首页 > 最新文献

Journal of Hydroinformatics最新文献

英文 中文
Meteorological characteristics of line-shaped rainbands in northern Japan and its surrounding seas under climate change 气候变化下日本北部及其周边海域线状雨带的气象特征
IF 2.7 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-02-01 DOI: 10.2166/hydro.2024.121
Yuta Ohya, Tomohito J. Yamada
<div><div data- reveal-group-><div><img alt="graphic" data-src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/2/10.2166_hydro.2024.121/1/m_hydro-d-23-00121gf01.png?Expires=1712248319&Signature=MBiDDIfBANl5gcv~tx56Jn~TjUdkd53Sw1r0lYohiyDO-cDqWQc5ATJeN9k9TlO939pkTOn3aOFWmBp8b9~0QXkMCUEqgP~cdCFUmI4K4dQ6Taixt83W3Bw0cB0nWK9esBugT~J6SXKT66kp9uK-Ajc3i~rBkRE5HMBTV9rlDJHUg0EVw4xCS0madLwQ28ON0mxSMiO~hVvztcAW5a~Mtf~U~4STezGW~AytqbRsq586E4SI19rLzn0cIa4yEh2YpY6YnH3YC7vwma3olw9VUI8oCUkU9frphzwHpR4W5B-DFlprNjVzR7-1cdWN92MCLn0350S8FiKWuYHXy1csag__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" path-from-xml="hydro-d-23-00121gf01.tif" src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/2/10.2166_hydro.2024.121/1/m_hydro-d-23-00121gf01.png?Expires=1712248319&Signature=MBiDDIfBANl5gcv~tx56Jn~TjUdkd53Sw1r0lYohiyDO-cDqWQc5ATJeN9k9TlO939pkTOn3aOFWmBp8b9~0QXkMCUEqgP~cdCFUmI4K4dQ6Taixt83W3Bw0cB0nWK9esBugT~J6SXKT66kp9uK-Ajc3i~rBkRE5HMBTV9rlDJHUg0EVw4xCS0madLwQ28ON0mxSMiO~hVvztcAW5a~Mtf~U~4STezGW~AytqbRsq586E4SI19rLzn0cIa4yEh2YpY6YnH3YC7vwma3olw9VUI8oCUkU9frphzwHpR4W5B-DFlprNjVzR7-1cdWN92MCLn0350S8FiKWuYHXy1csag__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA"/><div>View largeDownload slide</div></div></div><div content- data-reveal="data-reveal"><div><img alt="graphic" data-src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/2/10.2166_hydro.2024.121/1/m_hydro-d-23-00121gf01.png?Expires=1712248319&Signature=MBiDDIfBANl5gcv~tx56Jn~TjUdkd53Sw1r0lYohiyDO-cDqWQc5ATJeN9k9TlO939pkTOn3aOFWmBp8b9~0QXkMCUEqgP~cdCFUmI4K4dQ6Taixt83W3Bw0cB0nWK9esBugT~J6SXKT66kp9uK-Ajc3i~rBkRE5HMBTV9rlDJHUg0EVw4xCS0madLwQ28ON0mxSMiO~hVvztcAW5a~Mtf~U~4STezGW~AytqbRsq586E4SI19rLzn0cIa4yEh2YpY6YnH3YC7vwma3olw9VUI8oCUkU9frphzwHpR4W5B-DFlprNjVzR7-1cdWN92MCLn0350S8FiKWuYHXy1csag__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" path-from-xml="hydro-d-23-00121gf01.tif" src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/2/10.2166_hydro.2024.121/1/m_hydro-d-23-00121gf01.png?Expires=1712248319&Signature=MBiDDIfBANl5gcv~tx56Jn~TjUdkd53Sw1r0lYohiyDO-cDqWQc5ATJeN9k9TlO939pkTOn3aOFWmBp8b9~0QXkMCUEqgP~cdCFUmI4K4dQ6Taixt83W3Bw0cB0nWK9esBugT~J6SXKT66kp9uK-Ajc3i~rBkRE5HMBTV9rlDJHUg0EVw4xCS0madLwQ28ON0mxSMiO~hVvztcAW5a~Mtf~U~4STezGW~AytqbRsq586E4SI19rLzn0cIa4yEh2YpY6YnH3YC7vwma3olw9VUI8oCUkU9frphzwHpR4W5B-DFlprNjVzR7-1cdWN92MCLn0350S8FiKWuYHXy1csag__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>In recent years, line-shaped rainbands (LRBs) have increased in Hokkaido, Japan. LRBs caused several flood disasters historically, thus the weather patterns that cause them need to be investigated. This study aimed to understand statistically the relationship between LRBs and weather patterns during the summer months under climate change conditions. Our study investigates the link between LRBs and weather patterns in Hokkaido during July and August, using historical and climate prediction
查看 largeDownload 幻灯片查看 largeDownload 幻灯片 关闭模态近年来,日本北海道的线状雨带(LRBs)有所增加。历史上,线状雨带曾多次引发洪水灾害,因此需要对导致线状雨带的天气模式进行研究。本研究旨在从统计学角度了解气候变化条件下夏季线状雨带与天气模式之间的关系。我们的研究利用历史和气候预测模型,调查了北海道 7 月和 8 月的低洼地带洪水与天气模式之间的关系。如果全球气温上升 2°/4°,该地区的枸杞多糖发生率将增加约 1.51/2.07 倍。低气压带发生率最高与来自南方的水汽通量增加和太平洋上空的正气压异常有关。有三种主要的天气模式对低气压带的发生有重要影响:(1)附近的低压系统;(2)加强的太平洋高锋模式;(3)接近或登陆北海道的台风。这些模式使 LRB 发生概率增加了一倍,这是在过去和预测气候(+2K 和 +4K 实验)中观察到的特征。这些都是未来洪水风险管理的重要启示。
{"title":"Meteorological characteristics of line-shaped rainbands in northern Japan and its surrounding seas under climate change","authors":"Yuta Ohya, Tomohito J. Yamada","doi":"10.2166/hydro.2024.121","DOIUrl":"https://doi.org/10.2166/hydro.2024.121","url":null,"abstract":"&lt;div&gt;&lt;div data- reveal-group-&gt;&lt;div&gt;&lt;img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/2/10.2166_hydro.2024.121/1/m_hydro-d-23-00121gf01.png?Expires=1712248319&amp;Signature=MBiDDIfBANl5gcv~tx56Jn~TjUdkd53Sw1r0lYohiyDO-cDqWQc5ATJeN9k9TlO939pkTOn3aOFWmBp8b9~0QXkMCUEqgP~cdCFUmI4K4dQ6Taixt83W3Bw0cB0nWK9esBugT~J6SXKT66kp9uK-Ajc3i~rBkRE5HMBTV9rlDJHUg0EVw4xCS0madLwQ28ON0mxSMiO~hVvztcAW5a~Mtf~U~4STezGW~AytqbRsq586E4SI19rLzn0cIa4yEh2YpY6YnH3YC7vwma3olw9VUI8oCUkU9frphzwHpR4W5B-DFlprNjVzR7-1cdWN92MCLn0350S8FiKWuYHXy1csag__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydro-d-23-00121gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/2/10.2166_hydro.2024.121/1/m_hydro-d-23-00121gf01.png?Expires=1712248319&amp;Signature=MBiDDIfBANl5gcv~tx56Jn~TjUdkd53Sw1r0lYohiyDO-cDqWQc5ATJeN9k9TlO939pkTOn3aOFWmBp8b9~0QXkMCUEqgP~cdCFUmI4K4dQ6Taixt83W3Bw0cB0nWK9esBugT~J6SXKT66kp9uK-Ajc3i~rBkRE5HMBTV9rlDJHUg0EVw4xCS0madLwQ28ON0mxSMiO~hVvztcAW5a~Mtf~U~4STezGW~AytqbRsq586E4SI19rLzn0cIa4yEh2YpY6YnH3YC7vwma3olw9VUI8oCUkU9frphzwHpR4W5B-DFlprNjVzR7-1cdWN92MCLn0350S8FiKWuYHXy1csag__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/&gt;&lt;div&gt;View largeDownload slide&lt;/div&gt;&lt;/div&gt;&lt;/div&gt;&lt;div