首页 > 最新文献

Journal of Biomechanical Engineering-Transactions of the Asme最新文献

英文 中文
In Vivo Quantification of Ascending Thoracic Aortic Aneurysm Wall Stretch Using MRI: Relationship to Repair Threshold Diameter and Ex Vivo Wall Failure Behavior. 利用核磁共振成像对升胸主动脉瘤壁拉伸进行体内定量:与修复阈值直径和体内壁破坏行为的关系
IF 1.7 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-12-01 DOI: 10.1115/1.4066430
Huiming Dong, Henrik Haraldsson, Joseph Leach, Ang Zhou, Megan Ballweber, Chengcheng Zhu, Yue Xuan, Zhongjie Wang, Michael Hope, Frederick H Epstein, Liang Ge, David Saloner, Elaine Tseng, Dimitrios Mitsouras

Ascending thoracic aortic aneurysms (aTAAs) can lead to life-threatening dissection and rupture. Recent studies have highlighted aTAA mechanical properties as relevant factors associated with progression. The aim of this study was to quantify in vivo aortic wall stretch in healthy participants and aTAA patients using displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging. Moreover, aTAA wall stretch between surgical and nonsurgical patients was investigated. Finally, DENSE measurements were compared to reference-standard mechanical testing on aTAA specimens from surgical repairs. In total, 18 subjects were recruited, six healthy participants and 12 aTAA patients, for this prospective study. Electrocardiogram-gated DENSE imaging was performed to measure systole-diastole wall stretch, as well as the ratio of aTAA stretch to unaffected descending thoracic aorta stretch. Free-breathing and breath-hold DENSE protocols were used. Uniaxial tensile testing-measured indices were correlated to DENSE measurements in five harvested specimens. in vivo aortic wall stretch was significantly lower in aTAA compared to healthy subjects (1.75±1.44% versus 5.28±1.92%, respectively, P = 0.0004). There was no correlation between stretch and maximum aTAA diameter (P = 0.56). The ratio of aTAA to unaffected thoracic aorta wall stretch was significantly lower in surgical candidates compared to nonsurgical candidates (0.993±0.011 versus 1.017±0.016, respectively, P = 0.0442). Finally, in vivo aTAA wall stretch correlated to wall failure stress and peak modulus of the intima (P = 0.017 and P = 0.034, respectively), while the stretch ratio correlated to whole-wall thickness failure stretch and stress (P = 0.013 and P = 0.040, respectively). Aortic DENSE has the potential to assess differences in aTAA mechanical properties and progressions.

背景升主动脉瘤(aTAA)可导致夹层和破裂,危及生命。最近的研究强调,主动脉瘤的机械特性是导致其恶化的相关因素。本研究的目的是使用刺激回波位移编码(DENSE)核磁共振成像技术量化健康参与者和 aTAA 患者体内主动脉壁的拉伸。此外,还研究了手术和非手术患者的主动脉壁伸展情况。最后,将 DENSE 测量结果与手术修复的 aTAA 标本的参考标准机械测试结果进行比较。方法 在这项前瞻性研究中,共招募了 18 名受试者,其中包括 6 名健康参与者和 12 名 aTAA 患者。采用心电图门控 DENSE 成像测量收缩-舒张期室壁拉伸以及 aTAA 拉伸与未受影响的降胸主动脉拉伸之比。采用自由呼吸和屏气 DENSE 方案。在五个标本中将单轴拉伸试验测量的指数与 DENSE 测量值进行了关联。结果 与健康受试者相比,aTAA 的体内主动脉壁拉伸率明显较低(P=.0004)。拉伸与 aTAA 最大直径之间没有相关性。与非手术人选相比,手术人选的 aTAA 与未受影响的胸主动脉壁拉伸比明显较低(P=.0442)。最后,体内 aTAA 壁拉伸与壁失效应力和内膜峰值模量相关(分别为 P=.017 和 P=.034),而拉伸比与全壁厚度失效拉伸和应力相关(分别为 P=.013 和 P=.040)。结论 主动脉 DENSE 具有评估 aTAA 机械性能和进展差异的潜力。
{"title":"In Vivo Quantification of Ascending Thoracic Aortic Aneurysm Wall Stretch Using MRI: Relationship to Repair Threshold Diameter and Ex Vivo Wall Failure Behavior.","authors":"Huiming Dong, Henrik Haraldsson, Joseph Leach, Ang Zhou, Megan Ballweber, Chengcheng Zhu, Yue Xuan, Zhongjie Wang, Michael Hope, Frederick H Epstein, Liang Ge, David Saloner, Elaine Tseng, Dimitrios Mitsouras","doi":"10.1115/1.4066430","DOIUrl":"10.1115/1.4066430","url":null,"abstract":"<p><p>Ascending thoracic aortic aneurysms (aTAAs) can lead to life-threatening dissection and rupture. Recent studies have highlighted aTAA mechanical properties as relevant factors associated with progression. The aim of this study was to quantify in vivo aortic wall stretch in healthy participants and aTAA patients using displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging. Moreover, aTAA wall stretch between surgical and nonsurgical patients was investigated. Finally, DENSE measurements were compared to reference-standard mechanical testing on aTAA specimens from surgical repairs. In total, 18 subjects were recruited, six healthy participants and 12 aTAA patients, for this prospective study. Electrocardiogram-gated DENSE imaging was performed to measure systole-diastole wall stretch, as well as the ratio of aTAA stretch to unaffected descending thoracic aorta stretch. Free-breathing and breath-hold DENSE protocols were used. Uniaxial tensile testing-measured indices were correlated to DENSE measurements in five harvested specimens. in vivo aortic wall stretch was significantly lower in aTAA compared to healthy subjects (1.75±1.44% versus 5.28±1.92%, respectively, P = 0.0004). There was no correlation between stretch and maximum aTAA diameter (P = 0.56). The ratio of aTAA to unaffected thoracic aorta wall stretch was significantly lower in surgical candidates compared to nonsurgical candidates (0.993±0.011 versus 1.017±0.016, respectively, P = 0.0442). Finally, in vivo aTAA wall stretch correlated to wall failure stress and peak modulus of the intima (P = 0.017 and P = 0.034, respectively), while the stretch ratio correlated to whole-wall thickness failure stretch and stress (P = 0.013 and P = 0.040, respectively). Aortic DENSE has the potential to assess differences in aTAA mechanical properties and progressions.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142121205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of an Inverse Method for Quantifying Spatially Variable Mechanics. 评估用于量化空间可变力学的逆方法。
IF 1.7 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-12-01 DOI: 10.1115/1.4066434
Daniel P Pearce, Colleen M Witzenburg

