Pub Date : 2024-05-14DOI: 10.1134/s0001433824700105
A. M. Chukharev, M. I. Pavlov
Abstract
An adequate description of the interaction between the atmosphere and ocean remains one of the most important problems of modern oceanology and climatology. The extremely wide variety of physical processes occurring in the coupled layers, large range of scales, and moving boundary all significantly complicate the creation of models that would allow calculating the physical characteristics in both media with the necessary accuracy. In this paper the temporal variability of dynamic parameters in the driving layer of the atmosphere and in the near-surface layer of the sea on small and submesoscales from one to several tens of hours is considered. The experimental data show a very high correlation between the friction wind velocity and turbulence intensity in the upper sea layer on all scales recorded. One important distinguishing feature of all measured physical quantities in both media is the presence of quasi-periodic oscillations with different periods. For a more accurate description of momentum and energy fluxes from the atmosphere, a nonstationary model of turbulent exchange in the near-surface layer of the sea is proposed. It takes into account quasi-periodicity in the intensity of dynamic interaction between the atmosphere and the sea at these scales. In the model we use the equations of momentum and turbulent energy balance, the system of equations is solved numerically, and the calculation results are compared with other models and with experimental data. It is shown that taking into account the nonstationarity of the wind strain improves the correspondence between the calculations and the experimental data. It is noted that, in the nonstationary case, the energy and momentum flux from the atmosphere and the turbulence intensity increases compared to the action of a constant average wind of the same duration. Therefore, the strong averaging often used in global models may markedly underestimate the intensity of the dynamic interaction between the atmosphere and ocean.
{"title":"Turbulent Exchange in Unsteady Air–Sea Interaction at Small and Submesoscales","authors":"A. M. Chukharev, M. I. Pavlov","doi":"10.1134/s0001433824700105","DOIUrl":"https://doi.org/10.1134/s0001433824700105","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>An adequate description of the interaction between the atmosphere and ocean remains one of the most important problems of modern oceanology and climatology. The extremely wide variety of physical processes occurring in the coupled layers, large range of scales, and moving boundary all significantly complicate the creation of models that would allow calculating the physical characteristics in both media with the necessary accuracy. In this paper the temporal variability of dynamic parameters in the driving layer of the atmosphere and in the near-surface layer of the sea on small and submesoscales from one to several tens of hours is considered. The experimental data show a very high correlation between the friction wind velocity and turbulence intensity in the upper sea layer on all scales recorded. One important distinguishing feature of all measured physical quantities in both media is the presence of quasi-periodic oscillations with different periods. For a more accurate description of momentum and energy fluxes from the atmosphere, a nonstationary model of turbulent exchange in the near-surface layer of the sea is proposed. It takes into account quasi-periodicity in the intensity of dynamic interaction between the atmosphere and the sea at these scales. In the model we use the equations of momentum and turbulent energy balance, the system of equations is solved numerically, and the calculation results are compared with other models and with experimental data. It is shown that taking into account the nonstationarity of the wind strain improves the correspondence between the calculations and the experimental data. It is noted that, in the nonstationary case, the energy and momentum flux from the atmosphere and the turbulence intensity increases compared to the action of a constant average wind of the same duration. Therefore, the strong averaging often used in global models may markedly underestimate the intensity of the dynamic interaction between the atmosphere and ocean.</p>","PeriodicalId":54911,"journal":{"name":"Izvestiya Atmospheric and Oceanic Physics","volume":"79 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140934234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-14DOI: 10.1134/s0001433824700063
M. A. Lokoshchenko
Abstract
Average empirical estimations of the surface air layer height in Moscow have been received by the data of long-term acoustic remote sensing of the atmosphere using the MODOS Doppler sodar (METEK, Germany). Based on the assumption that the average conditions are close to neutral stratification, this height, as the top of the quasi-linear section of the average long-term wind velocity profile in semilogarithmic coordinates, is 40–60 m. The wind rotation height, i.e., the height of intersection of day and night wind profiles, is 95 m per year on average. The roughness length in conditions of loosely packed but high urban development in the vicinity of Moscow State University in Moscow is 5 m. According to the criterion of the constant wind direction in the surface air layer, its height manifests itself in the monthly average wind direction profiles over the “dead zone” of the sodar (40 m) in approximately one out of three cases and usually amounts to 60 m (less often 80 or 100 m). In all other cases, it is apparently masked by the dead zone. According to this approach, the average height of the surface layer is probably a little less than 50 m, which is close to the estimate obtained from the logarithmic distribution of wind velocity with height in this layer. The daily variation of the surface air layer height is noted by the largest values in the afternoon (80–100 m in summer under conditions of prevailing unstable stratification and 60–80 m in winter) and the smallest ones (less than 40 m) in the late evening and at night in summer and from evening to noon in winter.
{"title":"On Height of the Surface Air Layer by Sodar Data","authors":"M. A. Lokoshchenko","doi":"10.1134/s0001433824700063","DOIUrl":"https://doi.org/10.1134/s0001433824700063","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Average empirical estimations of the surface air layer height in Moscow have been received by the data of long-term acoustic remote sensing of the atmosphere using the MODOS Doppler sodar (METEK, Germany). Based on the assumption that the average conditions are close to neutral stratification, this height, as the top of the quasi-linear section of the average long-term wind velocity profile in semilogarithmic coordinates, is 40–60 m. The wind rotation height, i.e., the height of intersection of day and night wind profiles, is 95 m per year on average. The roughness length in conditions of loosely packed but high urban development in the vicinity of Moscow State University in Moscow is 5 m. According to the criterion of the constant wind direction in the surface air layer, its height manifests itself in the monthly average wind direction profiles over the “dead zone” of the sodar (40 m) in approximately one out of three cases and usually amounts to 60 m (less often 80 or 100 m). In all other cases, it is apparently masked by the dead zone. According to this approach, the average height of the surface layer is probably a little less than 50 m, which is close to the estimate obtained from the logarithmic distribution of wind velocity with height in this layer. The daily variation of the surface air layer height is noted by the largest values in the afternoon (80–100 m in summer under conditions of prevailing unstable stratification and 60–80 m in winter) and the smallest ones (less than 40 m) in the late evening and at night in summer and from evening to noon in winter.</p>","PeriodicalId":54911,"journal":{"name":"Izvestiya Atmospheric and Oceanic Physics","volume":"43 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140934289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}