Spatiotemporal data prediction is of great significance in the fields of smart cities and smart manufacturing. Current spatiotemporal data prediction models heavily rely on traditional spatial views or single temporal granularity, which suffer from missing knowledge, including dynamic spatial correlations, periodicity, and mutability. This paper addresses these challenges by proposing a multi-layer attention-based predictive model. The key idea of this paper is to use a multi-layer attention mechanism to model the dynamic spatial correlation of different features. Then, multi-granularity historical features are fused to predict future spatiotemporal data. Experiments on real-world data show that the proposed model outperforms six state-of-the-art benchmark methods.
{"title":"Spatiotemporal Data Prediction Model Based on a Multi-Layer Attention Mechanism","authors":"Man Jiang, Qilong Han, Haitao Zhang, Hexiang Liu","doi":"10.4018/ijdwm.315822","DOIUrl":"https://doi.org/10.4018/ijdwm.315822","url":null,"abstract":"Spatiotemporal data prediction is of great significance in the fields of smart cities and smart manufacturing. Current spatiotemporal data prediction models heavily rely on traditional spatial views or single temporal granularity, which suffer from missing knowledge, including dynamic spatial correlations, periodicity, and mutability. This paper addresses these challenges by proposing a multi-layer attention-based predictive model. The key idea of this paper is to use a multi-layer attention mechanism to model the dynamic spatial correlation of different features. Then, multi-granularity historical features are fused to predict future spatiotemporal data. Experiments on real-world data show that the proposed model outperforms six state-of-the-art benchmark methods.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82940997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhongping Zhang, Sen Li, Weixiong Liu, Y. Wang, Daisy Xin Li
Outlier detection is an important field in data mining, which can be used in fraud detection, fault detection, and other fields. This article focuses on the problem where the density peak clustering algorithm needs a manual parameter setting and time complexity is high; the first is to use the k nearest neighbors clustering algorithm to replace the density peak of the density estimate, which adopts the KD-Tree index data structure calculation of data objects k close neighbors. Then it adopts the method of the product of density and distance automatic selection of clustering centers. In addition, the central relative distance and fast density peak clustering outliers were defined to characterize the degree of outliers of data objects. Then, based on fast density peak clustering outliers, an outlier detection algorithm was devised. Experiments on artificial and real data sets are performed to validate the algorithm, and the validity and time efficiency of the proposed algorithm are validated when compared to several conventional and innovative algorithms.
{"title":"A New Outlier Detection Algorithm Based on Fast Density Peak Clustering Outlier Factor","authors":"Zhongping Zhang, Sen Li, Weixiong Liu, Y. Wang, Daisy Xin Li","doi":"10.4018/ijdwm.316534","DOIUrl":"https://doi.org/10.4018/ijdwm.316534","url":null,"abstract":"Outlier detection is an important field in data mining, which can be used in fraud detection, fault detection, and other fields. This article focuses on the problem where the density peak clustering algorithm needs a manual parameter setting and time complexity is high; the first is to use the k nearest neighbors clustering algorithm to replace the density peak of the density estimate, which adopts the KD-Tree index data structure calculation of data objects k close neighbors. Then it adopts the method of the product of density and distance automatic selection of clustering centers. In addition, the central relative distance and fast density peak clustering outliers were defined to characterize the degree of outliers of data objects. Then, based on fast density peak clustering outliers, an outlier detection algorithm was devised. Experiments on artificial and real data sets are performed to validate the algorithm, and the validity and time efficiency of the proposed algorithm are validated when compared to several conventional and innovative algorithms.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78453444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Clustering is a basic primer of exploratory tasks. In order to obtain valuable results, the parameters in the clustering algorithm, the number of clusters must be set appropriately. Existing methods for determining the number of clusters perform well on low-dimensional small datasets, but how to effectively determine the optimal number of clusters on large high-dimensional datasets is still a challenging problem. In this paper, the authors design a method for effectively estimating the optimal number of clusters on large-scale high-dimensional datasets that can overcome the shortcomings of existing estimation methods and accurately and quickly estimate the optimal number of clusters on large-scale high-dimensional datasets. Extensive experiments show that it (1) outperforms existing estimation methods in accuracy and efficiency, (2) generalizes across different datasets, and (3) is suitable for high-dimensional large datasets.
