首页 > 最新文献

Trends in Endocrinology and Metabolism最新文献

英文 中文
The unexpected role of GIP in transforming obesity treatment. GIP 在改变肥胖症治疗方面发挥了意想不到的作用。
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-08-27 DOI: 10.1016/j.tem.2024.07.022
Inuk Zandvakili, Diego Perez-Tilve

Despite sharing incretin activity with glucagon-like peptide 1 (GLP-1), the development of gastric inhibitory polypeptide (GIP)-based drugs has been hindered by the minor effects of native GIP on appetite and body weight and genetic studies associating loss-of-function with reduced obesity. Yet, pharmacologically optimized GIP-based molecules have demonstrated profound weight lowering benefits of GIPR agonism when combined with GLP-1-based therapies, which has re-energized deeper exploration of the molecular mechanisms and downstream signaling of GIPR. Interestingly, both GIPR agonism and antagonism offer metabolic benefits, leading to differing viewpoints on how to target GIPR therapeutically. Here we summarize the emerging evidence about the tissue-specific mechanisms that positions GIP-based therapies as important targets for the next generation of anti-obesity and metabolic therapies.

尽管胃抑制多肽(GIP)与胰高血糖素样肽 1(GLP-1)具有相同的增量素活性,但由于原生 GIP 对食欲和体重的影响较小,而且基因研究表明功能缺失会导致肥胖症减轻,因此阻碍了基于 GIP 的药物的开发。然而,经过药理优化的 GIP 分子与基于 GLP-1 的疗法相结合后,GIPR 激动剂具有显著的降低体重的功效,这重新激发了对 GIPR 分子机制和下游信号传导的深入探索。有趣的是,GIPR 的激动和拮抗作用都能带来新陈代谢方面的益处,这导致人们对如何针对 GIPR 进行治疗产生了不同的观点。在此,我们总结了有关组织特异性机制的新证据,这些证据将基于 GIP 的疗法定位为下一代抗肥胖和代谢疗法的重要靶点。
{"title":"The unexpected role of GIP in transforming obesity treatment.","authors":"Inuk Zandvakili, Diego Perez-Tilve","doi":"10.1016/j.tem.2024.07.022","DOIUrl":"https://doi.org/10.1016/j.tem.2024.07.022","url":null,"abstract":"<p><p>Despite sharing incretin activity with glucagon-like peptide 1 (GLP-1), the development of gastric inhibitory polypeptide (GIP)-based drugs has been hindered by the minor effects of native GIP on appetite and body weight and genetic studies associating loss-of-function with reduced obesity. Yet, pharmacologically optimized GIP-based molecules have demonstrated profound weight lowering benefits of GIPR agonism when combined with GLP-1-based therapies, which has re-energized deeper exploration of the molecular mechanisms and downstream signaling of GIPR. Interestingly, both GIPR agonism and antagonism offer metabolic benefits, leading to differing viewpoints on how to target GIPR therapeutically. Here we summarize the emerging evidence about the tissue-specific mechanisms that positions GIP-based therapies as important targets for the next generation of anti-obesity and metabolic therapies.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142094219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Walking the VLDL tightrope in cardiometabolic diseases. 在心脏代谢疾病中走 "VLDL钢丝"。
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-08-26 DOI: 10.1016/j.tem.2024.07.020
Mindy Kim, Ze Zheng

Very-low-density lipoprotein (VLDL), a triglyceride-rich lipoprotein secreted by hepatocytes, is pivotal for supplying peripheral tissues with fatty acids for energy production. As if walking on a tightrope, perturbations in the balance of VLDL metabolism contribute to cardiometabolic dysfunction, promoting pathologies such as cardiovascular disease (CVD) or metabolic dysfunction-associated steatotic liver disease (MASLD). Despite the advent of lipid-lowering therapies, including statins and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, risks for cardiovascular events persist. With limitations to currently available CVD therapeutics and no US Food and Drug Administration (FDA)-approved treatment for MASLD, this review summarizes the current understanding of VLDL metabolism that sheds light on novel therapeutic avenues to pursue for cardiometabolic disorders.

