The Deuterostomia are a monophyletic group, consisting of the Ambulacraria, with two phyla, Hemichordata and Echinodermata, and the phylum Chordata, containing the subphyla Cephalochordata (lancelets or Amphioxus), Tunicata (Urochordata) and Vertebrata. Hemichordates and echinoderms are sister groups and are critical for understanding the deuterostome ancestor and the origin and evolution of the chordates within the deuterostomes. Enteropneusta, worm-like hemichordates, share many chordate features as adults, including a post-anal tail, gill slits, and a Central Nervous System (CNS) that deploy similar developmental Genetic Regulatory Networks (GRNs). Genomic comparisons show that cephalochordates share synteny and a vermiform body plan similar to vertebrates, but phylogenomic analyses place tunicates as the sister group of vertebrates. Tunicates have a U-shaped gut and a very different adult body plan than the rest of the chordates, and all tunicates have small genomes and many gene losses, although the GRNs underlying specific tissues, such as notochord and muscle, are conserved. Echinoderms and vertebrates have extensive fossil records, with fewer specimens found for tunicates and enteropneusts, or worm-like hemichordates. The data is mounting that the deuterostome ancestor was a complex benthic worm, with gill slits, a cartilaginous skeleton, and a CNS. Two extant groups, echinoderms and tunicates, have evolved highly derived body plans, remarkably different than the deuterostome ancestor. We review the current genomic and GRN data on the different groups of deuterostomes' characters to re-evaluate different hypotheses of chordate origins. Notochord loss in echinoderms and hemichordates is as parsimonious as notochord gain in the chordates but has implications for the deuterostome ancestor. The chordate ancestor lost an ancestral nerve net, retained the central nervous system, and evolved neural crest cells.
去软骨鱼类是一个单系类群,由含半脊动物纲和棘皮动物纲两个门的安布拉里亚门和含头脊索动物亚门(头脊索动物亚门或文昌鱼亚门)、鳞脊索动物亚门(尿脊索动物亚门)和脊椎动物亚门的脊索动物门组成。半脊索动物和棘皮动物是姊妹类群,对于了解中胚层动物的祖先以及中胚层动物中脊索动物的起源和演化至关重要。肠孔虫(Enteropneusta)是一种蠕虫状的半脊索动物,成年后具有许多脊索动物的特征,包括肛门后的尾巴、鳃裂和中枢神经系统(CNS),它们部署了类似的发育遗传调控网络(GRNs)。基因组比较显示,头索类具有与脊椎动物相似的同源染色体和蛭形体结构,但系统发生学分析认为鳞栉水母类是脊椎动物的姊妹类群。鳞栉脊椎动物的肠道呈 U 形,成年后的身体形态与脊索动物的其他种类截然不同,所有鳞栉脊椎动物的基因组都很小,而且有许多基因丢失,但作为脊索和肌肉等特定组织基础的 GRNs 是保守的。棘皮动物和脊椎动物有大量的化石记录,而鳞翅目和肠孔动物或蠕虫类半脊索动物的标本较少。越来越多的数据表明,去底栖类的祖先是一种复杂的底栖蠕虫,具有鳃裂、软骨骨骼和中枢神经系统。棘皮动物和腔肠动物这两个现生类群进化出了高度衍生的身体结构,与去底栖生物的祖先有着显著的不同。我们回顾了目前关于不同类群的去古脊椎动物特征的基因组和遗传资源网络数据,以重新评估关于脊索动物起源的不同假说。棘皮动物和半脊索动物的脊索缺失与脊索动物的脊索增生一样合理,但对中脊柱动物的祖先有影响。脊索动物的祖先失去了祖先的神经网,保留了中枢神经系统,并进化出了神经嵴细胞。
{"title":"Deuterostome Ancestors and Chordate Origins.","authors":"Billie J Swalla","doi":"10.1093/icb/icae134","DOIUrl":"https://doi.org/10.1093/icb/icae134","url":null,"abstract":"<p><p>The Deuterostomia are a monophyletic group, consisting of the Ambulacraria, with two phyla, Hemichordata and Echinodermata, and the phylum Chordata, containing the subphyla Cephalochordata (lancelets or Amphioxus), Tunicata (Urochordata) and Vertebrata. Hemichordates and echinoderms are sister groups and are critical for understanding the deuterostome ancestor and the origin and evolution of the chordates within the deuterostomes. Enteropneusta, worm-like hemichordates, share many chordate features as adults, including a post-anal tail, gill slits, and a Central Nervous System (CNS) that deploy similar developmental Genetic Regulatory Networks (GRNs). Genomic comparisons show that cephalochordates share synteny and a vermiform body plan similar to vertebrates, but phylogenomic analyses place tunicates as the sister group of vertebrates. Tunicates have a U-shaped gut and a very different adult body plan than the rest of the chordates, and all tunicates have small genomes and many gene losses, although the GRNs underlying specific tissues, such as notochord and muscle, are conserved. Echinoderms and vertebrates have extensive fossil records, with fewer specimens found for tunicates and enteropneusts, or worm-like hemichordates. The data is mounting that the deuterostome ancestor was a complex benthic worm, with gill slits, a cartilaginous skeleton, and a CNS. Two extant groups, echinoderms and tunicates, have evolved highly derived body plans, remarkably different than the deuterostome ancestor. We review the current genomic and GRN data on the different groups of deuterostomes' characters to re-evaluate different hypotheses of chordate origins. Notochord loss in echinoderms and hemichordates is as parsimonious as notochord gain in the chordates but has implications for the deuterostome ancestor. The chordate ancestor lost an ancestral nerve net, retained the central nervous system, and evolved neural crest cells.