Christian Earnhardt, Ben Groelke, John Borek, M. Naghnaeian, C. Vermillion
This paper introduces a hierarchical economic model predictive control (MPC) approach for maximizing the fuel economy of a heavy-duty truck, which simultaneously accounts for aggregate terrain changes that occur over very long length scales, fine terrain changes that occur over shorter length scales, and lead vehicle behavior that can vary over much shorter time/length scales. To accommodate such disparate time and length scales, the proposed approach uses a multilayer MPC approach wherein the upper-level MPC uses a long distance step, a long time-step, and coarse discretization to account for the slower changes in road grade, while the lower-level MPC uses a shorter time-step to account for fine variations in road grade and rapidly changing lead vehicle behavior. The benefit of this multirate, multiscale approach is that the lower-level MPC leverages the upper-level's sufficiently long look-ahead while allowing for safe vehicle following and adjustment to fine road grade variations. The proposed strategy has been evaluated over four real-world road profiles in both open-highway and traffic environments, using a medium-fidelity simulink model furnished by Volvo Group North America. Compared with a conventional cruise control system plus vehicle following controller as a baseline, results show 4–5% fuel savings in an open highway setting and 6–8% fuel savings in the presence of traffic, without compromising trip time.
{"title":"A Multirate, Multiscale Economic Model Predictive Control Approach for Velocity Trajectory Optimization of a Heavy Duty Truck","authors":"Christian Earnhardt, Ben Groelke, John Borek, M. Naghnaeian, C. Vermillion","doi":"10.1115/1.4048658","DOIUrl":"https://doi.org/10.1115/1.4048658","url":null,"abstract":"\u0000 This paper introduces a hierarchical economic model predictive control (MPC) approach for maximizing the fuel economy of a heavy-duty truck, which simultaneously accounts for aggregate terrain changes that occur over very long length scales, fine terrain changes that occur over shorter length scales, and lead vehicle behavior that can vary over much shorter time/length scales. To accommodate such disparate time and length scales, the proposed approach uses a multilayer MPC approach wherein the upper-level MPC uses a long distance step, a long time-step, and coarse discretization to account for the slower changes in road grade, while the lower-level MPC uses a shorter time-step to account for fine variations in road grade and rapidly changing lead vehicle behavior. The benefit of this multirate, multiscale approach is that the lower-level MPC leverages the upper-level's sufficiently long look-ahead while allowing for safe vehicle following and adjustment to fine road grade variations. The proposed strategy has been evaluated over four real-world road profiles in both open-highway and traffic environments, using a medium-fidelity simulink model furnished by Volvo Group North America. Compared with a conventional cruise control system plus vehicle following controller as a baseline, results show 4–5% fuel savings in an open highway setting and 6–8% fuel savings in the presence of traffic, without compromising trip time.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"46 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80374880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents the problem of actuator fault estimation and fault-tolerant control (FTC) of a biological process using Takagi–Sugeno fuzzy formulation. The goal is to ensure the desired outputs tracking even if the time-varying actuator faults occur. We propose to use a proportional multi-integral (PMI) observer to estimate both the time-varying actuator faults and the state of system. The reconstructed faults are used to reconfigure the nominal controller. As a nominal control, we use a fuzzy linear quadratic integral (LQI) law. To ensure the global asymptotic convergence of the PMI observer and to improve the compensation speed of faults, we propose to use the multiple Lyapunov function by introducing a convergence rate. Sufficient conditions in terms of linear matrix inequalities (LMIs) are developed. The obtained results show that, the proposed approach is successfully applied to the problem of actuator fault-tolerant control of a bacterial growth process.