极低密度脂蛋白(VLDL)是一种由肝细胞分泌的富含甘油三酯的脂蛋白,是为外周组织提供脂肪酸以产生能量的关键。就像走钢丝一样,VLDL 代谢平衡的紊乱会导致心脏代谢功能障碍,引发心血管疾病(CVD)或代谢功能障碍相关性脂肪肝(MASLD)等病症。尽管降脂疗法(包括他汀类药物和9型丙蛋白转换酶亚基酶/kexin(PCSK9)抑制剂)已经问世,但心血管事件的风险依然存在。由于目前可用的心血管疾病治疗方法有限,而且没有美国食品药品管理局(FDA)批准的治疗 MASLD 的方法,本综述总结了目前对 VLDL 代谢的理解,揭示了治疗心血管代谢紊乱的新途径。
{"title":"Walking the VLDL tightrope in cardiometabolic diseases.","authors":"Mindy Kim, Ze Zheng","doi":"10.1016/j.tem.2024.07.020","DOIUrl":"https://doi.org/10.1016/j.tem.2024.07.020","url":null,"abstract":"<p><p>Very-low-density lipoprotein (VLDL), a triglyceride-rich lipoprotein secreted by hepatocytes, is pivotal for supplying peripheral tissues with fatty acids for energy production. As if walking on a tightrope, perturbations in the balance of VLDL metabolism contribute to cardiometabolic dysfunction, promoting pathologies such as cardiovascular disease (CVD) or metabolic dysfunction-associated steatotic liver disease (MASLD). Despite the advent of lipid-lowering therapies, including statins and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, risks for cardiovascular events persist. With limitations to currently available CVD therapeutics and no US Food and Drug Administration (FDA)-approved treatment for MASLD, this review summarizes the current understanding of VLDL metabolism that sheds light on novel therapeutic avenues to pursue for cardiometabolic disorders.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Patient-derived organoid models to decode liver pathophysiology. 解码肝脏病理生理学的患者衍生类器官模型
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-08-26 DOI: 10.1016/j.tem.2024.07.019
Benjamin J Dwyer, Janina E E Tirnitz-Parker

Liver diseases represent a growing global health challenge, and the increasing prevalence of obesity and metabolic disorders is set to exacerbate this crisis. To meet evolving regulatory demands, patient-specific in vitro liver models are essential for understanding disease mechanisms and developing new therapeutic approaches. Organoid models, which faithfully recapitulate liver biology, can be established from both non-malignant and malignant liver tissues, offering insight into various liver conditions, from acute injuries to chronic diseases and cancer. Improved understanding of liver microenvironments, innovative biomaterials, and advanced imaging techniques now facilitate comprehensive and unbiased data analysis, paving the way for personalised medicine. In this review, we discuss state-of-the-art patient-derived liver organoid models, recent technological advancements, and strategies to enhance their clinical impact.

肝脏疾病是一个日益严重的全球健康挑战,而肥胖和代谢紊乱的日益普遍将加剧这一危机。为了满足不断变化的监管需求,患者特异性体外肝脏模型对于了解疾病机制和开发新的治疗方法至关重要。类器官模型能忠实再现肝脏生物学特性,可从非恶性和恶性肝脏组织中建立,有助于深入了解从急性损伤到慢性疾病和癌症等各种肝脏状况。现在,对肝脏微环境、创新生物材料和先进成像技术的深入了解有助于进行全面、无偏见的数据分析,为个性化医疗铺平了道路。在这篇综述中,我们将讨论最先进的患者衍生肝脏类器官模型、最新的技术进步以及增强其临床影响的策略。
{"title":"Patient-derived organoid models to decode liver pathophysiology.","authors":"Benjamin J Dwyer, Janina E E Tirnitz-Parker","doi":"10.1016/j.tem.2024.07.019","DOIUrl":"https://doi.org/10.1016/j.tem.2024.07.019","url":null,"abstract":"<p><p>Liver diseases represent a growing global health challenge, and the increasing prevalence of obesity and metabolic disorders is set to exacerbate this crisis. To meet evolving regulatory demands, patient-specific in vitro liver models are essential for understanding disease mechanisms and developing new therapeutic approaches. Organoid models, which faithfully recapitulate liver biology, can be established from both non-malignant and malignant liver tissues, offering insight into various liver conditions, from acute injuries to chronic diseases and cancer. Improved understanding of liver microenvironments, innovative biomaterials, and advanced imaging techniques now facilitate comprehensive and unbiased data analysis, paving the way for personalised medicine. In this review, we discuss state-of-the-art patient-derived liver organoid models, recent technological advancements, and strategies to enhance their clinical impact.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the heterogeneous targets of metabolic aging at single-cell resolution. 以单细胞分辨率探索新陈代谢老化的异质靶标。
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-08-23 DOI: 10.1016/j.tem.2024.07.009
Shuhui Sun, Mengmeng Jiang, Shuai Ma, Jie Ren, Guang-Hui Liu

