Fetal skeletal dysplasia (FSD) encompasses diverse clinical features and complicates prenatal diagnosis and perinatal care. In this retrospective study, we integrate prenatal deep phenotyping with exome or genome sequencing (ES/GS) to elucidate comprehensive genotype and phenotype landscapes, diagnostic outcomes, genotype-phenotype correlations, and postnatal follow-up findings and to refine genetic counseling and clinical decision-making. The study includes a cohort of 152 fetuses with FSD in China. All fetuses undergo prenatal deep phenotyping followed by ES/GS analysis. Prenatal deep phenotyping enables classification into isolated and non-isolated FSD groups and identifies previously unrecognized prenatal features associated with KBG syndrome and Segawa syndrome. Among skeletal anomalies, limb bone anomalies are the most common (72.4%). Genetic testing yields positive diagnoses in 88 fetuses (57.9%). Notably, fetuses with cranial and limb bone abnormalities demonstrate a higher diagnostic yield. Comparative analysis of prenatal and postnatal genotypes and phenotypes in individuals harboring pathogenic variants in four hotspot genes provides a deeper understanding of skeletal dysplasia phenotypes. Genetic findings from this cohort directly inform reproductive decisions in 16 subsequent pregnancies. Our findings significantly enhance genotype-phenotype correlations and contribute to improved prenatal counseling, informed clinical decision-making, and optimized perinatal care, and advance precision medicine strategies for FSD-affected families.
扫码关注我们
求助内容:
应助结果提醒方式:
