Pub Date : 2021-10-20eCollection Date: 2021-01-01DOI: 10.6028/jres.126.020
Alisha Geldert, Halleh B Balch, Anjali Gopal, Alison Su, Samantha M Grist, Amy E Herr
Ultraviolet-C (UV-C) decontamination holds promise in combating the coronavirus disease 2019 pandemic, particularly with its potential to mitigate the N95 respirator shortage. Safe, effective, and reproducible decontamination depends critically on UV-C dose, yet dose is frequently measured and reported incorrectly, which results in misleading and potentially harmful protocols. Understanding best practices in UV-C dose measurement for N95 respirator decontamination is essential to the safety of medical professionals, researchers, and the public. Here, we outline the fundamental optical principles governing UV-C irradiation and detection, as well as the key metrics of UV-C wavelength and dose. In particular, we discuss the technical and regulatory distinctions between UV-C N95 respirator decontamination and other applications of germicidal UV-C, and we highlight the unique considerations required for UV-C N95 respirator decontamination. Together, this discussion will inform best practices for UV-C dose measurement for N95 respirator decontamination during crisis-capacity conditions.
{"title":"Best Practices for Germicidal Ultraviolet-C Dose Measurement for N95 Respirator Decontamination.","authors":"Alisha Geldert, Halleh B Balch, Anjali Gopal, Alison Su, Samantha M Grist, Amy E Herr","doi":"10.6028/jres.126.020","DOIUrl":"10.6028/jres.126.020","url":null,"abstract":"<p><p>Ultraviolet-C (UV-C) decontamination holds promise in combating the coronavirus disease 2019 pandemic, particularly with its potential to mitigate the N95 respirator shortage. Safe, effective, and reproducible decontamination depends critically on UV-C dose, yet dose is frequently measured and reported incorrectly, which results in misleading and potentially harmful protocols. Understanding best practices in UV-C dose measurement for N95 respirator decontamination is essential to the safety of medical professionals, researchers, and the public. Here, we outline the fundamental optical principles governing UV-C irradiation and detection, as well as the key metrics of UV-C wavelength and dose. In particular, we discuss the technical and regulatory distinctions between UV-C N95 respirator decontamination and other applications of germicidal UV-C, and we highlight the unique considerations required for UV-C N95 respirator decontamination. Together, this discussion will inform best practices for UV-C dose measurement for N95 respirator decontamination during crisis-capacity conditions.</p>","PeriodicalId":54766,"journal":{"name":"Journal of Research of the National Institute of Standards and Technology","volume":"1 1","pages":"126020"},"PeriodicalIF":1.3,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046750/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71366388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-20eCollection Date: 2021-01-01DOI: 10.6028/jres.126.019
Stephen F Yates, Giorgio Isella, Emir Rahislic, Spencer Barbour, Lillian Tiznado
Ultraviolet-C (UV-C) radiation exposure is an attractive option for rapid and consistent disinfection of interior surfaces in aircraft cabins. In this study, fabric and plastic materials commonly used in aircraft cabins were exposed to UV-C radiation to determine their sensitivity to cumulative damage from frequent application. No significant effect on flame retardancy occurred up to 269 J/cm2 dose, and no effect on tensile or tear strength occurred up to 191 J/cm2 . Changes in color or appearance can occur at lower doses. A limit of 40 J/cm2 is proposed to avoid perceptible changes in appearance.