Our limited understanding of metabolic aging poses major challenges to comprehending the diverse cellular alterations that contribute to age-related decline, and to devising targeted interventions. This review provides insights into the heterogeneous nature of cellular metabolism during aging and its response to interventions, with a specific focus on cellular heterogeneity and its implications. By synthesizing recent findings using single-cell approaches, we explored the vulnerabilities of distinct cell types and key metabolic pathways. Delving into the cell type-specific alterations underlying the efficacy of systemic interventions, we also discuss the complexity of integrating single-cell data and advocate for leveraging computational tools and artificial intelligence to harness the full potential of these data, develop effective strategies against metabolic aging, and promote healthy aging.

我们对新陈代谢衰老的了解有限,这对理解导致衰老的各种细胞变化以及制定有针对性的干预措施构成了重大挑战。本综述深入探讨了衰老过程中细胞代谢的异质性及其对干预措施的反应,特别关注细胞异质性及其影响。通过综合运用单细胞方法的最新研究成果,我们探讨了不同细胞类型和关键代谢途径的脆弱性。在深入探讨系统性干预措施疗效背后的细胞类型特异性改变时,我们还讨论了整合单细胞数据的复杂性,并主张利用计算工具和人工智能来充分挖掘这些数据的潜力,制定有效的代谢衰老应对策略,并促进健康衰老。
{"title":"Exploring the heterogeneous targets of metabolic aging at single-cell resolution.","authors":"Shuhui Sun, Mengmeng Jiang, Shuai Ma, Jie Ren, Guang-Hui Liu","doi":"10.1016/j.tem.2024.07.009","DOIUrl":"https://doi.org/10.1016/j.tem.2024.07.009","url":null,"abstract":"<p><p>Our limited understanding of metabolic aging poses major challenges to comprehending the diverse cellular alterations that contribute to age-related decline, and to devising targeted interventions. This review provides insights into the heterogeneous nature of cellular metabolism during aging and its response to interventions, with a specific focus on cellular heterogeneity and its implications. By synthesizing recent findings using single-cell approaches, we explored the vulnerabilities of distinct cell types and key metabolic pathways. Delving into the cell type-specific alterations underlying the efficacy of systemic interventions, we also discuss the complexity of integrating single-cell data and advocate for leveraging computational tools and artificial intelligence to harness the full potential of these data, develop effective strategies against metabolic aging, and promote healthy aging.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Per- and polyfluoroalkyl substances as persistent pollutants with metabolic and endocrine-disrupting impacts. 全氟和多氟烷基物质是具有代谢和内分泌干扰影响的持久性污染物。
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-08-23 DOI: 10.1016/j.tem.2024.07.021
Lucas Gaillard, Robert Barouki, Etienne Blanc, Xavier Coumoul, Karine Andréau

The widespread use of per- and polyfluoroalkyl substances (PFASs), and their resistance to degradation, renders human exposure to them inevitable. PFAS exposure disturbs endocrine function, potentially affecting cognitive development in newborns through thyroid dysfunction during pregnancy. Recent studies reveal varying male and female reproductive toxicity across PFAS classes, with alternative analogs affecting sperm parameters and legacy PFASs correlating with conditions like endometriosis. Metabolically, PFASs exposure is linked to metabolic disorders, including obesity, type 2 diabetes mellitus (T2DM), dyslipidemia, and liver toxicity, particularly in early childhood. This review focuses on the endocrine-disrupting impact of PFASs, particularly on fertility, thyroid, and metabolic functions. We highlight the complexity of the PFAS issue, given the large number of molecules and their extremely diverse mixed effects.

