳米复合材料。在印刷样品中对 0.1-1.0 wt%(0.07-0.71 vol%)的超低 NFC 含量进行了研究,其中最低浓度产生了一些最有前景的结果。所开发的 SLA 树脂显示出良好的可印刷性,而且印刷精度并未因添加 NFC 而降低。同时,随着填料添加量的增加,树脂粘度也在增加。树脂在 500-700 纳米光谱区域保持了较高的透明度。与未增强的成分相比,0.71vol% 成分的玻璃化温度提高了 28°C。0.71 Vol% 成分的纳米复合材料刚度增加了五倍。加入纤维素后,印刷组合物的热稳定性得以保持,热导率提高了 11%。纤维素与聚合物之间以羟基和酯基之间的氢键形式存在着强烈的界面相互作用,傅立叶变换红外光谱法证实了这一点。这项研究表明,使用丙烯酸化植物油和纳米纤维素填料作为原料,为可持续 SLA 3D 打印生产高性能树脂具有巨大潜力。
{"title":"Biobased Resin for Sustainable Stereolithography: 3D Printed Vegetable Oil Acrylate Reinforced with Ultra-Low Content of Nanocellulose for Fossil Resin Substitution.","authors":"Anda Barkane, Maksims Jurinovs, Sabine Briede, Oskars Platnieks, Pavels Onufrijevs, Zane Zelca, Sergejs Gaidukovs","doi":"10.1089/3dp.2021.0294","DOIUrl":"10.1089/3dp.2021.0294","url":null,"abstract":"<p><p>The use of biobased materials in additive manufacturing is a promising long-term strategy for advancing the polymer industry toward a circular economy and reducing the environmental impact. In commercial 3D printing formulations, there is still a scarcity of efficient biobased polymer resins. This research proposes vegetable oils as biobased components to formulate the stereolithography (SLA) resin. Application of nanocellulose filler, prepared from agricultural waste, remarkably improves the printed material's performance properties. The strong bonding of nanofibrillated celluloses' (NFCs') matrix helps develop a strong interface and produce a polymer nanocomposite with enhanced thermal properties and dynamical mechanical characteristics. The ultra-low NFC content of 0.1-1.0 wt% (0.07-0.71 vol%) was examined in printed samples, with the lowest concentration yielding some of the most promising results. The developed SLA resins showed good printability, and the printing accuracy was not decreased by adding NFC. At the same time, an increase in the resin viscosity with higher filler loading was observed. Resins maintained high transparency in the 500-700 nm spectral region. The glass transition temperature for the 0.71 vol% composition increased by 28°C when compared to the nonreinforced composition. The nanocomposite's stiffness has increased fivefold for the 0.71 vol% composition. The thermal stability of printed compositions was retained after cellulose incorporation, and thermal conductivity was increased by 11%. Strong interfacial interactions were observed between the cellulose and the polymer in the form of hydrogen bonding between hydroxyl and ester groups, which were confirmed by Fourier-transform infrared spectroscopy. This research demonstrates a great potential to use acrylated vegetable oils and nanocellulose fillers as a feedstock to produce high-performance resins for sustainable SLA 3D printing.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 6","pages":"1272-1286"},"PeriodicalIF":2.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10726172/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138809880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Application of a Multi-Material Flexible Chain Mail for the Design of an Artificial Spinal Disc to Reproduce Natural Nonlinear and Anisotropic Rotational Behavior. 应用多材料柔性链网设计人工脊柱椎间盘,再现自然非线性和各向异性旋转行为。
IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-12-01 Epub Date: 2023-12-11 DOI: 10.1089/3dp.2021.0299
Zhiyang Yu, Kristina Shea, Tino Stankovic

Inspired by the potential of architected materials for achieving biomimicking functionalities and the advancement of multi-material additive manufacturing to fabricate parts with complex structures and heterogeneous material distributions, this study investigates the feasibility of using a multi-material, flexible chain mail sheet for the design of an additively manufactured artificial spinal disc for reproducing patient-specific anisotropic and nonlinear rotational behaviors. The application of a chain mail-based structure is motivated by its similarities in behaviors compared with a natural disc's fiber network that likewise has negligible bending stiffness and shape-changing ability. The proposed approach for the chain mail sheet design includes an initial characterization of the uniaxial tensile responses of the chain mail unit cell defined as the basic building block of the chain mail sheet, modeling and response calculation, and material optimization. Results show that the additively manufactured chain mail sheet is not only able to exhibit a natural strain-stiffening rotational response but also is able to reproduce natural anisotropy of three natural disc specimens in the six most common rotational scenarios in daily life. This study shows the potential of additively manufactured mechanical-metamaterials-inspired structures for implant design to restore natural mechanics.