{"title":"Effects of Ultraviolet-C Radiation Exposure on Aircraft Cabin Materials.","authors":"Stephen F Yates, Giorgio Isella, Emir Rahislic, Spencer Barbour, Lillian Tiznado","doi":"10.6028/jres.126.019","DOIUrl":"10.6028/jres.126.019","url":null,"abstract":"<p><p>Ultraviolet-C (UV-C) radiation exposure is an attractive option for rapid and consistent disinfection of interior surfaces in aircraft cabins. In this study, fabric and plastic materials commonly used in aircraft cabins were exposed to UV-C radiation to determine their sensitivity to cumulative damage from frequent application. No significant effect on flame retardancy occurred up to 269 J/cm2 dose, and no effect on tensile or tear strength occurred up to 191 J/cm2 . Changes in color or appearance can occur at lower doses. A limit of 40 J/cm2 is proposed to avoid perceptible changes in appearance.</p>","PeriodicalId":54766,"journal":{"name":"Journal of Research of the National Institute of Standards and Technology","volume":"1 1","pages":"126019"},"PeriodicalIF":1.5,"publicationDate":"2021-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10855778/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71366363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-20eCollection Date: 2021-01-01DOI: 10.6028/jres.vol.126.025
Pablo Fredes, Ulrich Raff, Ernesto Gramsch, Marcelo Tarkowski
Disinfection of surfaces by ultraviolet-C (UV-C) radiation is gaining importance in diverse applications. However, there is generally no accepted computational procedure to determine the minimum irradiation times and UV-C doses required for reliable and secure disinfection of surfaces. UV-C dose distributions must be comparable for devices presently on the market and future ones, as well as for the diverse surfaces of objects to be disinfected. A mathematical model is presented to estimate irradiance distributions. To this end, the relevant parameters are defined. These parameters are the optical properties of the UV-C light sources, such as wavelength and emitted optical power, as well as electrical features, like radiant efficiency and consumed power. Furthermore, the characteristics and geometry of the irradiated surfaces as well as the positions of the irradiated surfaces in relation to the UV-C light sources are considered. Because mercury (Hg) lamps are competitive with UV-C light-emitting diodes, a comparative analysis between these two light sources based on the simulation results is also discussed.
{"title":"Estimation of the Ultraviolet-C Doses from Mercury Lamps and Light-Emitting Diodes Required to Disinfect Surfaces.","authors":"Pablo Fredes, Ulrich Raff, Ernesto Gramsch, Marcelo Tarkowski","doi":"10.6028/jres.vol.126.025","DOIUrl":"10.6028/jres.vol.126.025","url":null,"abstract":"<p><p>Disinfection of surfaces by ultraviolet-C (UV-C) radiation is gaining importance in diverse applications. However, there is generally no accepted computational procedure to determine the minimum irradiation times and UV-C doses required for reliable and secure disinfection of surfaces. UV-C dose distributions must be comparable for devices presently on the market and future ones, as well as for the diverse surfaces of objects to be disinfected. A mathematical model is presented to estimate irradiance distributions. To this end, the relevant parameters are defined. These parameters are the optical properties of the UV-C light sources, such as wavelength and emitted optical power, as well as electrical features, like radiant efficiency and consumed power. Furthermore, the characteristics and geometry of the irradiated surfaces as well as the positions of the irradiated surfaces in relation to the UV-C light sources are considered. Because mercury (Hg) lamps are competitive with UV-C light-emitting diodes, a comparative analysis between these two light sources based on the simulation results is also discussed.</p>","PeriodicalId":54766,"journal":{"name":"Journal of Research of the National Institute of Standards and Technology","volume":"126 ","pages":"126025"},"PeriodicalIF":1.5,"publicationDate":"2021-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10857788/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140102872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-20eCollection Date: 2021-01-01DOI: 10.6028/jres.126.021
Mahsa Masjoudi, Madjid Mohseni, James R Bolton
Data concerning the sensitivity of various organisms to ultraviolet (UV) radiation exposure are very important in the design of UV disinfection equipment. This review analyzes fluence data from almost 250 studies and organizes the data into a set of recommended fluence values for specific log reductions and an appendix containing all the collected data. This article was sponsored by Dianne L. Poster, Material Measurement Laboratory, and C. Cameron Miller, Physical Measurement Laboratory, National Institute of Standards and Technology (NIST). It is published in collaboration with the International Ultraviolet Association as a complement to the NIST Workshop on Ultraviolet Disinfection Technologies, 14-15 January 2020, Gaithersburg, MD. The views expressed represent those of the authors and not necessarily those of NIST.
