This paper uses the Floquet theory for tuning the feedback gains to stabilize the tracking errors of a revolute-revolute-revolute-prismatic (RRRP) robot moving in a three-dimensional (3D) workspace. This robot is driven by a proportional-integral-derivative (PID) control law, tracking a time-varying trajectory in joint space, without knowledge of any bounds of the inertia matrix and/or Jacobian of the gravity vector. The Floquet theory is used to obtain the values of feedback gains for which the asymptotic stability of the tracking errors is obtained. The numerical results obtained by Floquet theory are verified by the tracking error plots and phase portraits. The obtained results will be very useful for the control of any industrial robot, required to perform repetitive tasks like assembly of parts and inspection of products, amongst others.
{"title":"Tuning Proportional-Integral-Derivative Gains of a Three-Dimensional RRRP Pick and Place Robot for Asymptotic Trajectory Tracking","authors":"S. Dutta, B. S. Reddy, S. K. Dwivedy","doi":"10.1115/1.4048585","DOIUrl":"https://doi.org/10.1115/1.4048585","url":null,"abstract":"\u0000 This paper uses the Floquet theory for tuning the feedback gains to stabilize the tracking errors of a revolute-revolute-revolute-prismatic (RRRP) robot moving in a three-dimensional (3D) workspace. This robot is driven by a proportional-integral-derivative (PID) control law, tracking a time-varying trajectory in joint space, without knowledge of any bounds of the inertia matrix and/or Jacobian of the gravity vector. The Floquet theory is used to obtain the values of feedback gains for which the asymptotic stability of the tracking errors is obtained. The numerical results obtained by Floquet theory are verified by the tracking error plots and phase portraits. The obtained results will be very useful for the control of any industrial robot, required to perform repetitive tasks like assembly of parts and inspection of products, amongst others.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"76 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75345925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper addresses the compensation of wave actuator dynamics in scalar extremum seeking (ES) for static maps. Infinite-dimensional systems described by partial differential equations (PDEs) of wave type have not been considered so far in the literature of ES. A distributed-parameter-based control law using back-stepping approach and Neumann actuation is initially proposed. Local exponential stability as well as practical convergence to an arbitrarily small neighborhood of the unknown extremum point is guaranteed by employing Lyapunov–Krasovskii functionals and averaging theory in infinite dimensions. Thereafter, the extension for wave equations with Dirichlet actuation, antistable wave PDEs as well as the design for the delay-wave PDE cascade are also discussed. Numerical simulations illustrate the theoretical results. [DOI: 10.1115/1.4048586]
{"title":"Extremum Seeking Feedback With Wave Partial Differential Equation Compensation","authors":"T. R. Oliveira, M. Krstić","doi":"10.1115/1.4048586","DOIUrl":"https://doi.org/10.1115/1.4048586","url":null,"abstract":"This paper addresses the compensation of wave actuator dynamics in scalar extremum seeking (ES) for static maps. Infinite-dimensional systems described by partial differential equations (PDEs) of wave type have not been considered so far in the literature of ES. A distributed-parameter-based control law using back-stepping approach and Neumann actuation is initially proposed. Local exponential stability as well as practical convergence to an arbitrarily small neighborhood of the unknown extremum point is guaranteed by employing Lyapunov–Krasovskii functionals and averaging theory in infinite dimensions. Thereafter, the extension for wave equations with Dirichlet actuation, antistable wave PDEs as well as the design for the delay-wave PDE cascade are also discussed. Numerical simulations illustrate the theoretical results. [DOI: 10.1115/1.4048586]","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"10 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88699850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The output flow ripple of the axial piston pump is one of the excitation sources for the hydraulic system vibration. The amplitudes of its specific harmonics must be reduced to avoid the resonance with the hydraulic pipeline. In this paper, a method on the nonuniform distribution of the pistons is put forward to adjust the flow ripple. The deflection angles of the pistons are used to describe the distribution rule. The distribution rule is imported to the Fourier expansion of the flow rate of each single-piston chamber, and then every single flow rate is superposed to obtain the Fourier coefficient of total flow rate that becomes the function of deflection angles. After this, objective optimization design is carried out to reduce the amplitudes of specific harmonics. Finally, the dynamic simulation model of the nonuniformly distributed axial piston pump is established to verify the effects of objective optimization. The results show that the amplitude of the ninth harmonic of the flow ripple can be reduced by about 40%, and the reductions are about 99% for the 18th and 27th harmonic.