</p>","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Amphibians Exhibit Extremely High Hydric Costs of Respiration.","authors":"","doi":"10.1093/icb/icae125","DOIUrl":"10.1093/icb/icae125","url":null,"abstract":"","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Whether walking, running, slithering, or flying, organisms display a remarkable ability to move through complex and uncertain environments. In particular, animals have evolved to cope with a host of uncertainties-both of internal and external origin-to maintain adequate performance in an ever-changing world. In this review, we present mathematical methods in engineering to highlight emerging principles of robust and adaptive control of organismal locomotion. Specifically, by drawing on the mathematical framework of control theory, we decompose the robust and adaptive hierarchical structure of locomotor control. We show how this decomposition along the robust-adaptive axis provides testable hypotheses to classify behavioral outcomes to perturbations. With a focus on studies in non-human animals, we contextualize recent findings along the robust-adaptive axis by emphasizing two broad classes of behaviors: 1) compensation to appendage loss and 2) image stabilization and fixation. Next, we attempt to map robust and adaptive control of locomotion across some animal groups and existing bio-inspired robots. Finally, we highlight exciting future directions and interdisciplinary collaborations that are needed to unravel principles of robust and adaptive locomotion.
{"title":"Moving in an Uncertain World: Robust and Adaptive Control of Locomotion from Organisms to Machine Intelligence.","authors":"Jean-Michel Mongeau, Yu Yang, Ignacio Escalante, Noah Cowan, Kaushik Jayaram","doi":"10.1093/icb/icae121","DOIUrl":"https://doi.org/10.1093/icb/icae121","url":null,"abstract":"<p><p>Whether walking, running, slithering, or flying, organisms display a remarkable ability to move through complex and uncertain environments. In particular, animals have evolved to cope with a host of uncertainties-both of internal and external origin-to maintain adequate performance in an ever-changing world. In this review, we present mathematical methods in engineering to highlight emerging principles of robust and adaptive control of organismal locomotion. Specifically, by drawing on the mathematical framework of control theory, we decompose the robust and adaptive hierarchical structure of locomotor control. We show how this decomposition along the robust-adaptive axis provides testable hypotheses to classify behavioral outcomes to perturbations. With a focus on studies in non-human animals, we contextualize recent findings along the robust-adaptive axis by emphasizing two broad classes of behaviors: 1) compensation to appendage loss and 2) image stabilization and fixation. Next, we attempt to map robust and adaptive control of locomotion across some animal groups and existing bio-inspired robots. Finally, we highlight exciting future directions and interdisciplinary collaborations that are needed to unravel principles of robust and adaptive locomotion.</p>","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141876694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sandy M Kawano, Johnson Martin, Joshua Medina, Conor Doherty, Gary Zheng, Emma Hsiao, Matthew J Evans, Kevin de Queiroz, R Alexander Pyron, Jonathan M Huie, Riley Lima, Esther M Langan, Alan Peters, Duncan J Irschick
Extant salamanders are used as modern analogs of early digit-bearing tetrapods due to general similarities in morphology and ecology but the study species have been primarily terrestrial and relatively small when the earliest digit-bearing tetrapods were aquatic and an order of magnitude larger. Thus, we created a 3D computational model of underwater walking in extant Japanese giant salamanders (Andrias japonicus) using 3D photogrammetry and open-access graphics software (Blender) to broaden the range of testable hypotheses about the incipient stages of terrestrial locomotion. Our 3D model and software protocol represent the initial stages of an open-access pipeline that could serve as a “one-stop-shop” for studying locomotor function, from creating 3D models to analyzing the mechanics of locomotor gaits. While other pipelines generally require multiple software programs to accomplish the different steps in creating and analyzing computational