{"title":"Sensitivity of Bacteria, Protozoa, Viruses, and Other Microorganisms to Ultraviolet Radiation.","authors":"Mahsa Masjoudi, Madjid Mohseni, James R Bolton","doi":"10.6028/jres.126.021","DOIUrl":"10.6028/jres.126.021","url":null,"abstract":"<p><p>Data concerning the sensitivity of various organisms to ultraviolet (UV) radiation exposure are very important in the design of UV disinfection equipment. This review analyzes fluence data from almost 250 studies and organizes the data into a set of recommended fluence values for specific log reductions and an appendix containing all the collected data. This article was sponsored by Dianne L. Poster, Material Measurement Laboratory, and C. Cameron Miller, Physical Measurement Laboratory, National Institute of Standards and Technology (NIST). It is published in collaboration with the International Ultraviolet Association as a complement to the NIST Workshop on Ultraviolet Disinfection Technologies, 14-15 January 2020, Gaithersburg, MD. The views expressed represent those of the authors and not necessarily those of NIST.</p>","PeriodicalId":54766,"journal":{"name":"Journal of Research of the National Institute of Standards and Technology","volume":"1 1","pages":"126021"},"PeriodicalIF":1.3,"publicationDate":"2021-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11259122/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71366396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-20eCollection Date: 2021-01-01DOI: 10.6028/jres.126.018
Ernest R Blatchley Iii, Brian Petri, Wenjun Sun
Ultraviolet (UV) radiation in the wavelength range 200 nm ≤ λ ≤ 320 nm, which includes both the UV-C and UV-B portions of the spectrum, is known to be effective for inactivation of a wide range of microbial pathogens, including viruses. Previous research has indicated UV-C radiation to be effective for inactivation of severe acute respiratory syndrome coronavirus (SARS-CoV), the virus that caused an outbreak of SARS in 2003. Given the structural similarities of SARS-CoV and SARS-CoV-2, the cause of coronavirus disease 2019 (COVID-19), it is anticipated that UV radiation should be effective for inactivation of SARS-CoV-2 too. Recently published data support this assertion, but only for a narrow set of exposure and matrix conditions. Models based on genomic and other characteristics of viruses have been developed to provide predictions of viral inactivation responses to UV exposure at λ = 254 nm. The predictions of these models are consistent with reported measurements of viral inactivation, including for SARS-CoV-2. As such, current information indicates that UV-C irradiation should be effective for control of SARS-CoV-2, as well as for control of other coronaviruses; however, additional research is needed to quantify the effects of several important process variables, including the wavelength of radiation, the effects of relative humidity on airborne and surface-associated viruses, and the effects of the medium of exposure.
{"title":"SARS-CoV-2 Ultraviolet Radiation Dose-Response Behavior.","authors":"Ernest R Blatchley Iii, Brian Petri, Wenjun Sun","doi":"10.6028/jres.126.018","DOIUrl":"10.6028/jres.126.018","url":null,"abstract":"<p><p>Ultraviolet (UV) radiation in the wavelength range 200 nm ≤ λ ≤ 320 nm, which includes both the UV-C and UV-B portions of the spectrum, is known to be effective for inactivation of a wide range of microbial pathogens, including viruses. Previous research has indicated UV-C radiation to be effective for inactivation of severe acute respiratory syndrome coronavirus (SARS-CoV), the virus that caused an outbreak of SARS in 2003. Given the structural similarities of SARS-CoV and SARS-CoV-2, the cause of coronavirus disease 2019 (COVID-19), it is anticipated that UV radiation should be effective for inactivation of SARS-CoV-2 too. Recently published data support this assertion, but only for a narrow set of exposure and matrix conditions. Models based on genomic and other characteristics of viruses have been developed to provide predictions of viral inactivation responses to UV exposure at λ = 254 nm. The predictions of these models are consistent with reported measurements of viral inactivation, including for SARS-CoV-2. As such, current information indicates that UV-C irradiation should be effective for control of SARS-CoV-2, as well as for control of other coronaviruses; however, additional research is needed to quantify the effects of several important process variables, including the wavelength of radiation, the effects of relative humidity on airborne and surface-associated viruses, and the effects of the medium of exposure.</p>","PeriodicalId":54766,"journal":{"name":"Journal of Research of the National Institute of Standards and Technology","volume":"1 1","pages":"126018"},"PeriodicalIF":1.5,"publicationDate":"2021-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10857211/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71366355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-10eCollection Date: 2021-01-01DOI: 10.6028/jres.126.013