content- data-reveal=\"data-reveal\"&gt;&lt;div&gt;&lt;img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/2/10.2166_hydro.2024.121/1/m_hydro-d-23-00121gf01.png?Expires=1712248319&amp;Signature=MBiDDIfBANl5gcv~tx56Jn~TjUdkd53Sw1r0lYohiyDO-cDqWQc5ATJeN9k9TlO939pkTOn3aOFWmBp8b9~0QXkMCUEqgP~cdCFUmI4K4dQ6Taixt83W3Bw0cB0nWK9esBugT~J6SXKT66kp9uK-Ajc3i~rBkRE5HMBTV9rlDJHUg0EVw4xCS0madLwQ28ON0mxSMiO~hVvztcAW5a~Mtf~U~4STezGW~AytqbRsq586E4SI19rLzn0cIa4yEh2YpY6YnH3YC7vwma3olw9VUI8oCUkU9frphzwHpR4W5B-DFlprNjVzR7-1cdWN92MCLn0350S8FiKWuYHXy1csag__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydro-d-23-00121gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/2/10.2166_hydro.2024.121/1/m_hydro-d-23-00121gf01.png?Expires=1712248319&amp;Signature=MBiDDIfBANl5gcv~tx56Jn~TjUdkd53Sw1r0lYohiyDO-cDqWQc5ATJeN9k9TlO939pkTOn3aOFWmBp8b9~0QXkMCUEqgP~cdCFUmI4K4dQ6Taixt83W3Bw0cB0nWK9esBugT~J6SXKT66kp9uK-Ajc3i~rBkRE5HMBTV9rlDJHUg0EVw4xCS0madLwQ28ON0mxSMiO~hVvztcAW5a~Mtf~U~4STezGW~AytqbRsq586E4SI19rLzn0cIa4yEh2YpY6YnH3YC7vwma3olw9VUI8oCUkU9frphzwHpR4W5B-DFlprNjVzR7-1cdWN92MCLn0350S8FiKWuYHXy1csag__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/&gt;&lt;div&gt;View largeDownload slide&lt;/div&gt;&lt;/div&gt;&lt;i&gt; &lt;/i&gt;&lt;span&gt;Close modal&lt;/span&gt;&lt;/div&gt;&lt;/div&gt;&lt;p&gt;In recent years, line-shaped rainbands (LRBs) have increased in Hokkaido, Japan. LRBs caused several flood disasters historically, thus the weather patterns that cause them need to be investigated. This study aimed to understand statistically the relationship between LRBs and weather patterns during the summer months under climate change conditions. Our study investigates the link between LRBs and weather patterns in Hokkaido during July and August, using historical and climate prediction","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":"33 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140004998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of satellite rainfall estimates using PERSIANN-CDR and TRMM over three critical cells in Jordan 利用 PERSIANN-CDR 和 TRMM 对约旦三个关键小区的卫星降雨量估算进行评估
IF 2.7 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-02-01 DOI: 10.2166/hydro.2024.154
Mohanned Al-Sheriadeh, Anas Riyad Al-Sharman
<div><div data- reveal-group-><div><img alt="graphic" data-src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/2/10.2166_hydro.2024.154/1/m_hydro-d-23-00154gf01.png?Expires=1712246905&Signature=l7k9ixdsA6TvOf4cuuVzLNAo8suokFyYQaEjqpHVCPG66-4u~GJsd5D4TZDRd0rVz70ykR0UyLf34NDPsGd8qQ6jNW0bhGPpqGTz2SME1Apw23RLHbpdLJkNXCgufLrbQJOXg-pXfq4Uo0pYjsVYH8M8OtuFjgGLXju0BKnLSjUBo1qCz~nYYD6dhv~eiGcB1R5Y5x9yeRAj02lHfhNH7RDgJPultNx1QFQd3FWSH1vp0eSFYixbu6Mirm5yi94MwYkrf9gS3MnJq-1zIS8HKGlLm6CzoUVr4t2JFbXEd4dKbkus8NiwQkzbdaF-r8o63eCFH9BBtKSgEmXkwj4Sfw__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" path-from-xml="hydro-d-23-00154gf01.tif" src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/2/10.2166_hydro.2024.154/1/m_hydro-d-23-00154gf01.png?Expires=1712246905&Signature=l7k9ixdsA6TvOf4cuuVzLNAo8suokFyYQaEjqpHVCPG66-4u~GJsd5D4TZDRd0rVz70ykR0UyLf34NDPsGd8qQ6jNW0bhGPpqGTz2SME1Apw23RLHbpdLJkNXCgufLrbQJOXg-pXfq4Uo0pYjsVYH8M8OtuFjgGLXju0BKnLSjUBo1qCz~nYYD6dhv~eiGcB1R5Y5x9yeRAj02lHfhNH7RDgJPultNx1QFQd3FWSH1vp0eSFYixbu6Mirm5yi94MwYkrf9gS3MnJq-1zIS8HKGlLm6CzoUVr4t2JFbXEd4dKbkus8NiwQkzbdaF-r8o63eCFH9BBtKSgEmXkwj4Sfw__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA"/><div>View largeDownload slide</div></div></div><div content- data-reveal="data-reveal"><div><img alt="graphic" data-src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/2/10.2166_hydro.2024.154/1/m_hydro-d-23-00154gf01.png?Expires=1712246905&Signature=l7k9ixdsA6TvOf4cuuVzLNAo8suokFyYQaEjqpHVCPG66-4u~GJsd5D4TZDRd0rVz70ykR0UyLf34NDPsGd8qQ6jNW0bhGPpqGTz2SME1Apw23RLHbpdLJkNXCgufLrbQJOXg-pXfq4Uo0pYjsVYH8M8OtuFjgGLXju0BKnLSjUBo1qCz~nYYD6dhv~eiGcB1R5Y5x9yeRAj02lHfhNH7RDgJPultNx1QFQd3FWSH1vp0eSFYixbu6Mirm5yi94MwYkrf9gS3MnJq-1zIS8HKGlLm6CzoUVr4t2JFbXEd4dKbkus8NiwQkzbdaF-r8o63eCFH9BBtKSgEmXkwj4Sfw__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" path-from-xml="hydro-d-23-00154gf01.tif" src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/2/10.2166_hydro.2024.154/1/m_hydro-d-23-00154gf01.png?Expires=1712246905&Signature=l7k9ixdsA6TvOf4cuuVzLNAo8suokFyYQaEjqpHVCPG66-4u~GJsd5D4TZDRd0rVz70ykR0UyLf34NDPsGd8qQ6jNW0bhGPpqGTz2SME1Apw23RLHbpdLJkNXCgufLrbQJOXg-pXfq4Uo0pYjsVYH8M8OtuFjgGLXju0BKnLSjUBo1qCz~nYYD6dhv~eiGcB1R5Y5x9yeRAj02lHfhNH7RDgJPultNx1QFQd3FWSH1vp0eSFYixbu6Mirm5yi94MwYkrf9gS3MnJq-1zIS8HKGlLm6CzoUVr4t2JFbXEd4dKbkus8NiwQkzbdaF-r8o63eCFH9BBtKSgEmXkwj4Sfw__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>Effective management of water resources is heavily dependent on accurate knowledge of rainfall patterns. Satellite rainfall estimates (SREs) have become increasingly popular due to their ability to provide spatial rainfall data. However, the accuracy of SREs is limited by a variety of factors including a lack of observations, inadequate evaluation techniques, and the use of short evaluation durations. To improve our understanding of SREs, this study evaluated the long-term performance of
查看大尺寸下载幻灯片查看大尺寸下载幻灯片 关闭模版水资源的有效管理在很大程度上取决于对降雨模式的准确了解。卫星降雨估测(SRE)由于能够提供空间降雨数据而越来越受欢迎。然而,卫星降雨量估算的准确性受到多种因素的限制,包括缺乏观测、评估技术不足以及使用的评估持续时间较短。为了增进我们对 SRE 的了解,本研究通过分析热带降雨测量使命(TRMM)和 PERSIANN-CDR 的时空模式,评估了它们的长期性能。使用统计量和约旦三个关键小区 71 个雨量计 2000 年至 2013 年的数据,对日、月、季和年降水量估计值进行了评估。结果表明,虽然两个 SRE 的日精度都较低,但 TRMM 3B43 的月精度优于 PERSIANN-CDR。此外,TRMM 3B43 在暴雨季节表现出更优越的性能,而 PERSIANN-CDR 在其他季节则表现出更好的结果。在年度研究中,发现 TRMM 3B43 在北部和南部小区的精度高于 PERSIANN-CDR,而 PERSIANN-CDR 在中部小区的相关系数更高。这些发现有助于开发更可靠、更准确的 SRE,从而改进水资源管理研究。