{"title":"Estimating the Number of Clusters in High-Dimensional Large Datasets","authors":"Xutong Zhu, Lingli Li","doi":"10.4018/ijdwm.316142","DOIUrl":"https://doi.org/10.4018/ijdwm.316142","url":null,"abstract":"Clustering is a basic primer of exploratory tasks. In order to obtain valuable results, the parameters in the clustering algorithm, the number of clusters must be set appropriately. Existing methods for determining the number of clusters perform well on low-dimensional small datasets, but how to effectively determine the optimal number of clusters on large high-dimensional datasets is still a challenging problem. In this paper, the authors design a method for effectively estimating the optimal number of clusters on large-scale high-dimensional datasets that can overcome the shortcomings of existing estimation methods and accurately and quickly estimate the optimal number of clusters on large-scale high-dimensional datasets. Extensive experiments show that it (1) outperforms existing estimation methods in accuracy and efficiency, (2) generalizes across different datasets, and (3) is suitable for high-dimensional large datasets.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88955315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sibo Prasad Patro, Neelamadhab Padhy, Rahul Deo Sah
There are very few studies are carried for investigating the potential of hybrid ensemble machine learning techniques for building a model for the detection and prediction of heart disease in the human body. In this research, the authors deal with a classification problem that is a hybridization of fusion-based ensemble model with machine learning approaches, which produces a more trustworthy ensemble than the original ensemble model and outperforms previous heart disease prediction models. The proposed model is evaluated on the Cleveland heart disease dataset using six boosting techniques named XGBoost, AdaBoost, Gradient Boosting, LightGBM, CatBoost, and Histogram-Based Gradient Boosting. Hybridization produces superior results under consideration of classification algorithms. The remarkable accuracies of 96.51% for training and 93.37% for testing have been achieved by the Meta-XGBoost classifier.
{"title":"An Ensemble Approach for Prediction of Cardiovascular Disease Using Meta Classifier Boosting Algorithms","authors":"Sibo Prasad Patro, Neelamadhab Padhy, Rahul Deo Sah","doi":"10.4018/ijdwm.316145","DOIUrl":"https://doi.org/10.4018/ijdwm.316145","url":null,"abstract":"There are very few studies are carried for investigating the potential of hybrid ensemble machine learning techniques for building a model for the detection and prediction of heart disease in the human body. In this research, the authors deal with a classification problem that is a hybridization of fusion-based ensemble model with machine learning approaches, which produces a more trustworthy ensemble than the original ensemble model and outperforms previous heart disease prediction models. The proposed model is evaluated on the Cleveland heart disease dataset using six boosting techniques named XGBoost, AdaBoost, Gradient Boosting, LightGBM, CatBoost, and Histogram-Based Gradient Boosting. Hybridization produces superior results under consideration of classification algorithms. The remarkable accuracies of 96.51% for training and 93.37% for testing have been achieved by the Meta-XGBoost classifier.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45477411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Spatial keyword query has attracted the attention of many researchers. Most of the existing spatial keyword indexes do not consider the differences in keyword distribution, so their efficiencies are not high when data are skewed. To this end, this paper proposes a novel association rule mining based spatial keyword index, ARM-SQ, whose inverted lists are materialized by the frequent item sets mined by association rules; thus, intersections of long lists can be avoided. To prevent excessive space costs caused by materialization, a depth-based materialization strategy is introduced, which maintains a good balance between query and space costs. To select the right frequent item sets for answering a query, the authors further implement a benefit-based greedy frequent item set selection algorithm, BGF-Selection. The experimental results show that this algorithm significantly outperforms the existing algorithms, and its efficiency can be an order of magnitude higher than SFC-Quad.
{"title":"An Efficient Association Rule Mining-Based Spatial Keyword Index","authors":"Lianyin Jia, Haotian Tang, Mengjuan Li, Bingxin Zhao, S. Wei, Haihe Zhou","doi":"10.4018/ijdwm.316161","DOIUrl":"https://doi.org/10.4018/ijdwm.316161","url":null,"abstract":"Spatial keyword query has attracted the attention of many researchers. Most of the existing spatial keyword indexes do not consider the differences in keyword distribution, so their efficiencies are not high when data are skewed. To this end, this paper proposes a novel association rule mining based spatial keyword index, ARM-SQ, whose inverted lists are materialized by the frequent item sets mined by association rules; thus, intersections of long lists can be avoided. To prevent excessive space costs caused by materialization, a depth-based materialization strategy is introduced, which maintains a good balance between query and space costs. To select the right frequent item sets for answering a query, the authors further implement a benefit-based greedy frequent item set selection algorithm, BGF-Selection. The experimental results show that this algorithm significantly outperforms the existing algorithms, and its efficiency can be an order of magnitude higher than SFC-Quad.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88182495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chaoneng Li, Guanwen Feng, Yiran Jia, Yunan Li, Jian Ji, Qiguang Miao
Due to the rapid advancement of wireless sensor and location technologies, a large amount of mobile agent trajectory data has become available. Intelligent city systems and video surveillance all benefit from trajectory anomaly detection. The authors propose an unsupervised reconstruction error-based trajectory anomaly detection (RETAD) method for vehicles to address the issues of conventional anomaly detection, which include difficulty extracting features, are susceptible to overfitting, and have a poor anomaly detection effect. RETAD reconstructs the original vehicle trajectories through an autoencoder based on recurrent neural networks. The model obtains moving patterns of normal trajectories by eliminating the gap between the reconstruction results and the initial inputs. Anomalous trajectories are defined as those with a reconstruction error larger than anomaly threshold. Experimental results demonstrate that the effectiveness of RETAD in detecting anomalies is superior to traditional distance-based, density-based, and machine learning classification algorithms on multiple metrics.