David C Deisenroth, Sergey Mekhontsev, Brandon Lane, Leonard Hanssen, Ivan Zhirnov, Vladimir Khromchenko, Steven Grantham, Daniel Cardenas-Garcia, Alkan Donmez
This paper describes advances in measuring the characteristic spatial distribution of surface temperature and emissivity during laser-metal interaction under conditions relevant for laser powder bed fusion (LPBF) additive manufacturing processes. Detailed descriptions of the measurement process, results, and approaches to determining uncertainties are provided. Measurement uncertainties have complex dependencies on multiple process parameters, so the methodology is demonstrated on one set of process parameters and one material. Well-established literature values for high-purity nickel solidification temperature and emissivity at the solidification temperature were used to evaluate the predicted uncertainty of the measurements. The standard temperature measurement uncertainty is found to be approximately 0.9% of the absolute temperature (16 AC), and the standard relative emissivity measurement uncertainty is found to be approximately 8% at the solidification point of high-purity nickel, both of which are satisfactory. This paper also outlines several potential sources of test uncertainties, which may require additional experimental evaluation. The largest of these are the metal vapor and ejecta that are produced as process by-products, which can potentially affect the imaging quality, reflectometry results, and thermal signature of the process, while also affecting the process of laser power delivery. Furthermore, the current paper focuses strictly on the uncertainties of the emissivity and temperature measurement approach and therefore does not detail a variety of uncertainties associated with experimental controls that must be evaluated for future generation of reference data.
{"title":"Measurement Uncertainty of Surface Temperature Distributions for Laser Powder Bed Fusion Processes.","authors":"David C Deisenroth, Sergey Mekhontsev, Brandon Lane, Leonard Hanssen, Ivan Zhirnov, Vladimir Khromchenko, Steven Grantham, Daniel Cardenas-Garcia, Alkan Donmez","doi":"10.6028/jres.126.013","DOIUrl":"10.6028/jres.126.013","url":null,"abstract":"<p><p>This paper describes advances in measuring the characteristic spatial distribution of surface temperature and emissivity during laser-metal interaction under conditions relevant for laser powder bed fusion (LPBF) additive manufacturing processes. Detailed descriptions of the measurement process, results, and approaches to determining uncertainties are provided. Measurement uncertainties have complex dependencies on multiple process parameters, so the methodology is demonstrated on one set of process parameters and one material. Well-established literature values for high-purity nickel solidification temperature and emissivity at the solidification temperature were used to evaluate the predicted uncertainty of the measurements. The standard temperature measurement uncertainty is found to be approximately 0.9% of the absolute temperature (16 AC), and the standard relative emissivity measurement uncertainty is found to be approximately 8% at the solidification point of high-purity nickel, both of which are satisfactory. This paper also outlines several potential sources of test uncertainties, which may require additional experimental evaluation. The largest of these are the metal vapor and ejecta that are produced as process by-products, which can potentially affect the imaging quality, reflectometry results, and thermal signature of the process, while also affecting the process of laser power delivery. Furthermore, the current paper focuses strictly on the uncertainties of the emissivity and temperature measurement approach and therefore does not detail a variety of uncertainties associated with experimental controls that must be evaluated for future generation of reference data.</p>","PeriodicalId":54766,"journal":{"name":"Journal of Research of the National Institute of Standards and Technology","volume":"1 1","pages":"126013"},"PeriodicalIF":1.3,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10112122/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71366343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-03eCollection Date: 2021-01-01DOI: 10.6028/jres.126.002
Robert D McMichael, Sean M Blakley, Sergey Dushenko
{"title":"Optbayesexpt: Sequential Bayesian Experiment Design for Adaptive Measurements.","authors":"Robert D McMichael, Sean M Blakley, Sergey Dushenko","doi":"10.6028/jres.126.002","DOIUrl":"10.6028/jres.126.002","url":null,"abstract":"","PeriodicalId":54766,"journal":{"name":"Journal of Research of the National Institute of Standards and Technology","volume":"126 1","pages":"126002"},"PeriodicalIF":1.3,"publicationDate":"2021-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10878688/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43333088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Yunker, K. Stupic, J. Wagner, S. Huddle, R. Shandas, R. Weir, S. Russek, K. Keenan