受建筑材料在实现仿生物功能方面的潜力以及多材料增材制造技术在制造具有复杂结构和异质材料分布的部件方面的进步的启发,本研究探讨了使用多材料柔性链片设计增材制造人工椎间盘的可行性,以再现患者特定的各向异性和非线性旋转行为。与自然椎间盘的纤维网络相比,链条邮件结构的行为具有相似性,而自然椎间盘的弯曲刚度和形状变化能力几乎可以忽略不计。所提出的链状邮件片材设计方法包括对作为链状邮件片材基本构件的链状邮件单元单元的单轴拉伸响应进行初步表征、建模和响应计算以及材料优化。结果表明,快速成型的链条邮件片材不仅能表现出自然的应变刚度旋转响应,还能在日常生活中最常见的六种旋转情况下再现三个自然圆盘试样的自然各向异性。这项研究表明,受添加制造机械超材料启发的植入物设计结构具有恢复自然力学的潜力。
{"title":"The Application of a Multi-Material Flexible Chain Mail for the Design of an Artificial Spinal Disc to Reproduce Natural Nonlinear and Anisotropic Rotational Behavior.","authors":"Zhiyang Yu, Kristina Shea, Tino Stankovic","doi":"10.1089/3dp.2021.0299","DOIUrl":"10.1089/3dp.2021.0299","url":null,"abstract":"<p><p>Inspired by the potential of architected materials for achieving biomimicking functionalities and the advancement of multi-material additive manufacturing to fabricate parts with complex structures and heterogeneous material distributions, this study investigates the feasibility of using a multi-material, flexible chain mail sheet for the design of an additively manufactured artificial spinal disc for reproducing patient-specific anisotropic and nonlinear rotational behaviors. The application of a chain mail-based structure is motivated by its similarities in behaviors compared with a natural disc's fiber network that likewise has negligible bending stiffness and shape-changing ability. The proposed approach for the chain mail sheet design includes an initial characterization of the uniaxial tensile responses of the chain mail unit cell defined as the basic building block of the chain mail sheet, modeling and response calculation, and material optimization. Results show that the additively manufactured chain mail sheet is not only able to exhibit a natural strain-stiffening rotational response but also is able to reproduce natural anisotropy of three natural disc specimens in the six most common rotational scenarios in daily life. This study shows the potential of additively manufactured mechanical-metamaterials-inspired structures for implant design to restore natural mechanics.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"1 1","pages":"1238-1250"},"PeriodicalIF":2.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10734901/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"60697331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Studying the Effect of Short Carbon Fiber on Fused Filament Fabrication Parts Roughness via Machine Learning. 通过机器学习研究短碳纤维对熔丝制造部件粗糙度的影响。
IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-12-01 Epub Date: 2023-12-11 DOI: 10.1089/3dp.2021.0304
Alberto García-Collado, Pablo Eduardo Romero-Carrillo, Rubén Dorado-Vicente, Munish Kumar Gupta

Along with the characteristic staircase effect, short carbon fibers, added to reinforce Fused Filament Fabrication parts, can significantly worsen the resulting surface finishing. Concerning this topic, the present work intends to improve the existing knowledge by analyzing 2400 measurements of arithmetic mean roughness Ra corresponding to different combinations of six process parameters: the content by weight of short carbon fibers in polyethylene terephthalate glycol (PETG) filaments f, layer height h, surface build angle θ, number of walls w, printing speed s, and extruder diameter d. The collected measurements were represented by dispersion and main effect plots. These representations indicate that the most critical parameters are θ, f, and h. Besides, up to a carbon fiber content of 12%, roughness is mainly affected by the staircase effect. Hence, it would be likely to obtain reinforced parts with similar roughness to unreinforced ones. Different machine learning methods were also tested to extract more information. The prediction model of Ra using the Random Forest algorithm showed a correlation coefficient equal to 0.94 and a mean absolute error equal to 2.026 μm. In contrast, the J48 algorithm identified a combination of parameters (h = 0.1 mm, d = 0.6 mm, and s = 30 mm/s) that, independent of the build angle, provides a Ra < 25 μm when using a 20% carbon fiber PETG filament. An example part was printed and measured to check the models. As a result, the J48 algorithm correctly classified surfaces with low roughness (Ra < 25 μm), and the Random Forest algorithm predicted the Ra value with an average relative error of less than 8%.