{"title":"Theoretical and Simulation Investigations on Flow Ripple Reduction of Axial Piston Pumps Using Nonuniform Distribution of Pistons","authors":"Fei Lyu, Shaogan Ye, Jun-hui Zhang, Bing Xu, Weidi Huang, Xu Haogong, Xiaochen Huang","doi":"10.1115/1.4048859","DOIUrl":"https://doi.org/10.1115/1.4048859","url":null,"abstract":"\u0000 The output flow ripple of the axial piston pump is one of the excitation sources for the hydraulic system vibration. The amplitudes of its specific harmonics must be reduced to avoid the resonance with the hydraulic pipeline. In this paper, a method on the nonuniform distribution of the pistons is put forward to adjust the flow ripple. The deflection angles of the pistons are used to describe the distribution rule. The distribution rule is imported to the Fourier expansion of the flow rate of each single-piston chamber, and then every single flow rate is superposed to obtain the Fourier coefficient of total flow rate that becomes the function of deflection angles. After this, objective optimization design is carried out to reduce the amplitudes of specific harmonics. Finally, the dynamic simulation model of the nonuniformly distributed axial piston pump is established to verify the effects of objective optimization. The results show that the amplitude of the ninth harmonic of the flow ripple can be reduced by about 40%, and the reductions are about 99% for the 18th and 27th harmonic.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"9 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76889084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lithium iron phosphate (LiFePO4 or LFP) is a common active material in lithium-ion batteries. It has been observed that this material undergoes phase transitions during the normal charge and discharge operation of the battery. Electrochemical models of lithium-ion batteries can be modified to account for this phenomenon at the expense of some added complexity. We explore this problem for the single particle model (SPM) where the underlying dynamic model for diffusion of lithium ions in phase transition materials is a partial differential equation (PDE) with a moving boundary. We derive a novel boundary observer to estimate the concentration of lithium ions together with a moving boundary radius from the SPM via the backstepping method for PDEs, and simulations are provided to illustrate the performance of the observer. Our comments are stated on the gap between the proposed observer and a complete state-of-charge (SoC) estimation algorithm for lithium-ion batteries with phase transition materials. [DOI: 10.1115/1.4048779]
{"title":"State Estimation for Lithium-Ion Batteries With Phase Transition Materials Via Boundary Observers","authors":"Shumon Koga, Leobardo Camacho-Solorio, M. Krstić","doi":"10.1115/1.4048779","DOIUrl":"https://doi.org/10.1115/1.4048779","url":null,"abstract":"Lithium iron phosphate (LiFePO4 or LFP) is a common active material in lithium-ion batteries. It has been observed that this material undergoes phase transitions during the normal charge and discharge operation of the battery. Electrochemical models of lithium-ion batteries can be modified to account for this phenomenon at the expense of some added complexity. We explore this problem for the single particle model (SPM) where the underlying dynamic model for diffusion of lithium ions in phase transition materials is a partial differential equation (PDE) with a moving boundary. We derive a novel boundary observer to estimate the concentration of lithium ions together with a moving boundary radius from the SPM via the backstepping method for PDEs, and simulations are provided to illustrate the performance of the observer. Our comments are stated on the gap between the proposed observer and a complete state-of-charge (SoC) estimation algorithm for lithium-ion batteries with phase transition materials. [DOI: 10.1115/1.4048779]","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"45 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82262583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, a novel design method for half-cycle and modified posicast controller structures is proposed for a class of the fractional order systems. In this method, all required design variable values, namely, the input step magnitudes and their application times are obtained as functions of fractional system parameters. Moreover, empirical formulas are obtained for the overshoot values of the compensated system with half-cycle and modified posicast controllers designed utilizing this method. The proposed design methodology has been tested via simulations and ball balancing real-time system. It is observed that the derived formulas are in coherence with outcomes of the simulation and real-time application. Furthermore, the performance of modified posicast controller designed using proposed method is much better than other posicast control method.