Soft biological tissues often function as highly deformable membranes in vivo and exhibit impressive mechanical behavior effectively characterized by planar biaxial testing. The Generalized Anisotropic Inverse Mechanics (GAIM) method links full-field deformations and boundary forces from mechanical testing to quantify material properties of soft, anisotropic, heterogeneous tissues. In this study, we introduced an orthotropic constraint to GAIM to improve the quality and physical significance of its mechanical characterizations. We evaluated the updated GAIM method using simulated and experimental biaxial testing datasets obtained from soft tissue analogs (PDMS and TissueMend) with well-defined mechanical properties. GAIM produced stiffnesses (first Kelvin moduli, K1) that agreed well with previously published Young's moduli of PDMS samples. It also matched the stiffness moduli determined via uniaxial testing for TissueMend, a collagen-rich patch intended for tendon repair. We then conducted the first biaxial testing of TissueMend and confirmed that the sample was mechanically anisotropic via a relative anisotropy metric produced by GAIM. Next, we demonstrated the benefits of full-field laser micrometry in distinguishing between spatial variations in thickness and stiffness. Finally, we conducted an analysis to verify that results were independent of partitioning scheme. The success of the newly implemented constraints on GAIM suggests notable potential for applying this tool to soft tissues, particularly following the onset of pathologies that induce mechanical and structural heterogeneities.

软生物组织在体内通常具有高度可变形膜的功能,并通过平面双轴测试有效地表征出令人印象深刻的机械行为。广义各向异性反力学(GAIM)方法将机械测试的全场变形和边界力联系起来,以量化各向异性异质软组织的材料特性。在本研究中,我们为 GAIM 引入了正交约束,以提高其力学特性的质量和物理意义。我们使用从具有明确机械特性的软组织类似物(PDMS 和 TissueMend)中获得的模拟和实验双轴测试数据集对更新后的 GAIM 方法进行了评估。GAIM 得出的刚度(第一开尔文模量,K1)与之前公布的 PDMS 样品的杨氏模量非常吻合。它还与 TissueMend(一种用于肌腱修复的富含胶原蛋白的贴片)通过单轴测试确定的刚度模量相匹配。然后,我们对 TissueMend 进行了首次双轴测试,并通过 GAIM 生成的相对各向异性指标确认了样品的机械各向异性。接下来,我们展示了全场激光测微仪在区分厚度和硬度的空间变化方面的优势。最后,我们进行了一项分析,以验证结果与分区方案无关。新实施的 GAIM 约束条件取得了成功,这表明该工具在软组织中的应用潜力巨大,尤其是在发生病变后,病变会引起机械和结构的异质性。
{"title":"Evaluation of an Inverse Method for Quantifying Spatially Variable Mechanics.","authors":"Daniel P Pearce, Colleen M Witzenburg","doi":"10.1115/1.4066434","DOIUrl":"10.1115/1.4066434","url":null,"abstract":"<p><p>Soft biological tissues often function as highly deformable membranes in vivo and exhibit impressive mechanical behavior effectively characterized by planar biaxial testing. The Generalized Anisotropic Inverse Mechanics (GAIM) method links full-field deformations and boundary forces from mechanical testing to quantify material properties of soft, anisotropic, heterogeneous tissues. In this study, we introduced an orthotropic constraint to GAIM to improve the quality and physical significance of its mechanical characterizations. We evaluated the updated GAIM method using simulated and experimental biaxial testing datasets obtained from soft tissue analogs (PDMS and TissueMend) with well-defined mechanical properties. GAIM produced stiffnesses (first Kelvin moduli, K1) that agreed well with previously published Young's moduli of PDMS samples. It also matched the stiffness moduli determined via uniaxial testing for TissueMend, a collagen-rich patch intended for tendon repair. We then conducted the first biaxial testing of TissueMend and confirmed that the sample was mechanically anisotropic via a relative anisotropy metric produced by GAIM. Next, we demonstrated the benefits of full-field laser micrometry in distinguishing between spatial variations in thickness and stiffness. Finally, we conducted an analysis to verify that results were independent of partitioning scheme. The success of the newly implemented constraints on GAIM suggests notable potential for applying this tool to soft tissues, particularly following the onset of pathologies that induce mechanical and structural heterogeneities.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topology Optimization Driven Bone-Remodeling Simulation for Lumbar Interbody Fusion. 拓扑优化驱动的腰椎椎间融合骨重塑模拟
IF 1.7 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-12-01 DOI: 10.1115/1.4066369
Zuowei Wang, Weisheng Zhang, Yao Meng, Zhe Xiao, Yue Mei

