This paper investigates rumor transmission over online social networks, such as those via Facebook or Twitter, where users liberally generate visible content to their followers, and the attractiveness of rumors varies over time and gives rise to opposition such as counter-rumors. All users in social media platforms are modeled as nodes in one of five compartments of a directed random graph: susceptible, hesitating, infected, mitigated, and recovered (SHIMR). The system is expressed with edge-based formulation and the transition dynamics are derived as a system of ordinary differential equations. We further allow individuals to decide whether to share, or disregard, or debunk the rumor so as to balance the potential gain and loss. This decision process is formulated as a game, and the condition to achieve mixed Nash equilibrium is derived. The system dynamics under equilibrium are solved and verified based on simulation results. A series of parametric analyses are conducted to investigate the factors that affect the transmission process. Insights are drawn from these results to help social media platforms design proper control strategies that can enhance the robustness of the online community against rumors.
To better deploy the landside rapid transit network for large airports, this study proposes a multi-objective transit network design model to maximize passenger demand coverage, reduce passenger travel time and minimize operational cost simultaneously. This model is formulated as an equivalent integer programming problem by predefining the transportation corridors and passengers' OD pairs. A branch-and-cut algorithm is proposed to find a non-inferior solution set. We also conduct trade-off analysis between efficiency, effectiveness and equity under each deployment strategy using the modified Gini coefficient method. The effectiveness of the proposed model and solution algorithm are tested with rapid transit network of the Beijing Capital International Airport. Results show that among the three common network topologies, including star, tree and finger, the passenger demand coverage and travel time reduction per unit cost under star topology outperform the other two topologies. As for finger topology, the performances of the passenger demand coverage and travel time reduction are the best among the three, but the cost is the poorest. In addition, the trade-off analysis shows that the solution whose objective is to maximize passenger demand coverage has a higher efficiency and a lower unit cost than the solution whose objective is to reduce travel time. However, the latter has a higher level of equity, especially for the medium and low-cost solutions. The proposed method in this study can help the decision makers to design effective landside rapid transit networks for large airports to improve the service level.