{"title":"Fuzzy Fault Tolerant Control of a Bacterial Growth Process Using a Multiple Lyapunov Function","authors":"Abdelmounaim Khallouq, A. Karama, Mohamed Abyad","doi":"10.1115/1.4048485","DOIUrl":"https://doi.org/10.1115/1.4048485","url":null,"abstract":"\u0000 This paper presents the problem of actuator fault estimation and fault-tolerant control (FTC) of a biological process using Takagi–Sugeno fuzzy formulation. The goal is to ensure the desired outputs tracking even if the time-varying actuator faults occur. We propose to use a proportional multi-integral (PMI) observer to estimate both the time-varying actuator faults and the state of system. The reconstructed faults are used to reconfigure the nominal controller. As a nominal control, we use a fuzzy linear quadratic integral (LQI) law. To ensure the global asymptotic convergence of the PMI observer and to improve the compensation speed of faults, we propose to use the multiple Lyapunov function by introducing a convergence rate. Sufficient conditions in terms of linear matrix inequalities (LMIs) are developed. The obtained results show that, the proposed approach is successfully applied to the problem of actuator fault-tolerant control of a bacterial growth process.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"44 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73768728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper investigates the backstepping control problem for nonlinear pure-feedback systems with time-varying delays. A virtual controller is designed to counteract the effects caused by the state perturbation of time delay, and improve the stability of the system. The assumption on delay-dependent nonlinearities is further relaxed by a backstepping auxiliary controller and a Lyapunov–Krasovskii functional. A suitable coordinate transformation is introduced to reduce the complexity of computation caused by nonaffine structures. The globally uniform boundedness of the closed-loop signals and the asymptotical stability of the state are proved by Lyapunov–Krasovskii stability theory. Finally, the effectiveness of our method is demonstrated by two illustrations.
{"title":"Adaptive Global Stability of Nonlinear Pure-Feedback Systems With Unknown Time-Varying Delays","authors":"Jun Guo, Yao Wang, Y. Bo","doi":"10.1115/1.4048587","DOIUrl":"https://doi.org/10.1115/1.4048587","url":null,"abstract":"\u0000 This paper investigates the backstepping control problem for nonlinear pure-feedback systems with time-varying delays. A virtual controller is designed to counteract the effects caused by the state perturbation of time delay, and improve the stability of the system. The assumption on delay-dependent nonlinearities is further relaxed by a backstepping auxiliary controller and a Lyapunov–Krasovskii functional. A suitable coordinate transformation is introduced to reduce the complexity of computation caused by nonaffine structures. The globally uniform boundedness of the closed-loop signals and the asymptotical stability of the state are proved by Lyapunov–Krasovskii stability theory. Finally, the effectiveness of our method is demonstrated by two illustrations.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"85 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79352511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Yazji, A. Keow, Hamza Zaidi, Luke Thomas Torres, C. Leroy, Zheng Chen
Fine buoyancy control is essential for underwater robots to maintain neutral buoyancy despite dynamic changes in environmental conditions. This paper introduces a novel buoyancy control system that uses reversible fuel cells (RFC) as a mass-to-volume engine to change the underwater robots' buoyancy. The RFC uses both the water electrolysis process and fuel cell reaction to produce and consume gases in a flexible bladder for volume change. Unlike conventional actuators such as motors and pistons used in buoyancy control, this mechanism is silent, compact, and energy-efficient. A dynamic model that described the dynamics of the RFC-enabled buoyancy change is presented. Then, a proportional-derivative (PD) controller is designed to position the device at any depth underwater. A prototype device is built to validate the dynamic model and the performance of the feedback controller. Experimental results demonstrate a fine depth control performance with 4 cm accuracy and 90 s settling time. The compact buoyancy design is readily integrable with small underwater robots for fine depth change allowing the robots to save actuation energy.
{"title":"Buoyancy Control Device Enabled by Reversible Proton Exchange Membrane Fuel Cells for Fine Depth Control","authors":"J. Yazji, A. Keow, Hamza Zaidi, Luke Thomas Torres, C. Leroy, Zheng Chen","doi":"10.1115/1.4048778","DOIUrl":"https://doi.org/10.1115/1.4048778","url":null,"abstract":"\u0000 Fine buoyancy control is essential for underwater robots to maintain neutral buoyancy despite dynamic changes in environmental conditions. This paper introduces a novel buoyancy control system that uses reversible fuel cells (RFC) as a mass-to-volume engine to change the underwater robots' buoyancy. The RFC uses both the water electrolysis process and fuel cell reaction to produce and consume gases in a flexible bladder for volume change. Unlike conventional actuators such as motors and pistons used in buoyancy control, this mechanism is silent, compact, and energy-efficient. A dynamic model that described the dynamics of the RFC-enabled buoyancy change is presented. Then, a proportional-derivative (PD) controller is designed to position the device at any depth underwater. A prototype device is built to validate the dynamic model and the performance of the feedback controller. Experimental results demonstrate a fine depth control performance with 4 cm accuracy and 90 s settling time. The compact buoyancy design is readily integrable with small underwater robots for fine depth change allowing the robots to save actuation energy.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"17 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73323150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An optimal model-free controller and a linear controller are designed and applied to a horizontal magnetic micromanipulator for controlling microparticles in a liquid environment. An input–output relation based model for the magnetic micromanipulator is obtained, verified, and used in the analysis of controllers. A model-free linear controller is designed using the offset current approach. An optimal nonlinear controller based on Karush–Kuhn–Tucker conditions is designed and then modified to produce smooth control signals. Experimental results are provided to show the efficiency and feasibility of the proposed controllers. The model-free controllers yield short settling time and zero steady-state error in the control of magnetic microparticles.