This study proposes a numerical approach for simulating bone remodeling in lumbar interbody fusion (LIF). It employs a topology optimization method to drive the remodeling process and uses a pixel function to describe the structural topology and bone density distribution. Unlike traditional approaches based on strain energy density or compliance, this study adopts von Mises stress to guide the remodeling of LIF. A novel pixel interpolation scheme associated with stress criteria is applied to the physical properties of the bone, directly addressing the stress shielding effect caused by the implanted cage, which significantly influences the bone remodeling outcome in LIF. Additionally, a boundary inverse approach is utilized to reconstruct a simplified analysis model. To reduce computational cost while maintaining high structural resolution and accuracy, the scaled boundary finite element method (SBFEM) is introduced. The proposed numerical approach successfully generates results that closely resemble human lumbar interbody fusion.

本研究提出了一种模拟腰椎椎间融合术(LIF)骨重塑的数值方法。它采用拓扑优化方法来驱动重塑过程,并使用像素函数来描述结构拓扑和骨密度分布。与基于应变能密度或顺应性的传统方法不同,该研究采用冯米塞斯应力来指导 LIF 的重塑。一种与应力标准相关的新颖像素插值方案被应用到骨的物理特性中,直接解决了植入骨笼引起的应力屏蔽效应,该效应对 LIF 的骨重塑结果有显著影响。此外,还利用边界反演方法重建了简化分析模型。为了在保持高结构分辨率和精确度的同时降低计算成本,引入了比例边界有限元法(SBFEM)。所提出的数值方法成功地生成了与人体腰椎椎间融合非常相似的结果。
{"title":"Topology Optimization Driven Bone-Remodeling Simulation for Lumbar Interbody Fusion.","authors":"Zuowei Wang, Weisheng Zhang, Yao Meng, Zhe Xiao, Yue Mei","doi":"10.1115/1.4066369","DOIUrl":"10.1115/1.4066369","url":null,"abstract":"<p><p>This study proposes a numerical approach for simulating bone remodeling in lumbar interbody fusion (LIF). It employs a topology optimization method to drive the remodeling process and uses a pixel function to describe the structural topology and bone density distribution. Unlike traditional approaches based on strain energy density or compliance, this study adopts von Mises stress to guide the remodeling of LIF. A novel pixel interpolation scheme associated with stress criteria is applied to the physical properties of the bone, directly addressing the stress shielding effect caused by the implanted cage, which significantly influences the bone remodeling outcome in LIF. Additionally, a boundary inverse approach is utilized to reconstruct a simplified analysis model. To reduce computational cost while maintaining high structural resolution and accuracy, the scaled boundary finite element method (SBFEM) is introduced. The proposed numerical approach successfully generates results that closely resemble human lumbar interbody fusion.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Study on the Effects of Valve Orientation on the Hemodynamics and Leaflet Dynamics of Bioprosthetic Pulmonary Valves. 瓣膜方向对生物人工肺动脉瓣血液动力学和瓣叶动力学影响的计算研究。
IF 1.7 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-12-01 DOI: 10.1115/1.4066178
Kwang Bem Ko, Jung-Hee Seo, Ashish Doshi, Danielle Gottlieb Sen, Rajat Mittal

Pulmonary valves do not display a fibrous annulus as do other valves in the heart; thus, pulmonary valves can be implanted at multiple orientations and locations within the right ventricular outflow tract (RVOT). This gives surgeons more freedom when implanting the valve but it also results in uncertainties regarding placement, particularly with respect to valve orientation. We investigate the pulmonary artery hemodynamics and valve leaflet dynamics of pulmonary valve replacements (PVRs) with various orientations via fluid-structure interaction (FSI) models. A canonical model of the branching pulmonary artery is coupled with a dynamic model of a pulmonary valve, and from this we quantify the effect of valve implant orientation on the postvalvular hemodynamics and leaflet dynamics. Metrics such as turbulent kinetic energy (TKE), branch pulmonary artery flow distributions, projected valve opening area (PVOA), and pressure differentials across the valve leaflets are analyzed. Our results indicate that off-axis orientation results in higher pressure forces and flow and energy asymmetry, which potentially have implications for long-term durability of implanted bioprosthetic valves.