全氟烷基和多氟烷基物质(PFASs)的广泛使用及其耐降解性使人类不可避免地接触到这些物质。接触全氟辛烷磺酸会扰乱内分泌功能,可能会通过孕期甲状腺功能紊乱影响新生儿的认知发育。最新研究显示,不同类别的全氟辛烷磺酸对男性和女性生殖系统的毒性各不相同,替代类似物会影响精子参数,而传统全氟辛烷磺酸则与子宫内膜异位症等疾病有关。在代谢方面,接触 PFASs 与代谢紊乱有关,包括肥胖、2 型糖尿病 (T2DM)、血脂异常和肝脏毒性,尤其是在幼儿期。本综述侧重于全氟辛烷磺酸对内分泌的干扰影响,尤其是对生育、甲状腺和代谢功能的影响。我们强调了全氟辛烷磺酸问题的复杂性,因为其分子数量众多,而且具有极其多样的混合效应。
{"title":"Per- and polyfluoroalkyl substances as persistent pollutants with metabolic and endocrine-disrupting impacts.","authors":"Lucas Gaillard, Robert Barouki, Etienne Blanc, Xavier Coumoul, Karine Andréau","doi":"10.1016/j.tem.2024.07.021","DOIUrl":"https://doi.org/10.1016/j.tem.2024.07.021","url":null,"abstract":"<p><p>The widespread use of per- and polyfluoroalkyl substances (PFASs), and their resistance to degradation, renders human exposure to them inevitable. PFAS exposure disturbs endocrine function, potentially affecting cognitive development in newborns through thyroid dysfunction during pregnancy. Recent studies reveal varying male and female reproductive toxicity across PFAS classes, with alternative analogs affecting sperm parameters and legacy PFASs correlating with conditions like endometriosis. Metabolically, PFASs exposure is linked to metabolic disorders, including obesity, type 2 diabetes mellitus (T2DM), dyslipidemia, and liver toxicity, particularly in early childhood. This review focuses on the endocrine-disrupting impact of PFASs, particularly on fertility, thyroid, and metabolic functions. We highlight the complexity of the PFAS issue, given the large number of molecules and their extremely diverse mixed effects.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New anti-inflammatory mechanism of glucocorticoids uncovered. 糖皮质激素抗炎新机制揭秘
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-08-23 DOI: 10.1016/j.tem.2024.08.003
Carolyn L Cummins, Ido Goldstein

Glucocorticoids (GCs) are potent anti-inflammatory drugs. A new study by Auger et al. found that GCs increase itaconate, an anti-inflammatory tricarboxylic acid (TCA) cycle intermediate, by promoting movement of cytosolic pyruvate dehydrogenase (PDH) to mitochondria. Itaconate was sufficient for mediating the anti-inflammatory effects of GCs in mice, overriding the notion that nuclear glucocorticoid receptor (GR) is necessary for inflammation inhibition.

