Fundamental limits for the calculation of scattering corrections within X-ray computed tomography (CT) are found within the independent atom approximation from an analysis of the cross sections, CT geometry, and the Nyquist sampling theorem, suggesting large reductions in computational time compared to existing methods. By modifying the scatter by less than 1 %, it is possible to treat some of the elastic scattering in the forward direction as inelastic to achieve a smoother elastic scattering distribution. We present an analysis showing that the number of samples required for the smoother distribution can be greatly reduced. We show that fixed forced detection can be used with many fewer points for inelastic scattering, but that for pure elastic scattering, a standard Monte Carlo calculation is preferred. We use smoothing for both elastic and inelastic scattering because the intrinsic angular resolution is much poorer than can be achieved for projective tomography. Representative numerical examples are given.
This study evaluated different models for calculating the effective thermal conductivity of fibrous insulation by comparing predicted values with certified values of Standard Reference Material 1450c, Fibrous Glass Board. This comparison involved the coupled effects of radiation and conduction heat transfer. To support these comparisons, the fiber diameter distribution was measured using X-ray computed tomography, and this distribution was used in several heat transfer models considered in this paper. For the evaluation of the radiative heat transfer, the diffusion approximation, the Schuster-Schwarzschild approximation, and the Milne-Eddington approximation were considered. The conduction of the gas and the fibers was treated by the kinetic theory and a semi-empirical model, respectively. Two models were considered for the evaluation of the radiative properties: the large specular reflecting approach and the application of Mie theory for media composed of infinite cylinders.