肺动脉瓣不像心脏中的其他瓣膜那样显示纤维环;因此,肺动脉瓣可以在右心室流出道(RVOT)内的多个方向和位置植入。这使外科医生在植入瓣膜时有了更大的自由度,但同时也造成了植入位置的不确定性,尤其是瓣膜方向的不确定性。我们通过流体-结构相互作用模型研究了不同方向的 PVR 的肺动脉血流动力学和瓣叶动力学。我们将肺动脉分支的典型模型与肺动脉瓣的动态模型相结合,并由此量化了瓣膜植入方向对瓣后血流动力学和瓣叶动力学的影响。我们分析了湍流动能、肺动脉分支流量分布、瓣膜开口面积投影以及瓣叶压差等指标。我们的研究结果表明,偏离轴线的取向会导致更高的压力、流量和能量不对称,这可能会对植入生物人工瓣膜的长期耐久性产生影响。
{"title":"Computational Study on the Effects of Valve Orientation on the Hemodynamics and Leaflet Dynamics of Bioprosthetic Pulmonary Valves.","authors":"Kwang Bem Ko, Jung-Hee Seo, Ashish Doshi, Danielle Gottlieb Sen, Rajat Mittal","doi":"10.1115/1.4066178","DOIUrl":"10.1115/1.4066178","url":null,"abstract":"<p><p>Pulmonary valves do not display a fibrous annulus as do other valves in the heart; thus, pulmonary valves can be implanted at multiple orientations and locations within the right ventricular outflow tract (RVOT). This gives surgeons more freedom when implanting the valve but it also results in uncertainties regarding placement, particularly with respect to valve orientation. We investigate the pulmonary artery hemodynamics and valve leaflet dynamics of pulmonary valve replacements (PVRs) with various orientations via fluid-structure interaction (FSI) models. A canonical model of the branching pulmonary artery is coupled with a dynamic model of a pulmonary valve, and from this we quantify the effect of valve implant orientation on the postvalvular hemodynamics and leaflet dynamics. Metrics such as turbulent kinetic energy (TKE), branch pulmonary artery flow distributions, projected valve opening area (PVOA), and pressure differentials across the valve leaflets are analyzed. Our results indicate that off-axis orientation results in higher pressure forces and flow and energy asymmetry, which potentially have implications for long-term durability of implanted bioprosthetic valves.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141898988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling Fatigue Failure of Cartilage and Fibrous Biological Tissues Using Constrained Reactive Mixture Theory. 利用受限反应混合物理论模拟软骨和纤维生物组织的疲劳失效
IF 1.7 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-12-01 DOI: 10.1115/1.4066219
Brandon K Zimmerman, Steve A Maas, Jeffrey A Weiss, Gerard A Ateshian

Fatigue failure in biological soft tissues plays a critical role in the etiology of chronic soft tissue injuries and diseases such as osteoarthritis (OA). Understanding failure mechanisms is hindered by the decades-long timescales over which damage takes place. Analyzing the factors contributing to fatigue failure requires the help of validated computational models developed for soft tissues. This study presents a framework for fatigue failure of fibrous biological tissues based on reaction kinetics, where the composition of intact and fatigued material regions can evolve via degradation and breakage over time, in response to energy-based fatigue and damage criteria. Using reactive constrained mixture theory, material region mass fractions are governed by the axiom of mass balance. Progression of fatigue is controlled by an energy-based reaction rate, with user-selected probability functions defining the damage propensity of intact and fatigued material regions. Verification of this reactive theory, which is implemented in the open-source FEBio finite element software, is provided in this study. Validation is also demonstrated against experimental data, showing that predicted damage can be linked to results from biochemical assays. The framework is also applied to study fatigue failure during frictional contact of cartilage. Simulating previous experiments suggests that frictional effects slightly increase fatigue progression, but the main driver is cyclic compressive contact loading. This study demonstrated the ability of theoretical models to complement and extend experimental findings, advancing our understanding of the time progression of fatigue in biological tissues.