models of locomotion, our protocol is built entirely within Blender and fully customizable with its Python scripting so users can devote more time to creating and analyzing models instead of navigating the learning curves of several software programs. The main value of our approach is that key kinematic variables (e.g., speed, stride length, elbow flexion) can be easily altered on the 3D model, allowing scientists to test hypotheses about locomotor function and conduct manipulative experiments (e.g., lengthening bones) that are difficult to perform in vivo. The accurate 3D meshes (and animations) generated through photogrammetry also provide exciting opportunities to expand the abundance and diversity of 3D digital animals available for researchers, educators, artists, conservation biologists, etc. to maximize societal impacts.
{"title":"Applying 3D Models of Giant Salamanders to Explore Form-function Relationships in Early Digit-bearing Tetrapods","authors":"Sandy M Kawano, Johnson Martin, Joshua Medina, Conor Doherty, Gary Zheng, Emma Hsiao, Matthew J Evans, Kevin de Queiroz, R Alexander Pyron, Jonathan M Huie, Riley Lima, Esther M Langan, Alan Peters, Duncan J Irschick","doi":"10.1093/icb/icae129","DOIUrl":"https://doi.org/10.1093/icb/icae129","url":null,"abstract":"Extant salamanders are used as modern analogs of early digit-bearing tetrapods due to general similarities in morphology and ecology but the study species have been primarily terrestrial and relatively small when the earliest digit-bearing tetrapods were aquatic and an order of magnitude larger. Thus, we created a 3D computational model of underwater walking in extant Japanese giant salamanders (Andrias japonicus) using 3D photogrammetry and open-access graphics software (Blender) to broaden the range of testable hypotheses about the incipient stages of terrestrial locomotion. Our 3D model and software protocol represent the initial stages of an open-access pipeline that could serve as a “one-stop-shop” for studying locomotor function, from creating 3D models to analyzing the mechanics of locomotor gaits. While other pipelines generally require multiple software programs to accomplish the different steps in creating and analyzing computational models of locomotion, our protocol is built entirely within Blender and fully customizable with its Python scripting so users can devote more time to creating and analyzing models instead of navigating the learning curves of several software programs. The main value of our approach is that key kinematic variables (e.g., speed, stride length, elbow flexion) can be easily altered on the 3D model, allowing scientists to test hypotheses about locomotor function and conduct manipulative experiments (e.g., lengthening bones) that are difficult to perform in vivo. The accurate 3D meshes (and animations) generated through photogrammetry also provide exciting opportunities to expand the abundance and diversity of 3D digital animals available for researchers, educators, artists, conservation biologists, etc. to maximize societal impacts.","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141880744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laura Rogers-Bennett, Scott D Groth, James T Carlton
Ocean warming is impacting marine systems directly and indirectly via intensifying multiple stressors such as hypoxia, acidification and kelp forest collapse potentially exacerbating neoextinctions. Abalones are extremely vulnerable to both ocean warming and fishing stressors making them marine "canaries in the coal mine". The rare flat abalone, Haliotis walallensis, has been subject to a targeted commercial fishery and then exposed to an extreme marine heat wave. We examine the current status of flat abalone before and after a marine heat wave of 2014-2016 and the concomitant collapse of the bull kelp (Nereocystis leutkeana) forest in 2015. We find that flat abalone density (as assessed in surveys) and abundances (inside deployed "abalone modules") in the core of the range dropped to near zero after the marine heat wave and have not recovered. Further, we examine the status of flat abalone in southern Oregon after both overfishing and the kelp forest collapse and find dramatic declines, especially in former fishery hot spots. Our results show that flat abalone have experienced a major decline and may be an example of a neoextinction in the making. A standardized and well funded status review and proactive restoration plan, if not too late, are both critically needed for flat abalone throughout its range.
{"title":"Steep Decline in the Rare Flat Abalone, Haliotis walallensis, Following Fishing Exploitation and a Marine Heat Wave: The Next Neoextinction?","authors":"Laura Rogers-Bennett, Scott D Groth, James T Carlton","doi":"10.1093/icb/icae126","DOIUrl":"https://doi.org/10.1093/icb/icae126","url":null,"abstract":"<p><p>Ocean warming is impacting marine systems directly and indirectly via intensifying multiple stressors such as hypoxia, acidification and kelp forest collapse potentially exacerbating neoextinctions. Abalones are extremely vulnerable to both ocean warming and fishing stressors making them marine \"canaries in the coal mine\". The rare flat abalone, Haliotis walallensis, has been subject to a targeted commercial fishery and then exposed to an extreme marine heat wave. We examine the current status of flat abalone before and after a marine heat wave of 2014-2016 and the concomitant collapse of the bull kelp (Nereocystis leutkeana) forest in 2015. We find that flat abalone density (as assessed in surveys) and abundances (inside deployed \"abalone modules\") in the core of the range dropped to near zero after the marine heat wave and have not recovered. Further, we examine the status of flat abalone in southern Oregon after both overfishing and the kelp forest collapse and find dramatic declines, especially in former fishery hot spots. Our results show that flat abalone have experienced a major decline and may be an example of a neoextinction in the making. A standardized and well funded status review and proactive restoration plan, if not too late, are both critically needed for flat abalone throughout its range.</p>","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141857243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neophobia, an aversive response to novelty, is a behavior with critical ecological and evolutionary relevance for wild populations because it directly influences animals' ability to adapt to new environments and exploit novel resources. Neophobia has been described in a wide variety of different animal species from arachnids to zebra finches. Because of this widespread prevalence and ecological importance, the number of neophobia studies has continued to increase over time. However, many neophobia studies (as well as many animal behavior studies more generally) suffer from one or more of what we have deemed the "seven deadly sins" of neophobia experimental design. These "sins" include: (1) animals that are not habituated to the testing environment, (2) problems with novel stimulus selection, (3) non-standardized motivation, (4) pseudoreplication, (5) lack of sufficient controls, (6) fixed treatment order, and (7) using arbitrary thresholds for data analysis. We discuss each of these potential issues in turn and make recommendations for how to avoid them in future behavior research. More consistency in how neophobia studies are designed would facilitate comparisons across different populations and species and allow researchers to better understand whether neophobia can help explain animals' responses to human-altered landscapes and the ability to survive in the Anthropocene.