{"title":"Modified Posicast Control Design Method Based on the Parameters of a Fractional Order System","authors":"E. Yumuk, M. Guzelkaya, I. Eksin","doi":"10.1115/1.4049549","DOIUrl":"https://doi.org/10.1115/1.4049549","url":null,"abstract":"\u0000 In this study, a novel design method for half-cycle and modified posicast controller structures is proposed for a class of the fractional order systems. In this method, all required design variable values, namely, the input step magnitudes and their application times are obtained as functions of fractional system parameters. Moreover, empirical formulas are obtained for the overshoot values of the compensated system with half-cycle and modified posicast controllers designed utilizing this method. The proposed design methodology has been tested via simulations and ball balancing real-time system. It is observed that the derived formulas are in coherence with outcomes of the simulation and real-time application. Furthermore, the performance of modified posicast controller designed using proposed method is much better than other posicast control method.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"37 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73973147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Parametric expressions of equivalent stiffnesses of a ball-screw shaft are obtained by derivation of its geometric parameters, the finite element method (FEM), and data fitting based on a modified probability density function of log-normal distribution. A dynamic model of a ball-screw drive that considers effects of bearing stiffnesses, the mass of the nut, and the axial pretension is established based on equivalent stiffnesses of its shaft. With the dynamic model and modal experimental results obtained by Bayesian operational modal analysis (BOMA), installation parameters of the ball-screw drive are identified by a genetic algorithm (GA) with a new comprehensive objective function that considers natural frequencies, mode shapes, and flexibility of the ball-screw drive. The effectiveness of the methodology is experimentally validated.
{"title":"Dynamic Modeling of a Ball-Screw Drive and Identification of Its Installation Parameters","authors":"Yu-Jia Hu, Wang Yaoyu, Wei-dong Zhu, H. Li","doi":"10.1115/1.4048702","DOIUrl":"https://doi.org/10.1115/1.4048702","url":null,"abstract":"\u0000 Parametric expressions of equivalent stiffnesses of a ball-screw shaft are obtained by derivation of its geometric parameters, the finite element method (FEM), and data fitting based on a modified probability density function of log-normal distribution. A dynamic model of a ball-screw drive that considers effects of bearing stiffnesses, the mass of the nut, and the axial pretension is established based on equivalent stiffnesses of its shaft. With the dynamic model and modal experimental results obtained by Bayesian operational modal analysis (BOMA), installation parameters of the ball-screw drive are identified by a genetic algorithm (GA) with a new comprehensive objective function that considers natural frequencies, mode shapes, and flexibility of the ball-screw drive. The effectiveness of the methodology is experimentally validated.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"26 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81675195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This brief paper emphasizes on the experimental study of a hybrid contact model combining a traditional physical-based contact model and a data-driven error model in order to provide a more accurate description of a contact dynamics phenomenon. The physical-based contact model is employed to describe the known contact physics of a complex contact case, while the data-driven error model, which is an artificial neural network model trained from experimental data using a machine learning technique, is used to represent the inherent unmodeled factors of the contact case. A bouncing ball experiment is designed and performed to validate the model. The hybrid contact model can duplicate experimental results well, which demonstrates the feasibility and accuracy of the presented approach.