生物软组织的疲劳破坏在慢性软组织损伤和骨关节炎等疾病的病因中起着至关重要的作用。由于损伤发生的时间跨度长达数十年,因此阻碍了对失效机制的了解。分析导致疲劳失效的因素需要借助针对软组织开发的有效计算模型。本研究提出了一个基于反应动力学的纤维状生物组织疲劳破坏框架,其中完整和疲劳材料区域的组成可随着时间的推移通过降解和断裂发生变化,以响应基于能量的疲劳和损伤标准。利用反应约束混合物理论,材料区域的质量分数受质量平衡公理支配。疲劳进程由基于能量的反应速率控制,用户选择的概率函数定义了完好和疲劳材料区域的损坏倾向。本研究验证了在开源 FEBio 有限元软件中实施的这一反应理论。研究还根据实验数据进行了验证,表明预测的损伤可与生化检测结果联系起来。该框架还被用于研究软骨摩擦接触过程中的疲劳破坏。模拟以前的实验表明,摩擦效应会略微增加疲劳进程,但主要驱动因素是循环压缩接触负荷。这项研究证明了理论模型补充和扩展实验结果的能力,推进了我们对生物组织疲劳时间进展的理解。
{"title":"Modeling Fatigue Failure of Cartilage and Fibrous Biological Tissues Using Constrained Reactive Mixture Theory.","authors":"Brandon K Zimmerman, Steve A Maas, Jeffrey A Weiss, Gerard A Ateshian","doi":"10.1115/1.4066219","DOIUrl":"10.1115/1.4066219","url":null,"abstract":"<p><p>Fatigue failure in biological soft tissues plays a critical role in the etiology of chronic soft tissue injuries and diseases such as osteoarthritis (OA). Understanding failure mechanisms is hindered by the decades-long timescales over which damage takes place. Analyzing the factors contributing to fatigue failure requires the help of validated computational models developed for soft tissues. This study presents a framework for fatigue failure of fibrous biological tissues based on reaction kinetics, where the composition of intact and fatigued material regions can evolve via degradation and breakage over time, in response to energy-based fatigue and damage criteria. Using reactive constrained mixture theory, material region mass fractions are governed by the axiom of mass balance. Progression of fatigue is controlled by an energy-based reaction rate, with user-selected probability functions defining the damage propensity of intact and fatigued material regions. Verification of this reactive theory, which is implemented in the open-source FEBio finite element software, is provided in this study. Validation is also demonstrated against experimental data, showing that predicted damage can be linked to results from biochemical assays. The framework is also applied to study fatigue failure during frictional contact of cartilage. Simulating previous experiments suggests that frictional effects slightly increase fatigue progression, but the main driver is cyclic compressive contact loading. This study demonstrated the ability of theoretical models to complement and extend experimental findings, advancing our understanding of the time progression of fatigue in biological tissues.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500809/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141996963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How Irregular Geometry and Flow Waveform Affect Pulsating Arterial Mass Transfer. 不规则几何形状和复杂进给波如何影响脉动动脉传质。
IF 1.7 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-12-01 DOI: 10.1115/1.4065556
Wayne Strasser

Alzheimer's disease is a progressive degenerative condition that has various levels of effect on one's memory. It is thought to be caused by a buildup of protein in small fluid-filled spaces in the brain called perivascular spaces (PVS). The PVS often takes on the form of an annular region around arteries and is used as a protein-clearing system for the brain. To analyze the modes of mass transfer in the PVS, a digitized scan of a mouse brain PVS segment was meshed and used for computational fluid dynamics (CFD) studies. Tandem analyses were then carried out and compared between the mouse PVS section and a cylinder with commensurate dimensionless parameters and hydraulic resistance. The geometry pair was used to first validate the CFD model and then assess mass transfer in various advection states: no-flow, constant flow, sinusoidal flow, sinusoidal flow with zero net solvent flux, and an anatomically correct asymmetrical periodic flow. Two mass transfer situations were considered, one being a protein build-up and the other being a protein blend-down using a multitude of metrics. Bulk arterial solute transport was found to be advection-controlled. The consideration of temporal evolution and trajectories of contiguous protein bolus volumes revealed that flow pulsation was beneficial at bolus break-up and that additional local wall curvature-based geometry irregularities also were. Using certain measures, local solute peak concentration blend-down appeared to be diffusion-dominated even for high Peclet numbers; however, bolus size evolution analyses showed definite advection support.

阿尔茨海默病是一种渐进性退行性疾病,对人的记忆力有不同程度的影响。它被认为是由于蛋白质在大脑中被称为血管周围间隙(PVS)的充满液体的小空间中堆积所致。PVS 通常以环形区域的形式存在于动脉周围,被用作大脑的蛋白质清除系统。为了分析 PVS 中的传质模式,对小鼠大脑 PVS 部分进行了数字化扫描,并将其网格化,用于计算流体动力学(CFD)研究。然后在小鼠 PVS 截面和具有相应无量纲参数和水力阻力的圆柱体之间进行串联分析和比较。这对几何体首先用于验证 CFD 模型,然后评估各种平流状态下的传质情况:无流、恒定流、正弦流、溶剂净流量为零的正弦流以及解剖学上正确的非对称周期流。考虑了两种质量传递情况,一种是蛋白质堆积,另一种是蛋白质混合下降。结果表明,对于所有相关流动和两种蛋白质情况,解剖学上正确的 PVS 几何形状几乎没有清除蛋白质的益处。令人惊讶的是,即使在佩克莱特数较高的情况下,溶质混合下降也是以扩散为主。本文的研究结果得出结论,将 PVS 几何形状纳入现有的减阶建模动脉网络中,风险极小。
{"title":"How Irregular Geometry and Flow Waveform Affect Pulsating Arterial Mass Transfer.","authors":"Wayne Strasser","doi":"10.1115/1.4065556","DOIUrl":"10.1115/1.4065556","url":null,"abstract":"<p><p>Alzheimer's disease is a progressive degenerative condition that has various levels of effect on one's memory. It is thought to be caused by a buildup of protein in small fluid-filled spaces in the brain called perivascular spaces (PVS). The PVS often takes on the form of an annular region around arteries and is used as a protein-clearing system for the brain. To analyze the modes of mass transfer in the PVS, a digitized scan of a mouse brain PVS segment was meshed and used for computational fluid dynamics (CFD) studies. Tandem analyses were then carried out and compared between the mouse PVS section and a cylinder with commensurate dimensionless parameters and hydraulic resistance. The geometry pair was used to first validate the CFD model and then assess mass transfer in various advection states: no-flow, constant flow, sinusoidal flow, sinusoidal flow with zero net solvent flux, and an anatomically correct asymmetrical periodic flow. Two mass transfer situations were considered, one being a protein build-up and the other being a protein blend-down using a multitude of metrics. Bulk arterial solute transport was found to be advection-controlled. The consideration of temporal evolution and trajectories of contiguous protein bolus volumes revealed that flow pulsation was beneficial at bolus break-up and that additional local wall curvature-based geometry irregularities also were. Using certain measures, local solute peak concentration blend-down appeared to be diffusion-dominated even for high Peclet numbers; however, bolus size evolution analyses showed definite advection support.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141066201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitigating Crouch Gait With an Autonomous Pediatric Knee Exoskeleton in the Neurologically Impaired. 利用自主式小儿膝关节外骨骼减轻神经受损者的蹲踞步态
IF 1.7 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-12-01 DOI: 10.1115/1.4066370
Dawit Lee, Sierra C Mulrine, Max K Shepherd, David E Westberry, Benjamin M Rogozinski, Kinsey R Herrin, Aaron J Young