{"title":"Evaluation of satellite rainfall estimates using PERSIANN-CDR and TRMM over three critical cells in Jordan","authors":"Mohanned Al-Sheriadeh, Anas Riyad Al-Sharman","doi":"10.2166/hydro.2024.154","DOIUrl":"https://doi.org/10.2166/hydro.2024.154","url":null,"abstract":"&lt;div&gt;&lt;div data- reveal-group-&gt;&lt;div&gt;&lt;img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/2/10.2166_hydro.2024.154/1/m_hydro-d-23-00154gf01.png?Expires=1712246905&amp;Signature=l7k9ixdsA6TvOf4cuuVzLNAo8suokFyYQaEjqpHVCPG66-4u~GJsd5D4TZDRd0rVz70ykR0UyLf34NDPsGd8qQ6jNW0bhGPpqGTz2SME1Apw23RLHbpdLJkNXCgufLrbQJOXg-pXfq4Uo0pYjsVYH8M8OtuFjgGLXju0BKnLSjUBo1qCz~nYYD6dhv~eiGcB1R5Y5x9yeRAj02lHfhNH7RDgJPultNx1QFQd3FWSH1vp0eSFYixbu6Mirm5yi94MwYkrf9gS3MnJq-1zIS8HKGlLm6CzoUVr4t2JFbXEd4dKbkus8NiwQkzbdaF-r8o63eCFH9BBtKSgEmXkwj4Sfw__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydro-d-23-00154gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/2/10.2166_hydro.2024.154/1/m_hydro-d-23-00154gf01.png?Expires=1712246905&amp;Signature=l7k9ixdsA6TvOf4cuuVzLNAo8suokFyYQaEjqpHVCPG66-4u~GJsd5D4TZDRd0rVz70ykR0UyLf34NDPsGd8qQ6jNW0bhGPpqGTz2SME1Apw23RLHbpdLJkNXCgufLrbQJOXg-pXfq4Uo0pYjsVYH8M8OtuFjgGLXju0BKnLSjUBo1qCz~nYYD6dhv~eiGcB1R5Y5x9yeRAj02lHfhNH7RDgJPultNx1QFQd3FWSH1vp0eSFYixbu6Mirm5yi94MwYkrf9gS3MnJq-1zIS8HKGlLm6CzoUVr4t2JFbXEd4dKbkus8NiwQkzbdaF-r8o63eCFH9BBtKSgEmXkwj4Sfw__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/&gt;&lt;div&gt;View largeDownload slide&lt;/div&gt;&lt;/div&gt;&lt;/div&gt;&lt;div content- data-reveal=\"data-reveal\"&gt;&lt;div&gt;&lt;img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/2/10.2166_hydro.2024.154/1/m_hydro-d-23-00154gf01.png?Expires=1712246905&amp;Signature=l7k9ixdsA6TvOf4cuuVzLNAo8suokFyYQaEjqpHVCPG66-4u~GJsd5D4TZDRd0rVz70ykR0UyLf34NDPsGd8qQ6jNW0bhGPpqGTz2SME1Apw23RLHbpdLJkNXCgufLrbQJOXg-pXfq4Uo0pYjsVYH8M8OtuFjgGLXju0BKnLSjUBo1qCz~nYYD6dhv~eiGcB1R5Y5x9yeRAj02lHfhNH7RDgJPultNx1QFQd3FWSH1vp0eSFYixbu6Mirm5yi94MwYkrf9gS3MnJq-1zIS8HKGlLm6CzoUVr4t2JFbXEd4dKbkus8NiwQkzbdaF-r8o63eCFH9BBtKSgEmXkwj4Sfw__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydro-d-23-00154gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/2/10.2166_hydro.2024.154/1/m_hydro-d-23-00154gf01.png?Expires=1712246905&amp;Signature=l7k9ixdsA6TvOf4cuuVzLNAo8suokFyYQaEjqpHVCPG66-4u~GJsd5D4TZDRd0rVz70ykR0UyLf34NDPsGd8qQ6jNW0bhGPpqGTz2SME1Apw23RLHbpdLJkNXCgufLrbQJOXg-pXfq4Uo0pYjsVYH8M8OtuFjgGLXju0BKnLSjUBo1qCz~nYYD6dhv~eiGcB1R5Y5x9yeRAj02lHfhNH7RDgJPultNx1QFQd3FWSH1vp0eSFYixbu6Mirm5yi94MwYkrf9gS3MnJq-1zIS8HKGlLm6CzoUVr4t2JFbXEd4dKbkus8NiwQkzbdaF-r8o63eCFH9BBtKSgEmXkwj4Sfw__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/&gt;&lt;div&gt;View largeDownload slide&lt;/div&gt;&lt;/div&gt;&lt;i&gt; &lt;/i&gt;&lt;span&gt;Close modal&lt;/span&gt;&lt;/div&gt;&lt;/div&gt;&lt;p&gt;Effective management of water resources is heavily dependent on accurate knowledge of rainfall patterns. Satellite rainfall estimates (SREs) have become increasingly popular due to their ability to provide spatial rainfall data. However, the accuracy of SREs is limited by a variety of factors including a lack of observations, inadequate evaluation techniques, and the use of short evaluation durations. To improve our understanding of SREs, this study evaluated the long-term performance of ","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":"10 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140005485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast high-fidelity flood inundation map generation by super-resolution techniques 利用超分辨率技术快速生成高保真洪水淹没图
IF 2.7 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-01-02 DOI: 10.2166/hydro.2024.228
Zeda Yin, Yasaman Saadati, Beichao Hu, Arturo S. Leon, M. H. Amini, Dwayne McDaniel
Flooding is one of the most frequent natural hazards and causes more economic loss than all the other natural hazards. Fast and accurate flood prediction has significance in preserving lives, minimizing economic damage, and reducing public health risks. However, current methods cannot achieve speed and accuracy simultaneously. Numerical methods can provide high-fidelity results, but they are time-consuming, particularly when pursuing high accuracy. Conversely, neural networks can provide results in a matter of seconds, but they have shown low accuracy in flood map generation by all existing methods. This work combines the strengths of numerical methods and neural networks and builds a framework that can quickly and accurately model the high-fidelity flood inundation map with detailed water depth information. In this paper, we employ the U-Net and generative adversarial network (GAN) models to recover the lost physics and information from ultra-fast, low-resolution numerical simulations, ultimately presenting high-resolution, high-fidelity flood maps as the end results. In this study, both the U-Net and GAN models have proven their ability to reduce the computation time for generating high-fidelity results, reducing it from 7–8 h down to 1 min. Furthermore, the accuracy of both models is notably high.
