Beam-column (B-C) joints are recognized as critical regions in reinforced concrete (RC) moment-resisting frames when subjected to seismic loads. Furthermore, these joints may be subjected to high temperatures during their lifespan, which might cause severe structural damage. Accordingly, the seismic response of RC beam-column joints that were subjected to heat (i.e., 400 °C and 600 °C) was investigated in the present experimental work. The joint specimens were divided into three categories: Three joints were kept as is (i.e., reference joints; no strengthening is applied), whereas six joints were strengthened with one and two layers of stainless-steel expanded metal sheet mesh (SSEMSM) in order to improve their performance. To investigate the seismic performance of the joints, a quasi-static cyclic load was applied to the joints to simulate a seismic load. Results showed that the average maximum load for joints strengthened with one and two layers of SSEMSM, respectively, was increased by 11% and 21% at ambient temperature and by 2% and 9% at 400 °C, in comparison with the reference joint. In addition, using one and two layers of SSEMSM, respectively, led to achieving an average of 91% and 100% of the full capacity of the reference joint for B-C joints subjected to 600 °C. Furthermore, the experimental findings show a considerable improvement in the cyclic response of non-ductile RC joints that were strengthened with the SSEMSM strategy and subjected to high temperatures (i.e., higher load capacity, greater displacement, higher dissipated energy, higher ductility, and slower degradation in the secant stiffness).