{"title":"Model-Free Controller Designs for a Magnetic Micromanipulator","authors":"G. Ablay","doi":"10.1115/1.4048489","DOIUrl":"https://doi.org/10.1115/1.4048489","url":null,"abstract":"\u0000 An optimal model-free controller and a linear controller are designed and applied to a horizontal magnetic micromanipulator for controlling microparticles in a liquid environment. An input–output relation based model for the magnetic micromanipulator is obtained, verified, and used in the analysis of controllers. A model-free linear controller is designed using the offset current approach. An optimal nonlinear controller based on Karush–Kuhn–Tucker conditions is designed and then modified to produce smooth control signals. Experimental results are provided to show the efficiency and feasibility of the proposed controllers. The model-free controllers yield short settling time and zero steady-state error in the control of magnetic microparticles.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"12 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82778592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This work addresses the design and experimental implementation in real-time of an integrated predictive load-split management system for the transient and fluctuating propeller load sharing. Control-oriented modeling of the power system was performed based on experimental data gathered from the hybrid plant and on first principles for the diesel engine behavior and battery charging. Propulsion plant and environmental disturbance models are developed to simulate realistic marine load application. A nonlinear model predictive control (NMPC) scheme is proposed for the optimal transient power-split problem of a hybrid diesel-electric marine propulsion plant. The NMPC scheme directly controls the torque output of the diesel engine and the electric motor/generator ensuring that certain constraints concerning the system overloading are met, avoiding fast accelerations and load fluctuations of the diesel engine that affect engine performance. To achieve offset-free model predictive control (MPC) control, an observer is developed to provide the propeller law parameter to the NMPC for load estimation. The control system was experimentally tested in real-time operation. Results showed that controller rejected load disturbances and maintained the desired rotational speed of the powertrain as well as the desirable state of charge (SOC) in battery within the power plant limits, achieving smooth power transitions and mitigation of power fluctuations of the diesel engine.
{"title":"Integrated Load-Split Scheme for Hybrid Ship Propulsion Considering Transient Propeller Load and Environmental Disturbance","authors":"Nikolaos Planakis, G. Papalambrou, N. Kyrtatos","doi":"10.1115/1.4048588","DOIUrl":"https://doi.org/10.1115/1.4048588","url":null,"abstract":"\u0000 This work addresses the design and experimental implementation in real-time of an integrated predictive load-split management system for the transient and fluctuating propeller load sharing. Control-oriented modeling of the power system was performed based on experimental data gathered from the hybrid plant and on first principles for the diesel engine behavior and battery charging. Propulsion plant and environmental disturbance models are developed to simulate realistic marine load application. A nonlinear model predictive control (NMPC) scheme is proposed for the optimal transient power-split problem of a hybrid diesel-electric marine propulsion plant. The NMPC scheme directly controls the torque output of the diesel engine and the electric motor/generator ensuring that certain constraints concerning the system overloading are met, avoiding fast accelerations and load fluctuations of the diesel engine that affect engine performance. To achieve offset-free model predictive control (MPC) control, an observer is developed to provide the propeller law parameter to the NMPC for load estimation. The control system was experimentally tested in real-time operation. Results showed that controller rejected load disturbances and maintained the desired rotational speed of the powertrain as well as the desirable state of charge (SOC) in battery within the power plant limits, achieving smooth power transitions and mitigation of power fluctuations of the diesel engine.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"109 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79198880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zero phase error tracking (ZPET) control has gained popularity as a simple yet effective feedforward control method for tracking time varying desired trajectories by the plant output of a continuous time transfer function of relative order greater than or equal to two. In this paper, we will note that the sampling zeros of the zero-order hold equivalent of chain of integrators, 1/sn, are configured for natural realization of zero phase error tracking. This property is exploited to realize a simplified realization of zero phase error tracking control for chain of integrators. The property can also be utilized for general transfer functions when the sampling period for digital control is small. The effectiveness of the proposed approach for general transfer functions is demonstrated by simulations.