{"title":"The \"Seven Deadly Sins\" of Neophobia Experimental Design.","authors":"Melanie G Kimball, Christine R Lattin","doi":"10.1093/icb/icad127","DOIUrl":"10.1093/icb/icad127","url":null,"abstract":"<p><p>Neophobia, an aversive response to novelty, is a behavior with critical ecological and evolutionary relevance for wild populations because it directly influences animals' ability to adapt to new environments and exploit novel resources. Neophobia has been described in a wide variety of different animal species from arachnids to zebra finches. Because of this widespread prevalence and ecological importance, the number of neophobia studies has continued to increase over time. However, many neophobia studies (as well as many animal behavior studies more generally) suffer from one or more of what we have deemed the \"seven deadly sins\" of neophobia experimental design. These \"sins\" include: (1) animals that are not habituated to the testing environment, (2) problems with novel stimulus selection, (3) non-standardized motivation, (4) pseudoreplication, (5) lack of sufficient controls, (6) fixed treatment order, and (7) using arbitrary thresholds for data analysis. We discuss each of these potential issues in turn and make recommendations for how to avoid them in future behavior research. More consistency in how neophobia studies are designed would facilitate comparisons across different populations and species and allow researchers to better understand whether neophobia can help explain animals' responses to human-altered landscapes and the ability to survive in the Anthropocene.</p>","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138300674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coral reef community exhibits high species diversity and a broad range of biological relationships, including widespread symbiosis and complex food utilization patterns. In our study, we investigated the symbiotic relationship between the commonly crinoid host Comaster schlegelii and its ophiuroid obligatory symbiont Gymnolophus obscura. Using a combination of fatty acid biomarkers and stable isotopic compositions, we explored differences in their organic matter utilization strategies and nutritional relationships. The result of stable isotopes revealed that G. obscura had higher δ15N values than its crinoid host. Particulate organic matter and phytoplankton were identified as the primary food sources for both species, however C. schlegelii showed a higher proportional contribution from benthic microalgae. Fatty acid markers showed that C. schlegelii was more dependent on benthic microalgae such as diatoms, and less on debritic organic matter and bacteria than G. obscura. Elevated δ15N values of G. obscura and similar food source contribution rates between the host and symbiont suggest that ophiuroid feeds on materials filtered by crinoids and have similar diet to the host. Our results provide insights into the symbiotic patterns of crinoids and ophiuroids, while also supplying foundational data on how symbiotic reef species select organic matter utilization strategies to adapt to their environment.
{"title":"Symbiotic Relationship of Comasterschlegelii (Crinoidea: Comatulidae) and Gymnolophus obscura (Ophiuroidea: Ophiotrichidae) Derived from Stable Isotope and Fatty Acid Analyses.","authors":"Zhong Li, Yue Dong, Meiling Ge, Qian Zhang, Yuyao Sun, Mengdi Dai, Xuelei Zhang, Xiubao Li, Zongling Wang, Qinzeng Xu","doi":"10.1093/icb/icad128","DOIUrl":"10.1093/icb/icad128","url":null,"abstract":"<p><p>Coral reef community exhibits high species diversity and a broad range of biological relationships, including widespread symbiosis and complex food utilization patterns. In our study, we investigated the symbiotic relationship between the commonly crinoid host Comaster schlegelii and its ophiuroid obligatory symbiont Gymnolophus obscura. Using a combination of fatty acid biomarkers and stable isotopic compositions, we explored differences in their organic matter utilization strategies and nutritional relationships. The result of stable isotopes revealed that G. obscura had higher δ15N values than its crinoid host. Particulate organic matter and phytoplankton were identified as the primary food sources for both species, however C. schlegelii showed a higher proportional contribution from benthic microalgae. Fatty acid markers showed that C. schlegelii was more dependent on benthic microalgae such as diatoms, and less on debritic organic matter and bacteria than G. obscura. Elevated δ15N values of G. obscura and similar food source contribution rates between the host and symbiont suggest that ophiuroid feeds on materials filtered by crinoids and have similar diet to the host. Our results provide insights into the symbiotic patterns of crinoids and ophiuroids, while also supplying foundational data on how symbiotic reef species select organic matter utilization strategies to adapt to their environment.</p>","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138296600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mallards (Anas platyrhynchos) exhibit exceptional locomotive abilities in diverse terrains, such as beaches, swamps, and tidal flats. This capability is primarily attributed to their unique webbed toe structure and cooperative locomotion posture of their feet. Therefore, this study aims to further delve into the active adaptive strategies of mallard feet in response to diverse external environmental conditions. Six adult male mallards were selected for this research. Their locomotion on sandy surfaces with differing wetness levels and varying degrees of compaction were captured using a high-speed camera, and analysis of instantaneous and continuous changes in the primary joint angles of the mallards' feet, including the toe-webbed opening and closing angles, the tarsometatarsal-phalangeal joint (TMTPJ), and the intertarsal joint (ITJ). It was found that on loose sandy surfaces, increasing wetness expanded the ground contact area of the mallards' feet. This led to greater flexion at the TMTPJ joint during mid-stance, accompanied by decreased flexion of the ITJ during touch-down and mid-stance. Conversely, on compacted sand, increasing wetness resulted in a reduced foot effect area and lessened ITJ flexion at both touch-down and mid-stance. Furthermore, on looser sand, the ground contact area of the mallards' feet decreased, with an increase in ITJ buckling at touch-down. During the swing phase, sand wetness and compactness effected minimally on the feet of the mallards. On dry and loose sand ground, mallards will contract their second and fourth toes with webbing upon ground contact, covering and compacting the sand beneath, while increasing ITJ flexion to mitigate sinking. This adaptation reduces the energy expended on sand and enhances body stability. In wet and compacted sand conditions, mallards expand their second and fourth toes upon ground contact and reduce ITJ flexion. Therefore, this coordinated foot and ITJ locomotion offers mallards a natural advantage when moving on various environmental media.