洪水是最常见的自然灾害之一,造成的经济损失比其他所有自然灾害都大。快速准确的洪水预测对于保护生命、减少经济损失和降低公共卫生风险具有重要意义。然而,目前的方法无法同时实现快速和准确。数值方法可以提供高保真结果,但耗费时间,尤其是在追求高精度时。相反,神经网络可以在几秒钟内提供结果,但在所有现有方法中,神经网络生成洪水地图的准确性较低。这项工作结合了数值方法和神经网络的优势,建立了一个框架,可以快速、准确地模拟出具有详细水深信息的高保真洪水淹没图。在本文中,我们采用 U-Net 和生成式对抗网络 (GAN) 模型,从超快、低分辨率的数值模拟中恢复丢失的物理和信息,最终呈现出高分辨率、高保真的洪水地图。在这项研究中,U-Net 和 GAN 模型都证明了它们有能力缩短生成高保真结果的计算时间,将计算时间从 7-8 小时缩短到 1 分钟。此外,这两种模型的精确度都非常高。
{"title":"Fast high-fidelity flood inundation map generation by super-resolution techniques","authors":"Zeda Yin, Yasaman Saadati, Beichao Hu, Arturo S. Leon, M. H. Amini, Dwayne McDaniel","doi":"10.2166/hydro.2024.228","DOIUrl":"https://doi.org/10.2166/hydro.2024.228","url":null,"abstract":"\u0000 \u0000 Flooding is one of the most frequent natural hazards and causes more economic loss than all the other natural hazards. Fast and accurate flood prediction has significance in preserving lives, minimizing economic damage, and reducing public health risks. However, current methods cannot achieve speed and accuracy simultaneously. Numerical methods can provide high-fidelity results, but they are time-consuming, particularly when pursuing high accuracy. Conversely, neural networks can provide results in a matter of seconds, but they have shown low accuracy in flood map generation by all existing methods. This work combines the strengths of numerical methods and neural networks and builds a framework that can quickly and accurately model the high-fidelity flood inundation map with detailed water depth information. In this paper, we employ the U-Net and generative adversarial network (GAN) models to recover the lost physics and information from ultra-fast, low-resolution numerical simulations, ultimately presenting high-resolution, high-fidelity flood maps as the end results. In this study, both the U-Net and GAN models have proven their ability to reduce the computation time for generating high-fidelity results, reducing it from 7–8 h down to 1 min. Furthermore, the accuracy of both models is notably high.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":"31 9","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139389778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental and numerical investigation of Engineered Injection and Extraction (EIE) induced with three-dimensional flow field 三维流场诱导的工程喷射与萃取(EIE)的实验和数值研究
IF 2.7 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-01-01 DOI: 10.2166/hydro.2023.427
Farsana M. Asha, N. Sajikumar, E. A. Subaida

In situ groundwater remediation technique is a commonly adopted method for the treatment of contaminated groundwater and the porous media associated with it. Engineered Injection and Extraction (EIE) has evolved as an improved methodology for in situ remediation, where sequential injection and extraction of clean water around the treatment area enhances the spreading of treatment reagents by inducing additional flow fields. Conventional EIE studies were based on flow fields in two dimensions. There are only limited experimental and theoretical studies exploring the potential of inducing a three-dimensional flow field using EIE. The present study experimentally and numerically evaluates the effect of a three-dimensional flow field induced by partially screened wells. EIE experiments were conducted on a laboratory-scale aquifer model with laterite soil as the porous medium. Tracer transport in porous medium was studied by measuring the concentration at various observation points and enhanced dilution was observed when EIE was employed with partially screened wells. Experimental observations were also used to calibrate and validate the numerical model developed using Visual MODFLOW Flex. Enhancement in spreading was quantified in terms of concentration mass attenuation and maximum mass attenuation was observed when EIE was employed with partially screened wells.

地下水原位修复技术是处理受污染地下水及其相关多孔介质的常用方法。工程注入和抽取(EIE)是一种经过改进的原位修复方法,通过在处理区域周围连续注入和抽取清洁水,诱导额外的流场,从而加强处理试剂的扩散。传统的 EIE 研究基于二维流场。只有有限的实验和理论研究探讨了利用 EIE 诱导三维流场的潜力。本研究通过实验和数值方法评估了部分屏蔽井诱导三维流场的效果。EIE 实验是在以红土为多孔介质的实验室规模含水层模型上进行的。通过测量不同观测点的浓度,研究了示踪剂在多孔介质中的迁移情况。实验观测结果还用于校准和验证使用 Visual MODFLOW Flex 开发的数值模型。以浓度质量衰减的方式对扩散的增强进行了量化,当 EIE 与部分屏蔽井一起使用时,观察到了最大的质量衰减。
{"title":"Experimental and numerical investigation of Engineered Injection and Extraction (EIE) induced with three-dimensional flow field","authors":"Farsana M. Asha, N. Sajikumar, E. A. Subaida","doi":"10.2166/hydro.2023.427","DOIUrl":"https://doi.org/10.2166/hydro.2023.427","url":null,"abstract":"<p>In situ groundwater remediation technique is a commonly adopted method for the treatment of contaminated groundwater and the porous media associated with it. Engineered Injection and Extraction (EIE) has evolved as an improved methodology for in situ remediation, where sequential injection and extraction of clean water around the treatment area enhances the spreading of treatment reagents by inducing additional flow fields. Conventional EIE studies were based on flow fields in two dimensions. There are only limited experimental and theoretical studies exploring the potential of inducing a three-dimensional flow field using EIE. The present study experimentally and numerically evaluates the effect of a three-dimensional flow field induced by partially screened wells. EIE experiments were conducted on a laboratory-scale aquifer model with laterite soil as the porous medium. Tracer transport in porous medium was studied by measuring the concentration at various observation points and enhanced dilution was observed when EIE was employed with partially screened wells. Experimental observations were also used to calibrate and validate the numerical model developed using Visual MODFLOW Flex. Enhancement in spreading was quantified in terms of concentration mass attenuation and maximum mass attenuation was observed when EIE was employed with partially screened wells.</p>","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":"56 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139667758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PAVLIB4SWAT: a Python analysis and visualization tool and library based on Kepler.gl for SWAT models PAVLIB4SWAT:基于 Kepler.gl 的 Python 分析和可视化工具及库,用于 SWAT 模型