糖皮质激素(GCs)是一种强效抗炎药物。Auger 等人的一项新研究发现,GCs 可通过促进细胞膜丙酮酸脱氢酶(PDH)向线粒体移动来增加伊塔康酸(一种抗炎的三羧酸(TCA)循环中间体)。伊塔康酸足以介导 GCs 在小鼠体内的抗炎作用,从而推翻了核糖皮质激素受体(GR)是抑制炎症的必要条件这一观点。
{"title":"New anti-inflammatory mechanism of glucocorticoids uncovered.","authors":"Carolyn L Cummins, Ido Goldstein","doi":"10.1016/j.tem.2024.08.003","DOIUrl":"https://doi.org/10.1016/j.tem.2024.08.003","url":null,"abstract":"<p><p>Glucocorticoids (GCs) are potent anti-inflammatory drugs. A new study by Auger et al. found that GCs increase itaconate, an anti-inflammatory tricarboxylic acid (TCA) cycle intermediate, by promoting movement of cytosolic pyruvate dehydrogenase (PDH) to mitochondria. Itaconate was sufficient for mediating the anti-inflammatory effects of GCs in mice, overriding the notion that nuclear glucocorticoid receptor (GR) is necessary for inflammation inhibition.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The biogenesis and transport of triglyceride-rich lipoproteins. 富含甘油三酯的脂蛋白的生物生成和运输。
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-08-19 DOI: 10.1016/j.tem.2024.07.015
Linqi Zhang, Xiao Wang, Xiao-Wei Chen

Triglyceride-rich lipoproteins (TRLs) play essential roles in human health and disease by transporting bulk lipids into the circulation. This review summarizes the fundamental mechanisms and diverse factors governing lipoprotein production, secretion, and regulation. Emphasizing the broader implications for human health, we outline the intricate landscape of lipoprotein research and highlight the potential coordination between the biogenesis and transport of TRLs in physiology, particularly the unexpected coupling of metabolic enzymes and transport machineries. Challenges and opportunities in lipoprotein biology with respect to inherited diseases and viral infections are also discussed. Further characterization of the biogenesis and transport of TRLs will advance both basic research in lipid biology and translational medicine for metabolic diseases.

富含甘油三酯的脂蛋白(TRLs)可将大量脂质运送到血液循环中,对人体健康和疾病起着至关重要的作用。本综述总结了脂蛋白产生、分泌和调节的基本机制和各种因素。我们强调了脂蛋白对人类健康的广泛影响,概述了脂蛋白研究的复杂情况,并强调了生理学中 TRLs 的生物生成和运输之间的潜在协调,特别是代谢酶和运输机制之间意想不到的耦合。此外,还讨论了脂蛋白生物学在遗传性疾病和病毒感染方面面临的挑战和机遇。对 TRLs 的生物生成和转运的进一步描述将推动脂质生物学的基础研究和代谢疾病的转化医学研究。
{"title":"The biogenesis and transport of triglyceride-rich lipoproteins.","authors":"Linqi Zhang, Xiao Wang, Xiao-Wei Chen","doi":"10.1016/j.tem.2024.07.015","DOIUrl":"https://doi.org/10.1016/j.tem.2024.07.015","url":null,"abstract":"<p><p>Triglyceride-rich lipoproteins (TRLs) play essential roles in human health and disease by transporting bulk lipids into the circulation. This review summarizes the fundamental mechanisms and diverse factors governing lipoprotein production, secretion, and regulation. Emphasizing the broader implications for human health, we outline the intricate landscape of lipoprotein research and highlight the potential coordination between the biogenesis and transport of TRLs in physiology, particularly the unexpected coupling of metabolic enzymes and transport machineries. Challenges and opportunities in lipoprotein biology with respect to inherited diseases and viral infections are also discussed. Further characterization of the biogenesis and transport of TRLs will advance both basic research in lipid biology and translational medicine for metabolic diseases.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dopamine. 多巴胺
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-08-12 DOI: 10.1016/j.tem.2024.07.005
Siyao Zhou, Wenqiang Chen, Hongbin Yang
{"title":"Dopamine.","authors":"Siyao Zhou, Wenqiang Chen, Hongbin Yang","doi":"10.1016/j.tem.2024.07.005","DOIUrl":"https://doi.org/10.1016/j.tem.2024.07.005","url":null,"abstract":"","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141977233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cardioprotective benefits of metabolic surgery and GLP-1 receptor agonist-based therapies. 代谢手术和基于 GLP-1 受体激动剂的疗法对保护心脏的益处。
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-08-10 DOI: 10.1016/j.tem.2024.07.012
Arianne Morissette, Erin E Mulvihill