{"title":"RETAD: Vehicle Trajectory Anomaly Detection Based on Reconstruction Error","authors":"Chaoneng Li, Guanwen Feng, Yiran Jia, Yunan Li, Jian Ji, Qiguang Miao","doi":"10.4018/ijdwm.316460","DOIUrl":"https://doi.org/10.4018/ijdwm.316460","url":null,"abstract":"Due to the rapid advancement of wireless sensor and location technologies, a large amount of mobile agent trajectory data has become available. Intelligent city systems and video surveillance all benefit from trajectory anomaly detection. The authors propose an unsupervised reconstruction error-based trajectory anomaly detection (RETAD) method for vehicles to address the issues of conventional anomaly detection, which include difficulty extracting features, are susceptible to overfitting, and have a poor anomaly detection effect. RETAD reconstructs the original vehicle trajectories through an autoencoder based on recurrent neural networks. The model obtains moving patterns of normal trajectories by eliminating the gap between the reconstruction results and the initial inputs. Anomalous trajectories are defined as those with a reconstruction error larger than anomaly threshold. Experimental results demonstrate that the effectiveness of RETAD in detecting anomalies is superior to traditional distance-based, density-based, and machine learning classification algorithms on multiple metrics.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70455534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
It is essential to have a fast, reliable, and energy-efficient connection between wireless sensor networks (WSNs). Control specifications, networking layers, media access control, and physical layers should be optimised or co-designed. Health insurance will become more expensive for individuals with lower incomes. There are privacy and cyber security issues, an increased risk of malpractice lawsuits, and more costs in terms of both time and money for doctors and patients. In this paper, personal health biomedical clothing based on wireless sensor networks (PH-BC-WSN) was used to enhance access to quality health care, boost food production through precision agriculture, and improve the quality of human resources. The internet of things enables the creation of healthcare and medical asset monitoring systems that are more efficient. There was extensive discussion of medical data eavesdropping, manipulation, fabrication of warnings, denial of services, position and tracker of users, physical interference with devices, and electromagnetic attacks.
{"title":"Personal Health and Illness Management and the Future Vision of Biomedical Clothing Based on WSN","authors":"Ge Zhang, Zubin Ning","doi":"10.4018/ijdwm.316126","DOIUrl":"https://doi.org/10.4018/ijdwm.316126","url":null,"abstract":"It is essential to have a fast, reliable, and energy-efficient connection between wireless sensor networks (WSNs). Control specifications, networking layers, media access control, and physical layers should be optimised or co-designed. Health insurance will become more expensive for individuals with lower incomes. There are privacy and cyber security issues, an increased risk of malpractice lawsuits, and more costs in terms of both time and money for doctors and patients. In this paper, personal health biomedical clothing based on wireless sensor networks (PH-BC-WSN) was used to enhance access to quality health care, boost food production through precision agriculture, and improve the quality of human resources. The internet of things enables the creation of healthcare and medical asset monitoring systems that are more efficient. There was extensive discussion of medical data eavesdropping, manipulation, fabrication of warnings, denial of services, position and tracker of users, physical interference with devices, and electromagnetic attacks.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83531376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Q. Zhu, Wenhao Ding, Mingsen Xiang, M. Hu, Ning Zhang
With the change of people's consumption mode, credit consumption has gradually become a new consumption trend. Frequent loan defaults give default prediction more and more attention. This paper proposes a new comprehensive prediction method of loan default. This method combines convolutional neural network and LightGBM algorithm to establish a prediction model. Firstly, the excellent feature extraction ability of convolutional neural network is used to extract features from the original loan data and generate a new feature matrix. Secondly, the new feature matrix is used as input data, and the parameters of LightGBM algorithm are adjusted through grid search so as to build the LightGBM model. Finally, the LightGBM model is trained based on the new feature matrix, and the CNN-LightGBM loan default prediction model is obtained. To verify the effectiveness and superiority of our model, a series of experiments were conducted to compare the proposed prediction model with four classical models. The results show that CNN-LightGBM model is superior to other models in all evaluation indexes.