Crouch gait is one of the most common compensatory walking patterns found in individuals with neurological disorders, often accompanied by their limited physical capacity. Notable kinematic characteristics of crouch gait are excessive knee flexion during stance and reduced range of motion during swing. Knee exoskeletons have the potential to improve crouch gait by providing precisely controlled torque assistance directly to the knee joint. In this study, we implemented a finite-state machine-based impedance controller for a powered knee exoskeleton to provide assistance during both stance and swing phases for five children and young adults who exhibit chronic crouch gait. The assistance provided a strong orthotic effect, increasing stance phase knee extension by an average of 12 deg. Additionally, the knee range of motion during swing was increased by an average of 15 deg. Changes to spatiotemporal outcomes, such as preferred walking speed and percent stance phase, were inconsistent across subjects and indicative of the underlying intricacies of user response to assistance. This study demonstrates the potential of knee exoskeletons operating in impedance control to mitigate the negative kinematic characteristics of crouch gait during both stance and swing phases of gait.

蹲踞步态是神经系统疾病患者因体能有限而最常见的代偿性行走模式之一。蹲踞步态的显著运动学特征是站立时膝关节过度屈曲,摆动时活动范围缩小。膝关节外骨骼有可能通过直接向膝关节提供精确控制的扭矩辅助来改善蹲踞步态。在这项研究中,我们为动力膝关节外骨骼实施了基于有限状态机的阻抗控制器,为五名表现出慢性蹲踞步态的儿童/青少年在站立和摆动时提供辅助。这种辅助具有很强的矫形效果,可将站立阶段的膝关节伸展量平均增加 12&amp;#176;。摆动时膝关节的活动范围平均增加了 15&amp;#176;。不同受试者的时空结果(如首选行走速度和站立阶段百分比)变化不一致,这表明用户对辅助的反应存在潜在的复杂性。这项研究证明了膝关节外骨骼在阻抗控制中的运行潜力,可以减轻蹲踞步态在步态的站立和摆动阶段的负面运动特性。
{"title":"Mitigating Crouch Gait With an Autonomous Pediatric Knee Exoskeleton in the Neurologically Impaired.","authors":"Dawit Lee, Sierra C Mulrine, Max K Shepherd, David E Westberry, Benjamin M Rogozinski, Kinsey R Herrin, Aaron J Young","doi":"10.1115/1.4066370","DOIUrl":"10.1115/1.4066370","url":null,"abstract":"<p><p>Crouch gait is one of the most common compensatory walking patterns found in individuals with neurological disorders, often accompanied by their limited physical capacity. Notable kinematic characteristics of crouch gait are excessive knee flexion during stance and reduced range of motion during swing. Knee exoskeletons have the potential to improve crouch gait by providing precisely controlled torque assistance directly to the knee joint. In this study, we implemented a finite-state machine-based impedance controller for a powered knee exoskeleton to provide assistance during both stance and swing phases for five children and young adults who exhibit chronic crouch gait. The assistance provided a strong orthotic effect, increasing stance phase knee extension by an average of 12 deg. Additionally, the knee range of motion during swing was increased by an average of 15 deg. Changes to spatiotemporal outcomes, such as preferred walking speed and percent stance phase, were inconsistent across subjects and indicative of the underlying intricacies of user response to assistance. This study demonstrates the potential of knee exoskeletons operating in impedance control to mitigate the negative kinematic characteristics of crouch gait during both stance and swing phases of gait.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Structure and Wearing Modes on the Protective Performance of Industrial Safety Helmet. 结构和佩戴方式对工业安全帽防护性能的影响
IF 1.7 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-12-01 DOI: 10.1115/1.4066467
Tian-Cheng Li, Hua Zhao, Bin Zhang, Cheng-Fei Du

This study aims to explore the effects of helmet structure designs and wearing modes on the protective performance of safety helmets under the impact of falling objects. Four helmet types (no helmet, V-shaped, dome-shaped, and motorcycle helmets) and five wearing modes (left and right tilt by 5 deg, backward tilt by 15 deg, 0 deg without chin strap, 0 deg with chin strap) were included in this study. The axial impact of a concrete block under various impact velocities was simulated. The results indicate that the energy absorption and shock mitigation effects of the foam cushion are superior to those of the suspension system in traditional industrial safety helmets. The structure of the top of V-shaped helmets is designed to withstand greater impact. Regarding the wearing mode, the helmet strap's deflection angle increases stress in the brain tissue and skull, heightens intracranial pressure, and causes pressure diffusion toward the forehead.