Individuals with excessive adipose tissue and type 2 diabetes mellitus (T2DM) face a heightened risk of cardiovascular morbidity and mortality. Metabolic surgery is an effective therapy for people with severe obesity to achieve significant weight loss. Additionally, metabolic surgery improves blood glucose levels and can lead to T2DM remission, reducing major adverse cardiovascular outcomes (MACE). Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1RAs) are a class of medication that effectively reduce body weight and MACE in patients with T2DM. This review explores the potential mechanisms underlying the cardioprotective benefits of metabolic surgery and GLP-1RA-based therapies and discusses recent evidence and emerging therapies in this dynamic area of research.

脂肪组织过多和 2 型糖尿病(T2DM)患者面临着更高的心血管发病率和死亡率风险。代谢手术是一种有效的疗法,可帮助重度肥胖患者显著减轻体重。此外,代谢手术还能改善血糖水平,使 T2DM 病情得到缓解,减少主要不良心血管后果(MACE)。胰高血糖素样肽 1(GLP-1)受体激动剂(GLP-1RAs)是一类能有效减轻 T2DM 患者体重和 MACE 的药物。本综述探讨了代谢手术和基于 GLP-1RA 的疗法具有心脏保护作用的潜在机制,并讨论了这一动态研究领域的最新证据和新兴疗法。
{"title":"Cardioprotective benefits of metabolic surgery and GLP-1 receptor agonist-based therapies.","authors":"Arianne Morissette, Erin E Mulvihill","doi":"10.1016/j.tem.2024.07.012","DOIUrl":"https://doi.org/10.1016/j.tem.2024.07.012","url":null,"abstract":"<p><p>Individuals with excessive adipose tissue and type 2 diabetes mellitus (T2DM) face a heightened risk of cardiovascular morbidity and mortality. Metabolic surgery is an effective therapy for people with severe obesity to achieve significant weight loss. Additionally, metabolic surgery improves blood glucose levels and can lead to T2DM remission, reducing major adverse cardiovascular outcomes (MACE). Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1RAs) are a class of medication that effectively reduce body weight and MACE in patients with T2DM. This review explores the potential mechanisms underlying the cardioprotective benefits of metabolic surgery and GLP-1RA-based therapies and discusses recent evidence and emerging therapies in this dynamic area of research.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141914576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Standardizing methodologies to study microplastics and nanoplastics in cardiovascular diseases. 研究心血管疾病中的微塑料和纳米塑料的标准化方法。
IF 11.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-08-08 DOI: 10.1016/j.tem.2024.07.013
Yilin Pan, Suowen Xu, Xiubin Yang

Microplastics and nanoplastics (MNPs) are being recognized as new cardiovascular risk factors, impacting vascular cell functions and exacerbating atherosclerosis through diverse mechanisms. However, the varied concentrations of MNPs detected in major cardiovascular tissues highlight the urgent need for standardized research methodologies to better understand their impact and inform future health guidelines.

微塑料和纳米塑料(MNPs)被认为是新的心血管风险因素,通过不同的机制影响血管细胞功能并加剧动脉粥样硬化。然而,在主要心血管组织中检测到的 MNP 的浓度各不相同,这突出表明迫切需要标准化的研究方法来更好地了解它们的影响,并为未来的健康指南提供信息。
{"title":"Standardizing methodologies to study microplastics and nanoplastics in cardiovascular diseases.","authors":"Yilin Pan, Suowen Xu, Xiubin Yang","doi":"10.1016/j.tem.2024.07.013","DOIUrl":"https://doi.org/10.1016/j.tem.2024.07.013","url":null,"abstract":"<p><p>Microplastics and nanoplastics (MNPs) are being recognized as new cardiovascular risk factors, impacting vascular cell functions and exacerbating atherosclerosis through diverse mechanisms. However, the varied concentrations of MNPs detected in major cardiovascular tissues highlight the urgent need for standardized research methodologies to better understand their impact and inform future health guidelines.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141914578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Trends in Endocrinology and Metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1