IF 2.7 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-01-01 DOI: 10.2166/hydro.2023.182
Qiaoying Lin, Dejian Zhang, Jiefeng Wu, Yihui Fang, Xingwei Chen, Bingqing Lin
<div><div data- reveal-group-><div><img alt="graphic" data-src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/1/10.2166_hydro.2023.182/1/m_hydro-d-23-00182gf01.png?Expires=1709841441&Signature=xMpA~wkS~~ifqqTv54V4piyxjUgUzcs~7OX5BsDb89KGB7W7tL4wLUV0fn5ZBvX6rHt0FyROAQwVfwYKc-vwiqnvNVEZybJDkM47NiOZWr2F7tRZUUq7AjEsvjPnQG-sEK57ediQeASVW3dalVMRUYV-2e2mOzBL3kteDIRy9tHCrZdWUyuzn2zyiDr8DgHWpbZA7EfsE9FDq1OlxKzYs4Ugvf2R9mFw-iNCyeDmJEkUz0Y8CZaqDKWQcKurJiQg1A23ZNglRXdo5mt1e8dYiW~zUDiIENBVf1sJujF6XCitsB33fhZmUgJHwuBhUkRBHiuQOG0LyXac89hEs~f~aA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" path-from-xml="hydro-d-23-00182gf01.tif" src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/1/10.2166_hydro.2023.182/1/m_hydro-d-23-00182gf01.png?Expires=1709841441&Signature=xMpA~wkS~~ifqqTv54V4piyxjUgUzcs~7OX5BsDb89KGB7W7tL4wLUV0fn5ZBvX6rHt0FyROAQwVfwYKc-vwiqnvNVEZybJDkM47NiOZWr2F7tRZUUq7AjEsvjPnQG-sEK57ediQeASVW3dalVMRUYV-2e2mOzBL3kteDIRy9tHCrZdWUyuzn2zyiDr8DgHWpbZA7EfsE9FDq1OlxKzYs4Ugvf2R9mFw-iNCyeDmJEkUz0Y8CZaqDKWQcKurJiQg1A23ZNglRXdo5mt1e8dYiW~zUDiIENBVf1sJujF6XCitsB33fhZmUgJHwuBhUkRBHiuQOG0LyXac89hEs~f~aA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA"/><div>View largeDownload slide</div></div></div><div content- data-reveal="data-reveal"><div><img alt="graphic" data-src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/1/10.2166_hydro.2023.182/1/m_hydro-d-23-00182gf01.png?Expires=1709841441&Signature=xMpA~wkS~~ifqqTv54V4piyxjUgUzcs~7OX5BsDb89KGB7W7tL4wLUV0fn5ZBvX6rHt0FyROAQwVfwYKc-vwiqnvNVEZybJDkM47NiOZWr2F7tRZUUq7AjEsvjPnQG-sEK57ediQeASVW3dalVMRUYV-2e2mOzBL3kteDIRy9tHCrZdWUyuzn2zyiDr8DgHWpbZA7EfsE9FDq1OlxKzYs4Ugvf2R9mFw-iNCyeDmJEkUz0Y8CZaqDKWQcKurJiQg1A23ZNglRXdo5mt1e8dYiW~zUDiIENBVf1sJujF6XCitsB33fhZmUgJHwuBhUkRBHiuQOG0LyXac89hEs~f~aA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" path-from-xml="hydro-d-23-00182gf01.tif" src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/1/10.2166_hydro.2023.182/1/m_hydro-d-23-00182gf01.png?Expires=1709841441&Signature=xMpA~wkS~~ifqqTv54V4piyxjUgUzcs~7OX5BsDb89KGB7W7tL4wLUV0fn5ZBvX6rHt0FyROAQwVfwYKc-vwiqnvNVEZybJDkM47NiOZWr2F7tRZUUq7AjEsvjPnQG-sEK57ediQeASVW3dalVMRUYV-2e2mOzBL3kteDIRy9tHCrZdWUyuzn2zyiDr8DgHWpbZA7EfsE9FDq1OlxKzYs4Ugvf2R9mFw-iNCyeDmJEkUz0Y8CZaqDKWQcKurJiQg1A23ZNglRXdo5mt1e8dYiW~zUDiIENBVf1sJujF6XCitsB33fhZmUgJHwuBhUkRBHiuQOG0LyXac89hEs~f~aA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>The Soil and Water Assessment Tool (SWAT) has been widely applied to simulate the hydrological cycle, investigate cause-and-effect relationships, and aid decision-making for better watershed management. However, the software tools for model dataset analysis and visualization to support informed decision-making in a web environment are not considered fully fledged and are technically intensive to implement. This study focuses on addressing these issues by establishing a tool and library (n
查看大图查看大图 关闭模态水土评估工具(SWAT)已被广泛应用于模拟水文循环、研究因果关系和辅助决策,以改善流域管理。然而,用于模型数据集分析和可视化以支持网络环境中的知情决策的软件工具尚未完全成熟,而且实施起来技术要求很高。本研究的重点是通过建立一个工具和库(命名为 PAVLIB4SWAT)来解决这些问题,该工具和库可以在很大程度上降低开发人员的专业技术要求,使开发人员可以根据自身需求采用和定制这项工作。具体来说,我们在 Kepler.gl widget 的基础上创建了 PAVLIB4SWAT,以便通过动态交互式地图可视化 SWAT 模型数据,包括流域划分过程中的形状文件、模型输入和模拟结果。我们通过晋江流域 SWAT 模型使用案例对 PAVLIB4SWAT 进行了评估,以展示其实用性和易用性。案例研究表明,PAVLIB4SWAT 可为 SWAT 模型提供各种地理空间分析和制图功能,并能以独立离线网页和网络服务器的形式灵活发布可视化结果。此外,PAVLIB4SWAT 是一个开源项目,纯粹用 Python 编程语言实现,因此开发人员可以很容易地对其进行调整和定制,以满足自己的需求。
{"title":"PAVLIB4SWAT: a Python analysis and visualization tool and library based on Kepler.gl for SWAT models","authors":"Qiaoying Lin, Dejian Zhang, Jiefeng Wu, Yihui Fang, Xingwei Chen, Bingqing Lin","doi":"10.2166/hydro.2023.182","DOIUrl":"https://doi.org/10.2166/hydro.2023.182","url":null,"abstract":"&lt;div&gt;&lt;div data- reveal-group-&gt;&lt;div&gt;&lt;img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/1/10.2166_hydro.2023.182/1/m_hydro-d-23-00182gf01.png?Expires=1709841441&amp;Signature=xMpA~wkS~~ifqqTv54V4piyxjUgUzcs~7OX5BsDb89KGB7W7tL4wLUV0fn5ZBvX6rHt0FyROAQwVfwYKc-vwiqnvNVEZybJDkM47NiOZWr2F7tRZUUq7AjEsvjPnQG-sEK57ediQeASVW3dalVMRUYV-2e2mOzBL3kteDIRy9tHCrZdWUyuzn2zyiDr8DgHWpbZA7EfsE9FDq1OlxKzYs4Ugvf2R9mFw-iNCyeDmJEkUz0Y8CZaqDKWQcKurJiQg1A23ZNglRXdo5mt1e8dYiW~zUDiIENBVf1sJujF6XCitsB33fhZmUgJHwuBhUkRBHiuQOG0LyXac89hEs~f~aA__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydro-d-23-00182gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/1/10.2166_hydro.2023.182/1/m_hydro-d-23-00182gf01.png?Expires=1709841441&amp;Signature=xMpA~wkS~~ifqqTv54V4piyxjUgUzcs~7OX5BsDb89KGB7W7tL4wLUV0fn5ZBvX6rHt0FyROAQwVfwYKc-vwiqnvNVEZybJDkM47NiOZWr2F7tRZUUq7AjEsvjPnQG-sEK57ediQeASVW3dalVMRUYV-2e2mOzBL3kteDIRy9tHCrZdWUyuzn2zyiDr8DgHWpbZA7EfsE9FDq1OlxKzYs4Ugvf2R9mFw-iNCyeDmJEkUz0Y8CZaqDKWQcKurJiQg1A23ZNglRXdo5mt1e8dYiW~zUDiIENBVf1sJujF6XCitsB33fhZmUgJHwuBhUkRBHiuQOG0LyXac89hEs~f~aA__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/&gt;&lt;div&gt;View largeDownload slide&lt;/div&gt;&lt;/div&gt;&lt;/div&gt;&lt;div content- data-reveal=\"data-reveal\"&gt;&lt;div&gt;&lt;img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/1/10.2166_hydro.2023.182/1/m_hydro-d-23-00182gf01.png?Expires=1709841441&amp;Signature=xMpA~wkS~~ifqqTv54V4piyxjUgUzcs~7OX5BsDb89KGB7W7tL4wLUV0fn5ZBvX6rHt0FyROAQwVfwYKc-vwiqnvNVEZybJDkM47NiOZWr2F7tRZUUq7AjEsvjPnQG-sEK57ediQeASVW3dalVMRUYV-2e2mOzBL3kteDIRy9tHCrZdWUyuzn2zyiDr8DgHWpbZA7EfsE9FDq1OlxKzYs4Ugvf2R9mFw-iNCyeDmJEkUz0Y8CZaqDKWQcKurJiQg1A23ZNglRXdo5mt1e8dYiW~zUDiIENBVf1sJujF6XCitsB33fhZmUgJHwuBhUkRBHiuQOG0LyXac89hEs~f~aA__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydro-d-23-00182gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/1/10.2166_hydro.2023.182/1/m_hydro-d-23-00182gf01.png?Expires=1709841441&amp;Signature=xMpA~wkS~~ifqqTv54V4piyxjUgUzcs~7OX5BsDb89KGB7W7tL4wLUV0fn5ZBvX6rHt0FyROAQwVfwYKc-vwiqnvNVEZybJDkM47NiOZWr2F7tRZUUq7AjEsvjPnQG-sEK57ediQeASVW3dalVMRUYV-2e2mOzBL3kteDIRy9tHCrZdWUyuzn2zyiDr8DgHWpbZA7EfsE9FDq1OlxKzYs4Ugvf2R9mFw-iNCyeDmJEkUz0Y8CZaqDKWQcKurJiQg1A23ZNglRXdo5mt1e8dYiW~zUDiIENBVf1sJujF6XCitsB33fhZmUgJHwuBhUkRBHiuQOG0LyXac89hEs~f~aA__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/&gt;&lt;div&gt;View