本研究旨在探讨安全头盔的结构设计和佩戴模式对坠物冲击下安全头盔防护性能的影响。本研究包括四种头盔类型(无头盔、V 形头盔、圆顶头盔和摩托车头盔)和五种佩戴模式(左右倾斜 5°、向后倾斜 15°、无颏带 0°、有颏带 0°),并模拟了不同冲击速度下混凝土块的轴向冲击。结果表明,泡沫缓冲垫的能量和冲击吸收效果优于传统工业安全头盔的悬挂系统。V 形安全帽顶部的结构设计可承受更大的冲击力。在佩戴模式方面,头盔带的偏转角度不仅增加了脑组织和颅骨的应力以及颅内压力的大小,还导致压力向前额扩散。
{"title":"Effect of Structure and Wearing Modes on the Protective Performance of Industrial Safety Helmet.","authors":"Tian-Cheng Li, Hua Zhao, Bin Zhang, Cheng-Fei Du","doi":"10.1115/1.4066467","DOIUrl":"10.1115/1.4066467","url":null,"abstract":"<p><p>This study aims to explore the effects of helmet structure designs and wearing modes on the protective performance of safety helmets under the impact of falling objects. Four helmet types (no helmet, V-shaped, dome-shaped, and motorcycle helmets) and five wearing modes (left and right tilt by 5 deg, backward tilt by 15 deg, 0 deg without chin strap, 0 deg with chin strap) were included in this study. The axial impact of a concrete block under various impact velocities was simulated. The results indicate that the energy absorption and shock mitigation effects of the foam cushion are superior to those of the suspension system in traditional industrial safety helmets. The structure of the top of V-shaped helmets is designed to withstand greater impact. Regarding the wearing mode, the helmet strap's deflection angle increases stress in the brain tissue and skull, heightens intracranial pressure, and causes pressure diffusion toward the forehead.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142301314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex-Based Differences and Asymmetry in Hip Kinematics During Unilateral Extension From Deep Hip Flexion. 从髋关节深屈开始单侧伸展时髋关节运动学的性别差异和不对称。
IF 1.7 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-12-01 DOI: 10.1115/1.4066466
Camille C Johnson, Ethan Ruh, Naomi Frankston, Shaquille Charles, Michael McClincy, William Anderst

The purpose of this study was to identify side-to-side and sex-based differences in hip kinematics during a unilateral step-up from deep flexion. Twelve (eight men, four women) asymptomatic young adults performed a step ascent motion while synchronized biplane radiographs of the hip were collected at 50 images per second. Femur and pelvis position were determined using a validated volumetric model-based tracking technique that matched digitally reconstructed radiographs created from subject-specific computed tomography (CT) bone models to each pair of synchronized radiographs. Hip kinematics and side-to-side differences were calculated and a linear mixed effects model evaluated sex-based differences. Women were on average 10.2 deg more abducted and 0.2 mm more medially translated than men across the step up motion (p < 0.001). Asymmetry between hips was up to 14.1 ± 12.1 deg in internal rotation and 1.3 ± 1.4 mm in translation. This dataset demonstrates the inherent asymmetry during movements involving unilateral hip extension from deep flexion and may be used provide context for observed kinematics differences following surgery or rehabilitation. Previously reported kinematic differences between total hip arthroplasty and contralateral hips may be well within the natural side-to-side differences that exist in asymptomatic native hips.

本研究的目的是确定单侧深屈上台阶时髋关节运动学的侧向和性别差异。12名(8名男性,4名女性)无症状的年轻成年人在以每秒50张图像的速度同步采集髋部双平面X光片的同时,进行了台阶上升运动。股骨和骨盆的位置是通过一种经过验证的基于容积模型的跟踪技术确定的,该技术可将由特定受试者的计算机断层扫描(CT)骨骼模型创建的数字重建X光片与每对同步X光片相匹配。计算髋关节运动学和侧向差异,并利用线性混合效应模型评估性别差异。在整个上台阶运动中,女性比男性平均多外展 10.2°,多内旋 0.2 毫米(p
{"title":"Sex-Based Differences and Asymmetry in Hip Kinematics During Unilateral Extension From Deep Hip Flexion.","authors":"Camille C Johnson, Ethan Ruh, Naomi Frankston, Shaquille Charles, Michael McClincy, William Anderst","doi":"10.1115/1.4066466","DOIUrl":"10.1115/1.4066466","url":null,"abstract":"<p><p>The purpose of this study was to identify side-to-side and sex-based differences in hip kinematics during a unilateral step-up from deep flexion. Twelve (eight men, four women) asymptomatic young adults performed a step ascent motion while synchronized biplane radiographs of the hip were collected at 50 images per second. Femur and pelvis position were determined using a validated volumetric model-based tracking technique that matched digitally reconstructed radiographs created from subject-specific computed tomography (CT) bone models to each pair of synchronized radiographs. Hip kinematics and side-to-side differences were calculated and a linear mixed effects model evaluated sex-based differences. Women were on average 10.2 deg more abducted and 0.2 mm more medially translated than men across the step up motion (p < 0.001). Asymmetry between hips was up to 14.1 ± 12.1 deg in internal rotation and 1.3 ± 1.4 mm in translation. This dataset demonstrates the inherent asymmetry during movements involving unilateral hip extension from deep flexion and may be used provide context for observed kinematics differences following surgery or rehabilitation. Previously reported kinematic differences between total hip arthroplasty and contralateral hips may be well within the natural side-to-side differences that exist in asymptomatic native hips.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500802/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142301318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of Variation in Sagittal Curvature of the Femoral Condyles. 股骨髁矢状曲率变化分析
IF 1.7 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-11-01 DOI: 10.1115/1.4065813
Eden Winslow, Xuanbei Pan, Maury L Hull