Imaging phantoms are used to calibrate and validate the performance of magnetic resonance imaging (MRI) systems. Many new materials have been developed for additive manufacturing (three-dimensional [3D] printing) processes that may be useful in the direct printing or casting of dimensionally accurate, anatomically accurate, patient-specific, and/or biomimetic MRI phantoms. The T1, T2, and T2* spin relaxation times of polymer samples were tested to discover materials for use as tissue mimics and structures in MRI phantoms. This study included a cohort of polymer compounds that was tested in cured form. The cohort consisted of 101 standardized polymer samples fabricated from: two-part silicones and polyurethanes used in commercial casting processes; one-part optically cured polyurethanes used in 3D printing; and fused deposition thermoplastics used in 3D printing. The testing was performed at 3 T using inversion recovery, spin echo, and gradient echo sequences for T1, T2, and T2*, respectively. T1, T2, and T2* values were plotted with error bars to allow the reader to assess how well a polymer matches a tissue for a specific application. A correlation was performed between T1, T2, T2* values and material density, elongation, tensile strength, and hardness. Two silicones, SI_XP-643 and SI_P-45, may be usable mimics for reported liver values; one silicone, SI_XP-643, may be a useful mimic for muscle; one silicone, SI_XP-738, may be a useful mimic for white matter; and four silicones, SI_P-15, SI_GI-1000, SI_GI-1040, and SI_GI-1110, may be usable mimics for spinal cord. Elongation correlated to T2 (p = 0.0007), tensile strength correlated to T1 (p = 0.002), T2 (p = 0.0003), and T2* (p = 0.003). The 80 samples not providing measurable signal with T1, T2, T2* relaxation values too short to measure with the standard sequences, may be useful for MRI-invisible fixturing and medical devices at 3 T.
{"title":"Characterization of 3-Dimensional Printing and Casting Materials for use in Magnetic Resonance Imaging Phantoms at 3 T","authors":"B. Yunker, K. Stupic, J. Wagner, S. Huddle, R. Shandas, R. Weir, S. Russek, K. Keenan","doi":"10.6028/jres.125.028","DOIUrl":"https://doi.org/10.6028/jres.125.028","url":null,"abstract":"Imaging phantoms are used to calibrate and validate the performance of magnetic resonance imaging (MRI) systems. Many new materials have been developed for additive manufacturing (three-dimensional [3D] printing) processes that may be useful in the direct printing or casting of dimensionally accurate, anatomically accurate, patient-specific, and/or biomimetic MRI phantoms. The T1, T2, and T2* spin relaxation times of polymer samples were tested to discover materials for use as tissue mimics and structures in MRI phantoms. This study included a cohort of polymer compounds that was tested in cured form. The cohort consisted of 101 standardized polymer samples fabricated from: two-part silicones and polyurethanes used in commercial casting processes; one-part optically cured polyurethanes used in 3D printing; and fused deposition thermoplastics used in 3D printing. The testing was performed at 3 T using inversion recovery, spin echo, and gradient echo sequences for T1, T2, and T2*, respectively. T1, T2, and T2* values were plotted with error bars to allow the reader to assess how well a polymer matches a tissue for a specific application. A correlation was performed between T1, T2, T2* values and material density, elongation, tensile strength, and hardness. Two silicones, SI_XP-643 and SI_P-45, may be usable mimics for reported liver values; one silicone, SI_XP-643, may be a useful mimic for muscle; one silicone, SI_XP-738, may be a useful mimic for white matter; and four silicones, SI_P-15, SI_GI-1000, SI_GI-1040, and SI_GI-1110, may be usable mimics for spinal cord. Elongation correlated to T2 (p = 0.0007), tensile strength correlated to T1 (p = 0.002), T2 (p = 0.0003), and T2* (p = 0.003). The 80 samples not providing measurable signal with T1, T2, T2* relaxation values too short to measure with the standard sequences, may be useful for MRI-invisible fixturing and medical devices at 3 T.","PeriodicalId":54766,"journal":{"name":"Journal of Research of the National Institute of Standards and Technology","volume":"vol 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43616485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This tutorial provides mechanical drawings, electrical schematics, parts lists, stereolithography (STL) files for producing three-dimensional (3D)-printed parts, initial graphics exchange specification (IGS) files for automated machining, and instructions necessary for construction of a dual protease column, subzero, liquid chromatography system for hydrogen-deuterium exchange mass spectrometry (HDX-MS). Electro-mechanical schematics for construction of two multi-zone temperature controllers that regulate to ±0.05 oC are also included in this tutorial.