{"title":"Simplified Realization of Zero Phase Error Tracking","authors":"M. Tomizuka, Liting Sun","doi":"10.1115/1.4049391","DOIUrl":"https://doi.org/10.1115/1.4049391","url":null,"abstract":"\u0000 Zero phase error tracking (ZPET) control has gained popularity as a simple yet effective feedforward control method for tracking time varying desired trajectories by the plant output of a continuous time transfer function of relative order greater than or equal to two. In this paper, we will note that the sampling zeros of the zero-order hold equivalent of chain of integrators, 1/sn, are configured for natural realization of zero phase error tracking. This property is exploited to realize a simplified realization of zero phase error tracking control for chain of integrators. The property can also be utilized for general transfer functions when the sampling period for digital control is small. The effectiveness of the proposed approach for general transfer functions is demonstrated by simulations.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"4 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82468247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As a new strategy for magnetic levitation envisioned in the 1990s, the Inductrack system with Halbach arrays of permanent magnets has been intensively researched. The previous investigations discovered that an uncontrolled Inductrack system may be unstable even if the vehicle travels well below its operating speed and that instability can be persistent near and beyond the operating speed. It is therefore necessary to stabilize the system for safety and reliability. With strong nonlinearities and complicated electromagneto-mechanical coupling, however, the transient response of such a dynamic system is difficult to predict with fidelity. Because of this, model-based feedback control of Inductrack systems has not been well addressed. In this paper, by taking advantage of a recently available two degrees-of-freedom transient model, a new feedback control method for Inductrack systems is proposed. In the control system development, active Halbach arrays are used as an actuator, and a feedback control law, which combines a properly tuned proportional-integral-derivative controller and a nonlinear force-current mapping function, is created. The proposed control law is validated in numerical examples, where the transient motion of an Inductrack vehicle traveling at constant speeds is considered. As shown in the simulation, the control law efficiently stabilizes the Inductrack system in a wide range of operating speed, and in the meantime, it renders a smooth system output (real-time levitation gap) with fast convergence to any prescribed reference step input (desired levitation gap).
{"title":"Nonlinear Feedback Control of the Inductrack System Based on a Transient Model","authors":"Ruiyang Wang, Bingen Yang, Hao Gao","doi":"10.1115/1.4050257","DOIUrl":"https://doi.org/10.1115/1.4050257","url":null,"abstract":"As a new strategy for magnetic levitation envisioned in the 1990s, the Inductrack system with Halbach arrays of permanent magnets has been intensively researched. The previous investigations discovered that an uncontrolled Inductrack system may be unstable even if the vehicle travels well below its operating speed and that instability can be persistent near and beyond the operating speed. It is therefore necessary to stabilize the system for safety and reliability. With strong nonlinearities and complicated electromagneto-mechanical coupling, however, the transient response of such a dynamic system is difficult to predict with fidelity. Because of this, model-based feedback control of Inductrack systems has not been well addressed. In this paper, by taking advantage of a recently available two degrees-of-freedom transient model, a new feedback control method for Inductrack systems is proposed. In the control system development, active Halbach arrays are used as an actuator, and a feedback control law, which combines a properly tuned proportional-integral-derivative controller and a nonlinear force-current mapping function, is created. The proposed control law is validated in numerical examples, where the transient motion of an Inductrack vehicle traveling at constant speeds is considered. As shown in the simulation, the control law efficiently stabilizes the Inductrack system in a wide range of operating speed, and in the meantime, it renders a smooth system output (real-time levitation gap) with fast convergence to any prescribed reference step input (desired levitation gap).","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"312 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78069249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hybrid electric vehicle (HEV) control strategies are often designed around specific driving conditions. However, when driving conditions differ from the designed conditions, HEV performance can suffer. This paper develops a novel HEV energy management strategy (EMS) that is robust to uncertain driving conditions by augmenting a stochastic dynamic programing (SDP) controller with minimax dynamic programing (MDP). This combination of MDP and SDP has not previously been studied in the literature. The stochastic element uses a Markov chain model to represent driver behavior and is used to optimize the control for expected future driver behavior. The minimax element instead optimizes against potential worst-case (maximal cost) future driver behavior. The resulting EMS can be directly implemented on a vehicle. This method is demonstrated on a series hybrid electric bus model. Robustness to uncertain driving conditions is tested by simulating on a variety of heavy-duty vehicle drive cycles that differ from the drive cycle on which the EMS was trained. A single tuning parameter is used to balance the stochastic and minimax elements of the EMS, and a parametric study shows the effects of this tuning parameter. It was found that using minimax control could increase the vehicle fuel economy on multiple uncertain driving conditions, with a tradeoff of decreased fuel economy when the driving conditions match the designed conditions. That is, it offers an exchange of performance on the nominal driving conditions for performance on uncertain driving conditions.