{"title":"Active Adaptive Strategies of Mallard Feet in Response to Changes in Wetness and Compactness of the Sand Terrain.","authors":"Dianlei Han, Jinrui Hu, Hairui Liu, Lizhi Ren, Zhiqian Tong","doi":"10.1093/icb/icae033","DOIUrl":"10.1093/icb/icae033","url":null,"abstract":"<p><p>Mallards (Anas platyrhynchos) exhibit exceptional locomotive abilities in diverse terrains, such as beaches, swamps, and tidal flats. This capability is primarily attributed to their unique webbed toe structure and cooperative locomotion posture of their feet. Therefore, this study aims to further delve into the active adaptive strategies of mallard feet in response to diverse external environmental conditions. Six adult male mallards were selected for this research. Their locomotion on sandy surfaces with differing wetness levels and varying degrees of compaction were captured using a high-speed camera, and analysis of instantaneous and continuous changes in the primary joint angles of the mallards' feet, including the toe-webbed opening and closing angles, the tarsometatarsal-phalangeal joint (TMTPJ), and the intertarsal joint (ITJ). It was found that on loose sandy surfaces, increasing wetness expanded the ground contact area of the mallards' feet. This led to greater flexion at the TMTPJ joint during mid-stance, accompanied by decreased flexion of the ITJ during touch-down and mid-stance. Conversely, on compacted sand, increasing wetness resulted in a reduced foot effect area and lessened ITJ flexion at both touch-down and mid-stance. Furthermore, on looser sand, the ground contact area of the mallards' feet decreased, with an increase in ITJ buckling at touch-down. During the swing phase, sand wetness and compactness effected minimally on the feet of the mallards. On dry and loose sand ground, mallards will contract their second and fourth toes with webbing upon ground contact, covering and compacting the sand beneath, while increasing ITJ flexion to mitigate sinking. This adaptation reduces the energy expended on sand and enhances body stability. In wet and compacted sand conditions, mallards expand their second and fourth toes upon ground contact and reduce ITJ flexion. Therefore, this coordinated foot and ITJ locomotion offers mallards a natural advantage when moving on various environmental media.</p>","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140877887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction To: Invasive Bullfrogs Maintain MHC Polymorphism Including Alleles Associated with Chytrid Fungal Infection.","authors":"","doi":"10.1093/icb/icad126","DOIUrl":"10.1093/icb/icad126","url":null,"abstract":"","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138178053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Long Chen, Karl J Niklas, Zhenhui Ding, Johan Gielis, Qinyue Miao, Meng Lian, Peijian Shi
The proportions in the size of the avian egg albumen, yolk, and shell are crucial for understanding bird survival and reproductive success because their relationships with volume and surface area can affect ecological and life history strategies. Prior studies have focused on the relationship between the albumen and the yolk, but little is known about the scaling relationship between eggshell mass and shape and the mass of the albumen and the yolk. Toward this end, 691 eggs of six precocial species were examined, and their 2-D egg profiles were photographed and digitized. The explicit Preston equation, which assumes bilateral symmetrical geometry, was used to fit the 2-D egg profiles and to calculate surface areas and volumes based on the hypothesis that eggs can be treated as solids of profile revolution. The scaling relationships of eggshell mass (Ms), albumen mass (Ma), and yolk mass (My), as well as the surface area (S), volume (V), and total mass (Mt) were determined. The explicit Preston equation was validated in describing the 2-D egg profiles. The scaling exponents of Ma vs. Ms, My vs. Ms, and My vs. Ma were smaller than unity, indicating that increases in Ma and My fail to keep pace with increases in Ms, and that increases in My fail to keep pace with increases in Ma. Therefore, increases in unit nutrient contents (i.e., the yolk) involve disproportionately larger increases in eggshell mass and disproportionately larger increases in albumen mass. The data also revealed a 2/3-power scaling relationship between S and V for each species, that is, the simple Euclidean geometry is obeyed. These findings help to inform our understanding of avian egg construction and reveal evolutionary interspecific trends in the scaling of egg shape, volume, mass, and mass allocation.