除了特有的阶梯效应外,短碳纤维被添加到熔融长丝制造部件中进行加固,也会显著恶化所产生的表面光洁度。关于这一主题,本研究旨在通过分析以下六个工艺参数的不同组合所对应的 2400 个算术平均粗糙度 Ra 测量值来完善现有知识:聚对苯二甲酸乙二酯(PETG)长丝中短碳纤维的重量含量 f、层高 h、表面成型角 θ、壁数 w、印刷速度 s 和挤出机直径 d。此外,在碳纤维含量达到 12% 时,粗糙度主要受阶梯效应的影响。因此,有可能获得粗糙度与非强化部件相似的强化部件。为了提取更多信息,还测试了不同的机器学习方法。使用随机森林算法建立的 Ra 预测模型的相关系数为 0.94,平均绝对误差为 2.026 μm。相比之下,J48 算法确定了一个参数组合(h = 0.1 mm、d = 0.6 mm 和 s = 30 mm/s),该组合与构建角度无关,在使用 20% 碳纤维 PETG 长丝时,Ra < 25 μm。为了检查模型,我们打印并测量了一个示例零件。结果,J48 算法正确地对粗糙度低(Ra < 25 μm)的表面进行了分类,而随机森林算法预测的 Ra 值平均相对误差小于 8%。
{"title":"Studying the Effect of Short Carbon Fiber on Fused Filament Fabrication Parts Roughness via Machine Learning.","authors":"Alberto García-Collado, Pablo Eduardo Romero-Carrillo, Rubén Dorado-Vicente, Munish Kumar Gupta","doi":"10.1089/3dp.2021.0304","DOIUrl":"10.1089/3dp.2021.0304","url":null,"abstract":"<p><p>Along with the characteristic staircase effect, short carbon fibers, added to reinforce Fused Filament Fabrication parts, can significantly worsen the resulting surface finishing. Concerning this topic, the present work intends to improve the existing knowledge by analyzing 2400 measurements of arithmetic mean roughness <i>R</i><sub>a</sub> corresponding to different combinations of six process parameters: the content by weight of short carbon fibers in polyethylene terephthalate glycol (PETG) filaments <i>f</i>, layer height <i>h</i>, surface build angle <i>θ</i>, number of walls <i>w</i>, printing speed <i>s</i>, and extruder diameter <i>d</i>. The collected measurements were represented by dispersion and main effect plots. These representations indicate that the most critical parameters are <i>θ</i>, <i>f</i>, and <i>h</i>. Besides, up to a carbon fiber content of 12%, roughness is mainly affected by the staircase effect. Hence, it would be likely to obtain reinforced parts with similar roughness to unreinforced ones. Different machine learning methods were also tested to extract more information. The prediction model of <i>R</i><sub>a</sub> using the Random Forest algorithm showed a correlation coefficient equal to 0.94 and a mean absolute error equal to 2.026 μm. In contrast, the J48 algorithm identified a combination of parameters (<i>h</i> = 0.1 mm, <i>d</i> = 0.6 mm, and <i>s</i> = 30 mm/s) that, independent of the build angle, provides a <i>R</i><sub>a</sub> < 25 μm when using a 20% carbon fiber PETG filament. An example part was printed and measured to check the models. As a result, the J48 algorithm correctly classified surfaces with low roughness (<i>R</i><sub>a</sub> < 25 μm), and the Random Forest algorithm predicted the <i>R</i><sub>a</sub> value with an average relative error of less than 8%.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 6","pages":"1336-1346"},"PeriodicalIF":2.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10726178/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138809889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
3D Printing and Additive Manufacturing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1