{"title":"Robustification Through Minimax Dynamic Programing and Its Implication for Hybrid Vehicle Energy Management Strategies","authors":"Kevin Mallon, F. Assadian","doi":"10.1115/1.4050252","DOIUrl":"https://doi.org/10.1115/1.4050252","url":null,"abstract":"\u0000 Hybrid electric vehicle (HEV) control strategies are often designed around specific driving conditions. However, when driving conditions differ from the designed conditions, HEV performance can suffer. This paper develops a novel HEV energy management strategy (EMS) that is robust to uncertain driving conditions by augmenting a stochastic dynamic programing (SDP) controller with minimax dynamic programing (MDP). This combination of MDP and SDP has not previously been studied in the literature. The stochastic element uses a Markov chain model to represent driver behavior and is used to optimize the control for expected future driver behavior. The minimax element instead optimizes against potential worst-case (maximal cost) future driver behavior. The resulting EMS can be directly implemented on a vehicle. This method is demonstrated on a series hybrid electric bus model. Robustness to uncertain driving conditions is tested by simulating on a variety of heavy-duty vehicle drive cycles that differ from the drive cycle on which the EMS was trained. A single tuning parameter is used to balance the stochastic and minimax elements of the EMS, and a parametric study shows the effects of this tuning parameter. It was found that using minimax control could increase the vehicle fuel economy on multiple uncertain driving conditions, with a tradeoff of decreased fuel economy when the driving conditions match the designed conditions. That is, it offers an exchange of performance on the nominal driving conditions for performance on uncertain driving conditions.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"96 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75954018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In many industries, liquid container transport is carried out by an overhead traveling crane. The operation of crane transferring liquid slosh containers required both operator experience and an automated control system. The goal of this research is to move the liquid inside a container in a short time and less spill for process effectiveness and safety. For controller design, a nonlinear mathematical model is developed to represent the actual system. A cost-effective, smooth continuous command shaper is presented to suppress sloshing vibration. The designed shaper is a multisine-wave function with adjustable and independent time maneuvering used to design the acceleration profile. The coefficients that control the shaper profile are obtained by solving a nonlinear constrained optimization problem using particle swarm algorithm. Simulation and experimental comparative results proved that the proposed command shaper can reduce transient peak slosh amplitudes. Moreover, it can simultaneously cancel both residual sloshing vibrations and container oscillations at the end of the transportation process which cannot be achieved using conventional zero-vibration (ZV), zero-vibration derivative (ZVD), and jerk-limited shaper. Furthermore, sensitivity analysis demonstrates that the proposed command shaper is robust to model parameters variation such as liquid depth, suspension length, or moving distance of the trolley.
{"title":"Optimal Command Shaping Design for a Liquid Slosh Suppression in Overhead Crane Systems","authors":"E. Khorshid, A. al-Fadhli","doi":"10.1115/1.4048357","DOIUrl":"https://doi.org/10.1115/1.4048357","url":null,"abstract":"\u0000 In many industries, liquid container transport is carried out by an overhead traveling crane. The operation of crane transferring liquid slosh containers required both operator experience and an automated control system. The goal of this research is to move the liquid inside a container in a short time and less spill for process effectiveness and safety. For controller design, a nonlinear mathematical model is developed to represent the actual system. A cost-effective, smooth continuous command shaper is presented to suppress sloshing vibration. The designed shaper is a multisine-wave function with adjustable and independent time maneuvering used to design the acceleration profile. The coefficients that control the shaper profile are obtained by solving a nonlinear constrained optimization problem using particle swarm algorithm. Simulation and experimental comparative results proved that the proposed command shaper can reduce transient peak slosh amplitudes. Moreover, it can simultaneously cancel both residual sloshing vibrations and container oscillations at the end of the transportation process which cannot be achieved using conventional zero-vibration (ZV), zero-vibration derivative (ZVD), and jerk-limited shaper. Furthermore, sensitivity analysis demonstrates that the proposed command shaper is robust to model parameters variation such as liquid depth, suspension length, or moving distance of the trolley.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"47 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85693194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}