largeDownload slide&lt;/div&gt;&lt;/div&gt;&lt;i&gt; &lt;/i&gt;&lt;span&gt;Close modal&lt;/span&gt;&lt;/div&gt;&lt;/div&gt;&lt;p&gt;The Soil and Water Assessment Tool (SWAT) has been widely applied to simulate the hydrological cycle, investigate cause-and-effect relationships, and aid decision-making for better watershed management. However, the software tools for model dataset analysis and visualization to support informed decision-making in a web environment are not considered fully fledged and are technically intensive to implement. This study focuses on addressing these issues by establishing a tool and library (n","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":"56 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139667466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of discharge characteristics of a symmetrical stepped labyrinth side weir based on global sensitivity 基于全局灵敏度的对称阶梯迷宫侧堰排水特性分析
IF 2.7 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-12-21 DOI: 10.2166/hydro.2023.260
Wuyi Wan, Guiying Shen, Shanshan Li, Abbas Parsaie, Yuhang Wang, Yu Zhou
In this paper, the discharge coefficient prediction model for this structure in a subcritical flow regime is first established by extreme learning machine (ELM) and Bayesian network, and the model's performance is analyzed and verified in detail. In addition, the global sensitivity analysis method is introduced to the optimal prediction model to analyze the sensitivity for the dimensionless parameters affecting the discharge coefficient. The results show that the Bayesian extreme learning machine (BELM) can effectively predict the discharge coefficients of the symmetric stepped labyrinth side weir. The range of 95% confidence interval [−0.055,0.040] is also significantly smaller than that of the ELM ([−0.089,0.076]) and the Kernel extreme learning machine (KELM) ([−0.091,0.081]) at the testing stage. The dimensionless parameter ratio of upstream water depth of stepped labyrinth side weir p/y1 has the greatest effect on the discharge coefficient Cd, accounting for 55.57 and 54.17% under single action and other parameter interactions, respectively. Dimensionless step number bs/L has little effect on Cd, which can be ignored. Meanwhile, when the number of steps is less (N = 4) and the internal head angle is smaller (θ = 45°), a larger discharge coefficient value can be obtained.
本文首先利用极端学习机(ELM)和贝叶斯网络建立了该结构在亚临界流态下的排泄系数预测模型,并对模型的性能进行了详细分析和验证。此外,还在优化预测模型中引入了全局灵敏度分析方法,以分析影响泄流系数的无量纲参数的灵敏度。结果表明,贝叶斯极端学习机(BELM)能有效预测对称阶梯迷宫侧堰的泄流系数。在测试阶段,BELM 的 95% 置信区间范围 [-0.055,0.040] 也明显小于 ELM([-0.089,0.076])和核极端学习机(KELM)([-0.091,0.081])。无量纲参数阶梯迷宫侧堰上游水深比 p/y1 对泄流系数 Cd 的影响最大,在单一作用和其他参数相互作用下分别占 55.57%和 54.17%。无量纲阶数 bs/L 对 Cd 的影响很小,可以忽略。同时,当台阶数较少时(N = 4),内水头角较小时(θ = 45°),可获得较大的排出系数值。
{"title":"Analysis of discharge characteristics of a symmetrical stepped labyrinth side weir based on global sensitivity","authors":"Wuyi Wan, Guiying Shen, Shanshan Li, Abbas Parsaie, Yuhang Wang, Yu Zhou","doi":"10.2166/hydro.2023.260","DOIUrl":"https://doi.org/10.2166/hydro.2023.260","url":null,"abstract":"\u0000 In this paper, the discharge coefficient prediction model for this structure in a subcritical flow regime is first established by extreme learning machine (ELM) and Bayesian network, and the model's performance is analyzed and verified in detail. In addition, the global sensitivity analysis method is introduced to the optimal prediction model to analyze the sensitivity for the dimensionless parameters affecting the discharge coefficient. The results show that the Bayesian extreme learning machine (BELM) can effectively predict the discharge coefficients of the symmetric stepped labyrinth side weir. The range of 95% confidence interval [−0.055,0.040] is also significantly smaller than that of the ELM ([−0.089,0.076]) and the Kernel extreme learning machine (KELM) ([−0.091,0.081]) at the testing stage. The dimensionless parameter ratio of upstream water depth of stepped labyrinth side weir p/y1 has the greatest effect on the discharge coefficient Cd, accounting for 55.57 and 54.17% under single action and other parameter interactions, respectively. Dimensionless step number bs/L has little effect on Cd, which can be ignored. Meanwhile, when the number of steps is less (N = 4) and the internal head angle is smaller (θ = 45°), a larger discharge coefficient value can be obtained.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":"33 5","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138951682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modelling public social values of flood-prone land use using the GIS application SolVES 利用地理信息系统应用软件 SolVES 建立易受洪水影响土地利用的公共社会价值模型
IF 2.7 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-12-16 DOI: 10.2166/hydro.2023.010
I. Zahidi, Mun Ee Yau, Alex Lechner, Karen Lourdes
Social values of land use are often excluded when undertaking integrated flood management as they are harder to quantify. To fill this research gap, a geographic information system application called Social Values for Ecosystem Services was used to assess, map and quantify the perceived social values of flood-prone land use in Kuala Selangor, Malaysia. This approach was based on a non-monetary value index (VI) calculated from responses to a quantitative social survey on the public's attitude and preference towards flood management across different land uses. The study outcome is the geospatial representation of flood-prone land use with their social values, which local communities perceive as crucial for flood management. The VI was influenced by elevation and slope, with lower elevations and flatter slopes associated with higher values. Farmland is highly favoured by the local community for flood management, whereas oil palm and rubber plantations are opposed. Tourism received the highest monetary allocations from survey respondents, with the popular firefly park consistently associated with the highest social values. This practical framework contributes to integrated flood management in facilitating decision-makers to evaluate land-use trade-offs by considering their social values when prioritising flood mitigation measures or investments.