{"title":"A Hybrid Contact Model With Experimental Validation","authors":"Qians Liu, Jing Cheng, Delun Li, Qingqing Wei","doi":"10.1115/1.4050586","DOIUrl":"https://doi.org/10.1115/1.4050586","url":null,"abstract":"\u0000 This brief paper emphasizes on the experimental study of a hybrid contact model combining a traditional physical-based contact model and a data-driven error model in order to provide a more accurate description of a contact dynamics phenomenon. The physical-based contact model is employed to describe the known contact physics of a complex contact case, while the data-driven error model, which is an artificial neural network model trained from experimental data using a machine learning technique, is used to represent the inherent unmodeled factors of the contact case. A bouncing ball experiment is designed and performed to validate the model. The hybrid contact model can duplicate experimental results well, which demonstrates the feasibility and accuracy of the presented approach.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"52 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86429533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents a novel impedance controller modified with a switching strategy for the purpose of improving safety in human–robot interactions. Under normal operating conditions, an impedance controller is enabled when adequate tracking performance is maintained in the presence of bounded disturbances. However, if disturbances are greater than anticipated such that tracking performance is degraded, the proposed controller temporarily switches modes to a control strategy better apt to limit control inputs. With disturbances returning to the prescribed bounds, tracking performance will be restored and the impedance controller will resume for nominal operation. The control parameters are constrained by a few conditions necessary for smooth operation. First, a pair of equality constraints is required for the control signal to be continuous when switching control modes. Second, a Lyapunov analysis is performed to formulate an equality constraint on the control parameters to ensure only a single switch occurs when changing control modes to avert control chatter. Third, a matrix inequality constraint is necessary to ensure a robust positive invariant set is formed for when impedance control is active. Numerical simulations are provided to illustrate the controller and conditions. The simulation results successfully validate the presented theory, demonstrating how the constraints yield a continuous control signal, eliminate switching chatter, and permit robustness to disturbances.
{"title":"A Robust Impedance Controller for Improved Safety in Human–Robot Interaction","authors":"Curt A. Laubscher, J. Sawicki","doi":"10.1115/1.4050504","DOIUrl":"https://doi.org/10.1115/1.4050504","url":null,"abstract":"\u0000 This paper presents a novel impedance controller modified with a switching strategy for the purpose of improving safety in human–robot interactions. Under normal operating conditions, an impedance controller is enabled when adequate tracking performance is maintained in the presence of bounded disturbances. However, if disturbances are greater than anticipated such that tracking performance is degraded, the proposed controller temporarily switches modes to a control strategy better apt to limit control inputs. With disturbances returning to the prescribed bounds, tracking performance will be restored and the impedance controller will resume for nominal operation. The control parameters are constrained by a few conditions necessary for smooth operation. First, a pair of equality constraints is required for the control signal to be continuous when switching control modes. Second, a Lyapunov analysis is performed to formulate an equality constraint on the control parameters to ensure only a single switch occurs when changing control modes to avert control chatter. Third, a matrix inequality constraint is necessary to ensure a robust positive invariant set is formed for when impedance control is active. Numerical simulations are provided to illustrate the controller and conditions. The simulation results successfully validate the presented theory, demonstrating how the constraints yield a continuous control signal, eliminate switching chatter, and permit robustness to disturbances.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"31 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89062191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents a novel concept of the modeling, active control of transverse vibration responses, and identification of fault parameters in a geared-rotor system integrated with active magnetic bearings (AMBs). The sources of error in gears while in the operation are the gear mesh deformation, transmission error, and runout, resulting in dynamic forces, excessive vibration, and noise. To avoid any undesirable effect on the gear-pair and other supporting structures, it is essential to investigate these forced vibrations in time and frequency domain. Hence, an approach to monitor and control the transverse vibration of mating gears is presented with the help of AMBs. The AMBs are capable of suppressing the vibration of the system (transients as well as steady-state) by controlled electromagnetic forces considering the rotor vibrational displacement with a closed-loop feedback system. A mathematical model has been developed with geared rotor faults, like the mesh deformation, gear run-out, and asymmetric transmission error. The transmission error has been modeled as the sum of mean and varying components of error in two orthogonal transverse directions. Based on the mathematical model, an identification algorithm has been developed. Considering full spectrum analysis of the rotor vibration and AMB current information, estimation of system parameters, i.e., the equivalent mesh stiffness, mesh damping, gear runouts, the mean and varying transmission error magnitude and phase angles, and the current and displacement constants of AMBs has been performed. Gaussian noise in responses and modeling errors in mathematical models have been added to test the robustness of the proposed algorithm to comply with the experimental settings.