In designing femoral components, which restore native (i.e., healthy) knee kinematics, the flexion-extension (F-E) axis of the tibiofemoral joint should match that of the native knee. Because the F-E axis is governed by the curvature of the femoral condyles in the sagittal plane, the primary objective was to determine the variation in radii of curvature. Eleven high accuracy three-dimensional (3D) femur models were generated from ultrahigh resolution CT scans. The sagittal profile of each condyle was created. The radii of curvature at 15 deg increments of arc length were determined based on segment circles best-fit to ±15 deg of arc at each increment. Results were standardized to the radius of the best-fit overall circle to 15 deg-105 deg for the femoral condyle having a radius closest to the mean radius. Medial and lateral femoral condyles exhibited multiradius of curvature sagittal profiles where the radius decreased at 30 deg flexion by 10 mm and at 15 deg flexion by 8 mm, respectively. On either side of the decrease, radii of segment circles were relatively constant. Beyond the transition angles where the radii decreased, the anterior-posterior (A-P) positions of the centers of curvature varied 4.8 mm and 2.3 mm for the medial and lateral condyles, respectively. A two-radius of curvature profile approximates the radii of curvature of both native femoral condyles, but the transition angles differ with the transition angle of the medial femoral condyle occurring about 15 deg later in flexion. Owing to variation in A-P positions of centers of curvature, the F-E axis is not strictly fixed in the femur.

背景:在设计恢复原生(即健康)膝关节运动学的股骨组件时,屈伸(F-E)轴应与原生膝关节相匹配。由于 F-E 轴是由股骨髁关节面在矢状面上的曲率决定的,因此首要目标是确定曲率半径的变化:方法:通过高分辨率 CT 扫描生成 11 个高精度三维股骨模型。创建了每个髁的矢状面轮廓。根据最佳拟合节段圆确定弧长增量为 15 度的曲率半径。结果标准化为最佳拟合整体圆的半径,拟合范围为 15 - 105 度:结果:股骨内侧和外侧髁呈现多曲率半径矢状曲线,屈曲 30 度时半径分别减少 10 毫米和 15 度时减少 8 毫米。在下降的两侧,最佳拟合节段圆的半径相对恒定。在过渡角之外,内侧和外侧髁的曲率中心前后(A-P)位置分别相差 4.8 毫米和 2.3 毫米:结论:双曲率半径轮廓近似于两个原生股骨髁的曲率半径,但过渡角不同,股骨内侧髁的过渡角在屈曲时约晚15度。由于曲率中心 A-P 位置的变化,F-E 轴在股骨中并非严格固定。
{"title":"Analysis of Variation in Sagittal Curvature of the Femoral Condyles.","authors":"Eden Winslow, Xuanbei Pan, Maury L Hull","doi":"10.1115/1.4065813","DOIUrl":"10.1115/1.4065813","url":null,"abstract":"<p><p>In designing femoral components, which restore native (i.e., healthy) knee kinematics, the flexion-extension (F-E) axis of the tibiofemoral joint should match that of the native knee. Because the F-E axis is governed by the curvature of the femoral condyles in the sagittal plane, the primary objective was to determine the variation in radii of curvature. Eleven high accuracy three-dimensional (3D) femur models were generated from ultrahigh resolution CT scans. The sagittal profile of each condyle was created. The radii of curvature at 15 deg increments of arc length were determined based on segment circles best-fit to ±15 deg of arc at each increment. Results were standardized to the radius of the best-fit overall circle to 15 deg-105 deg for the femoral condyle having a radius closest to the mean radius. Medial and lateral femoral condyles exhibited multiradius of curvature sagittal profiles where the radius decreased at 30 deg flexion by 10 mm and at 15 deg flexion by 8 mm, respectively. On either side of the decrease, radii of segment circles were relatively constant. Beyond the transition angles where the radii decreased, the anterior-posterior (A-P) positions of the centers of curvature varied 4.8 mm and 2.3 mm for the medial and lateral condyles, respectively. A two-radius of curvature profile approximates the radii of curvature of both native femoral condyles, but the transition angles differ with the transition angle of the medial femoral condyle occurring about 15 deg later in flexion. Owing to variation in A-P positions of centers of curvature, the F-E axis is not strictly fixed in the femur.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500806/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141443706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Biomechanical Engineering-Transactions of the Asme
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1