{"title":"Construction of a Dual Protease Column, Subzero (-30 °C) Chromatography System and Multi-channel Precision Temperature Controller for Hydrogen-Deuterium Exchange Mass Spectrometry","authors":"J. W. Hudgens","doi":"10.6028/jres.125.025","DOIUrl":"https://doi.org/10.6028/jres.125.025","url":null,"abstract":"This tutorial provides mechanical drawings, electrical schematics, parts lists, stereolithography (STL) files for producing three-dimensional (3D)-printed parts, initial graphics exchange specification (IGS) files for automated machining, and instructions necessary for construction of a dual protease column, subzero, liquid chromatography system for hydrogen-deuterium exchange mass spectrometry (HDX-MS). Electro-mechanical schematics for construction of two multi-zone temperature controllers that regulate to ±0.05 oC are also included in this tutorial.","PeriodicalId":54766,"journal":{"name":"Journal of Research of the National Institute of Standards and Technology","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2020-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46477416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-08-06eCollection Date: 2020-01-01DOI: 10.6028/jres.125.022
Giovanni Garberoglio, Allan H Harvey
We present a method to calculate dielectric and refractivity virial coefficients using the path-integral Monte Carlo formulation of quantum statistical mechanics and validate it by comparing our results with equivalent calculations in the literature and with more traditional quantum calculations based on wavefunctions. We use state-of-the-art pair potentials and polarizabilities to calculate the second dielectric and refractivity virial coefficients of helium (both 3He and 4He), neon (both 20Ne and 22Ne), and argon. Our calculations extend to temperatures as low as 1 K for helium, 4 K for neon, and 50 K for argon. We estimate the contributions to the uncertainty of the calculated dielectric virial coefficients for helium and argon, finding that the uncertainty of the pair polarizability is by far the greatest contribution. Agreement with the limited experimental data available is generally good, but our results have smaller uncertainties, especially for helium. Our approach can be generalized in a straightforward manner to higher-order coefficients.
{"title":"Path-Integral Calculation of the Second Dielectric and Refractivity Virial Coefficients of Helium, Neon, and Argon.","authors":"Giovanni Garberoglio, Allan H Harvey","doi":"10.6028/jres.125.022","DOIUrl":"10.6028/jres.125.022","url":null,"abstract":"<p><p>We present a method to calculate dielectric and refractivity virial coefficients using the path-integral Monte Carlo formulation of quantum statistical mechanics and validate it by comparing our results with equivalent calculations in the literature and with more traditional quantum calculations based on wavefunctions. We use state-of-the-art pair potentials and polarizabilities to calculate the second dielectric and refractivity virial coefficients of helium (both <sup>3</sup>He and <sup>4</sup>He), neon (both <sup>20</sup>Ne and <sup>22</sup>Ne), and argon. Our calculations extend to temperatures as low as 1 K for helium, 4 K for neon, and 50 K for argon. We estimate the contributions to the uncertainty of the calculated dielectric virial coefficients for helium and argon, finding that the uncertainty of the pair polarizability is by far the greatest contribution. Agreement with the limited experimental data available is generally good, but our results have smaller uncertainties, especially for helium. Our approach can be generalized in a straightforward manner to higher-order coefficients.</p>","PeriodicalId":54766,"journal":{"name":"Journal of Research of the National Institute of Standards and Technology","volume":"125 1","pages":"125022"},"PeriodicalIF":1.3,"publicationDate":"2020-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11239192/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41326228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}