{"title":"Transverse Vibration of Geared-Rotor Integrated With Active Magnetic Bearings in Identification of Multiple Faults","authors":"Gargi Majumder, R. Tiwari","doi":"10.1115/1.4050506","DOIUrl":"https://doi.org/10.1115/1.4050506","url":null,"abstract":"\u0000 This paper presents a novel concept of the modeling, active control of transverse vibration responses, and identification of fault parameters in a geared-rotor system integrated with active magnetic bearings (AMBs). The sources of error in gears while in the operation are the gear mesh deformation, transmission error, and runout, resulting in dynamic forces, excessive vibration, and noise. To avoid any undesirable effect on the gear-pair and other supporting structures, it is essential to investigate these forced vibrations in time and frequency domain. Hence, an approach to monitor and control the transverse vibration of mating gears is presented with the help of AMBs. The AMBs are capable of suppressing the vibration of the system (transients as well as steady-state) by controlled electromagnetic forces considering the rotor vibrational displacement with a closed-loop feedback system. A mathematical model has been developed with geared rotor faults, like the mesh deformation, gear run-out, and asymmetric transmission error. The transmission error has been modeled as the sum of mean and varying components of error in two orthogonal transverse directions. Based on the mathematical model, an identification algorithm has been developed. Considering full spectrum analysis of the rotor vibration and AMB current information, estimation of system parameters, i.e., the equivalent mesh stiffness, mesh damping, gear runouts, the mean and varying transmission error magnitude and phase angles, and the current and displacement constants of AMBs has been performed. Gaussian noise in responses and modeling errors in mathematical models have been added to test the robustness of the proposed algorithm to comply with the experimental settings.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"14 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79899868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, the consensus problem for general linear time-invariant (LTI) multi-agent systems (MASs) with a single input is studied in a new optimal control framework. The optimal cooperative control law is designed from a modified linear quadratic regulator (LQR) method and an inverse optimal control formulation. Three cost function terms are constructed to address the consensus, control effort, and cooperative tracking, respectively. Three distinct features of this approach can be achieved. First, the optimal feedback control law is derived analytically without involving any numerical solution. Second, this formulation guarantees both asymptotic stability and optimality. Third, the cooperative control law is distributed and only requires local information based on the communication topology to enable the agents to achieve consensus and track a desired trajectory. The performance of this optimal cooperative control method is demonstrated through an example of attitude synchronization of multiple satellites.
{"title":"An Optimal Control Approach for Consensus of General Linear Time-Invariant Multi-Agent Systems","authors":"Poorya Shobeiry, M. Xin","doi":"10.1115/1.4050505","DOIUrl":"https://doi.org/10.1115/1.4050505","url":null,"abstract":"\u0000 In this paper, the consensus problem for general linear time-invariant (LTI) multi-agent systems (MASs) with a single input is studied in a new optimal control framework. The optimal cooperative control law is designed from a modified linear quadratic regulator (LQR) method and an inverse optimal control formulation. Three cost function terms are constructed to address the consensus, control effort, and cooperative tracking, respectively. Three distinct features of this approach can be achieved. First, the optimal feedback control law is derived analytically without involving any numerical solution. Second, this formulation guarantees both asymptotic stability and optimality. Third, the cooperative control law is distributed and only requires local information based on the communication topology to enable the agents to achieve consensus and track a desired trajectory. The performance of this optimal cooperative control method is demonstrated through an example of attitude synchronization of multiple satellites.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"34 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81234252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}