在进行综合洪水管理时,土地利用的社会价值往往被排除在外,因为这些价值较难量化。为了填补这一研究空白,我们使用了一个名为 "生态系统服务社会价值 "的地理信息系统应用程序,对马来西亚瓜拉雪兰莪州易受洪水影响的土地利用的社会价值进行评估、绘图和量化。该方法基于非货币价值指数 (VI),该指数是通过对公众对不同土地用途的洪水管理态度和偏好进行定量社会调查后计算得出的。研究成果是洪水易发土地利用的地理空间表示及其社会价值,当地社区认为这些价值对洪水管理至关重要。土地利用价值受海拔和坡度的影响,海拔越低、坡度越平,价值越高。农田在洪水管理方面深受当地社区的青睐,而油棕和橡胶种植园则遭到反对。旅游业从调查对象那里获得了最高的货币分配,其中广受欢迎的萤火虫公园始终具有最高的社会价值。这一实用框架有助于综合洪水管理,帮助决策者在确定洪水缓解措施或投资的优先次序时,通过考虑其社会价值来评估土地使用的权衡。
{"title":"Modelling public social values of flood-prone land use using the GIS application SolVES","authors":"I. Zahidi, Mun Ee Yau, Alex Lechner, Karen Lourdes","doi":"10.2166/hydro.2023.010","DOIUrl":"https://doi.org/10.2166/hydro.2023.010","url":null,"abstract":"\u0000 Social values of land use are often excluded when undertaking integrated flood management as they are harder to quantify. To fill this research gap, a geographic information system application called Social Values for Ecosystem Services was used to assess, map and quantify the perceived social values of flood-prone land use in Kuala Selangor, Malaysia. This approach was based on a non-monetary value index (VI) calculated from responses to a quantitative social survey on the public's attitude and preference towards flood management across different land uses. The study outcome is the geospatial representation of flood-prone land use with their social values, which local communities perceive as crucial for flood management. The VI was influenced by elevation and slope, with lower elevations and flatter slopes associated with higher values. Farmland is highly favoured by the local community for flood management, whereas oil palm and rubber plantations are opposed. Tourism received the highest monetary allocations from survey respondents, with the popular firefly park consistently associated with the highest social values. This practical framework contributes to integrated flood management in facilitating decision-makers to evaluate land-use trade-offs by considering their social values when prioritising flood mitigation measures or investments.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":"7 7","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138968040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping of soil erosion susceptibility using advanced machine learning models at Nghe An, Vietnam 利用先进的机器学习模型绘制越南义安的土壤侵蚀易感性地图
IF 2.7 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-12-15 DOI: 10.2166/hydro.2023.327
Chien Quyet Nguyen, Tuyen Thi Tran, Trang Thanh Thi Nguyen, Thuy Ha Thi Nguyen, T. S. Astarkhanova, Luong Van Vu, Khac Tai Dau, Hieu Ngoc Nguyen, Giang Hương Pham, D. Nguyen, Indra Prakash, Binh Pham
Soil Erosion Susceptibility Mapping (SESM) is one of the practical approaches for managing and mitigating soil erosion. This study applied four Machine Learning (ML) models namely the Multilayer Perceptron (MLP) classifier, AdaBoost, Ridge classifier, and Gradient Boosting classifier to perform SESM in a region of Nghe An province, Vietnam. The development of these models incorporated seven factors influencing soil erosion: slope degree, slope aspect, curvature, elevation, Normalized Difference Vegetation Index (NDVI), rainfall, and soil type. These factors were determined based on 685 identified soil erosion locations. According to SHapley Additive exPlanations (SHAP) analysis, soil type emerged as the most significant factor influencing soil erosion. Among all the developed models, the Gradient Boosting classifier demonstrated the highest prediction power, followed by the MLP classifier, Ridge classifier, and AdaBoost, respectively. Therefore, the Gradient Boosting classifier is recommended for accurate SESM in other regions too, taking into account the local geo-environmental factors.
土壤侵蚀易感性绘图(SESM)是管理和减轻土壤侵蚀的实用方法之一。本研究应用了四种机器学习(ML)模型,即多层感知器(MLP)分类器、AdaBoost、岭分类器和梯度提升分类器,在越南义安省的一个地区进行土壤侵蚀易感性绘图。这些模型的开发纳入了影响土壤侵蚀的七个因素:坡度、坡面、曲率、海拔、归一化植被指数(NDVI)、降雨量和土壤类型。这些因素是根据 685 个已确定的土壤侵蚀地点确定的。根据 SHapley Additive exPlanations(SHAP)分析,土壤类型是影响土壤侵蚀的最重要因素。在所有已开发的模型中,梯度提升分类器的预测能力最强,其次分别是 MLP 分类器、Ridge 分类器和 AdaBoost。因此,考虑到当地的地理环境因素,建议在其他地区也使用梯度提升分类器进行精确的 SESM 预测。
{"title":"Mapping of soil erosion susceptibility using advanced machine learning models at Nghe An, Vietnam","authors":"Chien Quyet Nguyen, Tuyen Thi Tran, Trang Thanh Thi Nguyen, Thuy Ha Thi Nguyen, T. S. Astarkhanova, Luong Van Vu, Khac Tai Dau, Hieu Ngoc Nguyen, Giang Hương Pham, D. Nguyen, Indra Prakash, Binh Pham","doi":"10.2166/hydro.2023.327","DOIUrl":"https://doi.org/10.2166/hydro.2023.327","url":null,"abstract":"\u0000 Soil Erosion Susceptibility Mapping (SESM) is one of the practical approaches for managing and mitigating soil erosion. This study applied four Machine Learning (ML) models namely the Multilayer Perceptron (MLP) classifier, AdaBoost, Ridge classifier, and Gradient Boosting classifier to perform SESM in a region of Nghe An province, Vietnam. The development of these models incorporated seven factors influencing soil erosion: slope degree, slope aspect, curvature, elevation, Normalized Difference Vegetation Index (NDVI), rainfall, and soil type. These factors were determined based on 685 identified soil erosion locations. According to SHapley Additive exPlanations (SHAP) analysis, soil type emerged as the most significant factor influencing soil erosion. Among all the developed models, the Gradient Boosting classifier demonstrated the highest prediction power, followed by the MLP classifier, Ridge classifier, and AdaBoost, respectively. Therefore, the Gradient Boosting classifier is recommended for accurate SESM in other regions too, taking into account the local geo-environmental factors.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":"57 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139000272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial hummingbird algorithm-optimized boosted tree for improved rainfall-runoff modelling 改进降雨-径流建模的人工蜂鸟算法优化提升树
IF 2.7 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-12-13 DOI: 10.2166/hydro.2023.187
Lyce Ndolo Umba, Ilham Yahya Amir, Gebre Gelete, Hüseyin Gökçekuş, Ikenna D. Uwanuakwa
Rainfall-runoff modelling is a critical component of hydrological studies, and its accuracy is essential for water resource management. Recent advances in machine learning have led to the development of more sophisticated rainfall-runoff models, but there is still room for improvement. This study proposes a novel approach to streamflow modelling that uses the artificial hummingbird algorithm (AHA) to optimize the boosted tree algorithm. the AHA-boosted tree algorithm model was compared against two established methods, the support vector machine (SVM) and the Gaussian process regression (GPR), using a variety of statistical and graphical performance measures. The results showed that the AHA-boosted tree algorithm model significantly outperformed the SVM and GPR models, with an R2 of 0.932, RMSE of 5.358 m3/s, MAE of 2.365 m3/s, and MSE of 28.705 m3/s. The SVM model followed while the GPR model had the least accurate performance. However, all models underperformed in capturing the peak flow of the hydrograph. Evaluations using both statistical and graphical performance measures, including time series plots, scatter plots, and Taylor diagrams, were critical in this assessment. The results suggest that the AHA-boosted tree algorithm could potentially be a superior alternative for enhancing the precision of rainfall-runoff modelling, despite certain challenges in predicting peak flow events.