{"title":"Loan Default Prediction Based on Convolutional Neural Network and LightGBM","authors":"Q. Zhu, Wenhao Ding, Mingsen Xiang, M. Hu, Ning Zhang","doi":"10.4018/ijdwm.315823","DOIUrl":"https://doi.org/10.4018/ijdwm.315823","url":null,"abstract":"With the change of people's consumption mode, credit consumption has gradually become a new consumption trend. Frequent loan defaults give default prediction more and more attention. This paper proposes a new comprehensive prediction method of loan default. This method combines convolutional neural network and LightGBM algorithm to establish a prediction model. Firstly, the excellent feature extraction ability of convolutional neural network is used to extract features from the original loan data and generate a new feature matrix. Secondly, the new feature matrix is used as input data, and the parameters of LightGBM algorithm are adjusted through grid search so as to build the LightGBM model. Finally, the LightGBM model is trained based on the new feature matrix, and the CNN-LightGBM loan default prediction model is obtained. To verify the effectiveness and superiority of our model, a series of experiments were conducted to compare the proposed prediction model with four classical models. The results show that CNN-LightGBM model is superior to other models in all evaluation indexes.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90475469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, a top-k pseudo labeling method for semi-supervised self-learning is proposed. Pseudo labeling is a key technology in semi-supervised self-learning. Briefly, the quality of the pseudo label generated largely determined the convergence of the neural network and the accuracy obtained. In this paper, the authors use a method called top-k pseudo labeling to generate pseudo label during the training of semi-supervised neural network model. The proposed labeling method helps a lot in learning features from unlabeled data. The proposed method is easy to implement and only relies on the neural network prediction and hyper-parameter k. The experiment results show that the proposed method works well with semi-supervised learning on CIFAR-10 and CIFAR-100 datasets. Also, a variant of top-k labeling for supervised learning named top-k regulation is proposed. The experiment results show that various models can achieve higher accuracy on test set when trained with top-k regulation.
{"title":"Top-K Pseudo Labeling for Semi-Supervised Image Classification","authors":"Yi Jiang, Hui Sun","doi":"10.4018/ijdwm.316150","DOIUrl":"https://doi.org/10.4018/ijdwm.316150","url":null,"abstract":"In this paper, a top-k pseudo labeling method for semi-supervised self-learning is proposed. Pseudo labeling is a key technology in semi-supervised self-learning. Briefly, the quality of the pseudo label generated largely determined the convergence of the neural network and the accuracy obtained. In this paper, the authors use a method called top-k pseudo labeling to generate pseudo label during the training of semi-supervised neural network model. The proposed labeling method helps a lot in learning features from unlabeled data. The proposed method is easy to implement and only relies on the neural network prediction and hyper-parameter k. The experiment results show that the proposed method works well with semi-supervised learning on CIFAR-10 and CIFAR-100 datasets. Also, a variant of top-k labeling for supervised learning named top-k regulation is proposed. The experiment results show that various models can achieve higher accuracy on test set when trained with top-k regulation.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90776239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Giacometti, Béatrice Bouchou-Markhoff, Arnaud Soulet
This paper presents Versus, which is the first automatic method for generating comparison tables from knowledge bases of the Semantic Web. For this purpose, it introduces the contextual reference level to evaluate whether a feature is relevant to compare a set of entities. This measure relies on contexts that are sets of entities similar to the compared entities. Its principle is to favor the features whose values for the compared entities are reference (or frequent) in these contexts. The proposal efficiently evaluates the contextual reference level from a public SPARQL endpoint limited by a fair-use policy. Using a new benchmark based on Wikidata, the experiments show the interest of the contextual reference level for identifying the features deemed relevant by users with high precision and recall. In addition, the proposed optimizations significantly reduce the number of required queries for properties as well as for inverse relations. Interestingly, this experimental study also show that the inverse relations bring out a large number of numerical comparison features.
{"title":"A Method for Generating Comparison Tables From the Semantic Web","authors":"A. Giacometti, Béatrice Bouchou-Markhoff, Arnaud Soulet","doi":"10.4018/ijdwm.298008","DOIUrl":"https://doi.org/10.4018/ijdwm.298008","url":null,"abstract":"This paper presents Versus, which is the first automatic method for generating comparison tables from knowledge bases of the Semantic Web. For this purpose, it introduces the contextual reference level to evaluate whether a feature is relevant to compare a set of entities. This measure relies on contexts that are sets of entities similar to the compared entities. Its principle is to favor the features whose values for the compared entities are reference (or frequent) in these contexts. The proposal efficiently evaluates the contextual reference level from a public SPARQL endpoint limited by a fair-use policy. Using a new benchmark based on Wikidata, the experiments show the interest of the contextual reference level for identifying the features deemed relevant by users with high precision and recall. In addition, the proposed optimizations significantly reduce the number of required queries for properties as well as for inverse relations. Interestingly, this experimental study also show that the inverse relations bring out a large number of numerical comparison features.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83159465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}