鸟类卵的蛋白、卵黄和蛋壳的大小比例对于了解鸟类的生存和繁殖成功率至关重要,因为它们与体积和表面积的关系会影响生态和生活史策略。之前的研究主要关注蛋白和蛋黄之间的关系,但对蛋壳质量和形状与蛋白和蛋黄质量之间的比例关系知之甚少。为此,我们研究了 6 个早熟物种的 691 枚卵,并对它们的二维卵轮廓进行了拍照和数字化处理。在假设鸡蛋可被视为剖面旋转的固体的基础上,使用假设为双边对称几何形状的显式普雷斯顿方程来拟合二维鸡蛋剖面,并计算表面积和体积。确定了蛋壳质量(Ms)、蛋白质量(Ma)和蛋黄质量(My)以及表面积(S)、体积(V)和总质量(Mt)的比例关系。显式普雷斯顿方程在描述二维鸡蛋剖面时得到了验证。Ma与Ms、My与Ms以及My与Ma的比例指数均小于统一值,表明Ma和My的增加跟不上Ms的增加,而My的增加跟不上Ma的增加。因此,单位营养含量(即蛋黄)的增加会导致蛋壳质量和蛋白质量不成比例地增加。数据还显示,每个物种的 S 和 V 之间存在 2/3 倍的缩放关系,即服从简单的欧几里得几何关系。这些发现有助于我们了解鸟类卵的构造,并揭示了卵的形状、体积、质量和质量分配的种间比例进化趋势。
{"title":"Scaling Relationships among the Mass of Eggshell, Albumen, and Yolk in Six Precocial Birds.","authors":"Long Chen, Karl J Niklas, Zhenhui Ding, Johan Gielis, Qinyue Miao, Meng Lian, Peijian Shi","doi":"10.1093/icb/icae001","DOIUrl":"10.1093/icb/icae001","url":null,"abstract":"<p><p>The proportions in the size of the avian egg albumen, yolk, and shell are crucial for understanding bird survival and reproductive success because their relationships with volume and surface area can affect ecological and life history strategies. Prior studies have focused on the relationship between the albumen and the yolk, but little is known about the scaling relationship between eggshell mass and shape and the mass of the albumen and the yolk. Toward this end, 691 eggs of six precocial species were examined, and their 2-D egg profiles were photographed and digitized. The explicit Preston equation, which assumes bilateral symmetrical geometry, was used to fit the 2-D egg profiles and to calculate surface areas and volumes based on the hypothesis that eggs can be treated as solids of profile revolution. The scaling relationships of eggshell mass (Ms), albumen mass (Ma), and yolk mass (My), as well as the surface area (S), volume (V), and total mass (Mt) were determined. The explicit Preston equation was validated in describing the 2-D egg profiles. The scaling exponents of Ma vs. Ms, My vs. Ms, and My vs. Ma were smaller than unity, indicating that increases in Ma and My fail to keep pace with increases in Ms, and that increases in My fail to keep pace with increases in Ma. Therefore, increases in unit nutrient contents (i.e., the yolk) involve disproportionately larger increases in eggshell mass and disproportionately larger increases in albumen mass. The data also revealed a 2/3-power scaling relationship between S and V for each species, that is, the simple Euclidean geometry is obeyed. These findings help to inform our understanding of avian egg construction and reveal evolutionary interspecific trends in the scaling of egg shape, volume, mass, and mass allocation.</p>","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139708586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}