降雨-径流模型是水文研究的重要组成部分,其准确性对水资源管理至关重要。机器学习领域的最新进展促使人们开发出了更复杂的降雨-径流模型,但仍有改进的余地。本研究提出了一种利用人工蜂鸟算法(AHA)优化助推树算法的新型河流建模方法。利用各种统计和图形性能指标,将 AHA 助推树算法模型与支持向量机(SVM)和高斯过程回归(GPR)这两种成熟方法进行了比较。结果显示,AHA-boosted 树算法模型的性能明显优于 SVM 和 GPR 模型,R2 为 0.932,RMSE 为 5.358 m3/s,MAE 为 2.365 m3/s,MSE 为 28.705 m3/s。SVM 模型紧随其后,而 GPR 模型的精确度最低。不过,所有模型在捕捉水文图的峰值流量方面都表现不佳。在评估中,使用统计和图形性能指标(包括时间序列图、散点图和泰勒图)进行评估至关重要。结果表明,尽管在预测峰值流量事件方面存在一定的挑战,但 AHA 增强树算法有可能成为提高降雨-径流建模精确度的最佳选择。
{"title":"Artificial hummingbird algorithm-optimized boosted tree for improved rainfall-runoff modelling","authors":"Lyce Ndolo Umba, Ilham Yahya Amir, Gebre Gelete, Hüseyin Gökçekuş, Ikenna D. Uwanuakwa","doi":"10.2166/hydro.2023.187","DOIUrl":"https://doi.org/10.2166/hydro.2023.187","url":null,"abstract":"\u0000 Rainfall-runoff modelling is a critical component of hydrological studies, and its accuracy is essential for water resource management. Recent advances in machine learning have led to the development of more sophisticated rainfall-runoff models, but there is still room for improvement. This study proposes a novel approach to streamflow modelling that uses the artificial hummingbird algorithm (AHA) to optimize the boosted tree algorithm. the AHA-boosted tree algorithm model was compared against two established methods, the support vector machine (SVM) and the Gaussian process regression (GPR), using a variety of statistical and graphical performance measures. The results showed that the AHA-boosted tree algorithm model significantly outperformed the SVM and GPR models, with an R2 of 0.932, RMSE of 5.358 m3/s, MAE of 2.365 m3/s, and MSE of 28.705 m3/s. The SVM model followed while the GPR model had the least accurate performance. However, all models underperformed in capturing the peak flow of the hydrograph. Evaluations using both statistical and graphical performance measures, including time series plots, scatter plots, and Taylor diagrams, were critical in this assessment. The results suggest that the AHA-boosted tree algorithm could potentially be a superior alternative for enhancing the precision of rainfall-runoff modelling, despite certain challenges in predicting peak flow events.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":"29 7","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139006755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Water distribution system modelling of GIS–remote sensing and EPANET for the integrated efficient design 利用 GIS- 遥感和 EPANET 建立配水系统模型,进行综合高效设计
IF 2.7 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-12-13 DOI: 10.2166/hydro.2023.281
Pranit Dongare, Kul Vaibhav Sharma, Vijendra Kumar, Aneesh Mathew
Urban settlement depends on water distribution networks for clean and safe drinking water. This research incorporates geographic information systems (GIS), remote sensing (RS), and hydraulic modelling software EPANET to analyze and construct water distribution systems in Bota town, India. Satellite images and hydrological data have been utilized for management of the Bota town's water supply network, sources to cater the demand for urban centres. EPANET simulates hydraulic behaviour in the water distribution system under different operating situations. EPANET simulation shows network leaks, low pressure, and substantial head loss. These findings have advised for water distribution system improvements by analyzing network shortcomings. Booster pumps, new pipelines, and repairing of existing leakages are examples of such improvements. GIS, remote sensing, and EPANET provided a comprehensive water distribution system study and more accurate and efficient improvement identification. This study emphasizes the necessity of new technologies in water distribution system analysis and design. The study solves Bota town's water distribution system problems of low pressure, high head loss, and leaks utilizing GIS, remote sensing, and EPANET. The findings of this research can help in enhancing the water delivery systems in other towns with comparable issues.
城市住区的清洁和安全饮用水有赖于配水管网。本研究结合地理信息系统 (GIS)、遥感 (RS) 和水力模型软件 EPANET,对印度博塔镇的配水系统进行分析和建设。卫星图像和水文数据被用于博塔镇供水网络的管理,以满足城市中心的供水需求。EPANET 可模拟配水系统在不同运行情况下的水力行为。EPANET 模拟显示了管网泄漏、低压和大量水头损失。这些发现建议通过分析管网缺陷来改进配水系统。增压泵、新管道和修复现有泄漏点就是此类改进措施的例子。地理信息系统(GIS)、遥感技术和 EPANET 提供了全面的配水系统研究,以及更准确、更有效的改进鉴定。这项研究强调了新技术在配水系统分析和设计中的必要性。该研究利用地理信息系统(GIS)、遥感和 EPANET 解决了波塔镇配水系统压力低、水头损失大和漏水等问题。这项研究的结果有助于改善存在类似问题的其他城镇的输水系统。
{"title":"Water distribution system modelling of GIS–remote sensing and EPANET for the integrated efficient design","authors":"Pranit Dongare, Kul Vaibhav Sharma, Vijendra Kumar, Aneesh Mathew","doi":"10.2166/hydro.2023.281","DOIUrl":"https://doi.org/10.2166/hydro.2023.281","url":null,"abstract":"\u0000 \u0000 Urban settlement depends on water distribution networks for clean and safe drinking water. This research incorporates geographic information systems (GIS), remote sensing (RS), and hydraulic modelling software EPANET to analyze and construct water distribution systems in Bota town, India. Satellite images and hydrological data have been utilized for management of the Bota town's water supply network, sources to cater the demand for urban centres. EPANET simulates hydraulic behaviour in the water distribution system under different operating situations. EPANET simulation shows network leaks, low pressure, and substantial head loss. These findings have advised for water distribution system improvements by analyzing network shortcomings. Booster pumps, new pipelines, and repairing of existing leakages are examples of such improvements. GIS, remote sensing, and EPANET provided a comprehensive water distribution system study and more accurate and efficient improvement identification. This study emphasizes the necessity of new technologies in water distribution system analysis and design. The study solves Bota town's water distribution system problems of low pressure, high head loss, and leaks utilizing GIS, remote sensing, and EPANET. The findings of this research can help in enhancing the water delivery systems in other towns with comparable issues.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":"28 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139004752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Hydroinformatics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1