首页 > 最新文献

IEEE Systems Journal最新文献

英文 中文
LBATSM: Load Balancing Aware Task Selection and Migration Approach in Fog Computing Environment LBATSM:雾计算环境中的负载平衡感知任务选择和迁移方法
IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-06-05 DOI: 10.1109/JSYST.2024.3403673
Raj Mohan Singh;Geeta Sikka;Lalit Kumar Awasthi
With the rapid advancement of Internet of Things technology, the field of fog computing has garnered significant attention and hence become a workable processing platform for upcoming applications. However, compared with vast computing capability of the cloud, the fog nodes have resource constraints, are heterogeneous in nature, and highly distributed. Due to the growing demand as well as diversity of applications, the nodes in a fog network become overloaded, which makes load balancing a prime concern. In this work, a load balancing aware task selection and migration approach is proposed comprising two algorithms to select and place tasks from multiple overloaded nodes to suitable destination nodes. The Selection algorithm determines the tasks that should be migrated from overloaded nodes. Placement algorithm focuses on finding a near optimal solution by applying modified binary particle swarm optimization. Specifically, the objective is to minimize execution time and transfer time of tasks. Simulation studies conducted on iFogSim prove that the suggested approach outperforms the existing approaches in terms of task execution time, task transfer time, and makespan.
随着物联网技术的飞速发展,雾计算领域受到了极大关注,并因此成为即将到来的应用的可行处理平台。然而,与云计算的巨大计算能力相比,雾节点具有资源限制、异构性和高度分布性等特点。由于需求的增长和应用的多样性,雾网络中的节点会变得超负荷,这使得负载平衡成为首要问题。在这项工作中,提出了一种负载平衡感知任务选择和迁移方法,包括两种算法,用于从多个过载节点选择任务并将其放置到合适的目标节点。选择算法确定应从过载节点迁移的任务。放置算法侧重于通过应用修改后的二进制粒子群优化找到接近最优的解决方案。具体来说,其目标是尽量减少任务的执行时间和转移时间。在 iFogSim 上进行的仿真研究证明,建议的方法在任务执行时间、任务转移时间和时间跨度方面都优于现有方法。
{"title":"LBATSM: Load Balancing Aware Task Selection and Migration Approach in Fog Computing Environment","authors":"Raj Mohan Singh;Geeta Sikka;Lalit Kumar Awasthi","doi":"10.1109/JSYST.2024.3403673","DOIUrl":"https://doi.org/10.1109/JSYST.2024.3403673","url":null,"abstract":"With the rapid advancement of Internet of Things technology, the field of fog computing has garnered significant attention and hence become a workable processing platform for upcoming applications. However, compared with vast computing capability of the cloud, the fog nodes have resource constraints, are heterogeneous in nature, and highly distributed. Due to the growing demand as well as diversity of applications, the nodes in a fog network become overloaded, which makes load balancing a prime concern. In this work, a load balancing aware task selection and migration approach is proposed comprising two algorithms to select and place tasks from multiple overloaded nodes to suitable destination nodes. The Selection algorithm determines the tasks that should be migrated from overloaded nodes. Placement algorithm focuses on finding a near optimal solution by applying modified binary particle swarm optimization. Specifically, the objective is to minimize execution time and transfer time of tasks. Simulation studies conducted on iFogSim prove that the suggested approach outperforms the existing approaches in terms of task execution time, task transfer time, and makespan.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 2","pages":"796-804"},"PeriodicalIF":4.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Connectivity Preserving Consensus for Second-Order Heterogeneous MASs With Input Constraints 有输入约束条件的二阶异构 MAS 的连接性保护共识
IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-06-05 DOI: 10.1109/JSYST.2024.3403103
Lili Wang;Shiming Chen
This article gives an investigation to the connectivity preserving consensus (CPC) issue for the second-order heterogeneous multiagent systems (MASs), which are constituted by linear and nonlinear subsystem. First, a consensus algorithm for the system without input constraints is proposed and some sufficient conditions for consensus are obtained. Due to the limited communication distance of each agent, the algorithm maintains network connectivity based on potential function techniques. Then, considering the linear and nonlinear subsystem with input constraints, respectively, the results indicate that as long as certain conditions are met, all agents can be guaranteed to achieve CPC. Furthermore, the proposed algorithm is extended to the entire system with input constraints. Five examples are provided to demonstrate efficiency of theoretical results.
本文研究了由线性和非线性子系统构成的二阶异构多代理系统(MAS)的连通性保持共识(CPC)问题。首先,提出了一种无输入约束系统的共识算法,并得到了一些共识的充分条件。由于每个代理的通信距离有限,该算法基于势函数技术保持网络连接。然后,分别考虑有输入约束的线性子系统和非线性子系统,结果表明,只要满足某些条件,就能保证所有代理都能实现 CPC。此外,所提出的算法还扩展到了有输入约束的整个系统。本文提供了五个实例来证明理论结果的有效性。
{"title":"Connectivity Preserving Consensus for Second-Order Heterogeneous MASs With Input Constraints","authors":"Lili Wang;Shiming Chen","doi":"10.1109/JSYST.2024.3403103","DOIUrl":"https://doi.org/10.1109/JSYST.2024.3403103","url":null,"abstract":"This article gives an investigation to the connectivity preserving consensus (CPC) issue for the second-order heterogeneous multiagent systems (MASs), which are constituted by linear and nonlinear subsystem. First, a consensus algorithm for the system without input constraints is proposed and some sufficient conditions for consensus are obtained. Due to the limited communication distance of each agent, the algorithm maintains network connectivity based on potential function techniques. Then, considering the linear and nonlinear subsystem with input constraints, respectively, the results indicate that as long as certain conditions are met, all agents can be guaranteed to achieve CPC. Furthermore, the proposed algorithm is extended to the entire system with input constraints. Five examples are provided to demonstrate efficiency of theoretical results.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 2","pages":"1471-1480"},"PeriodicalIF":4.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decentralized and Fault-Tolerant Task Offloading for Enabling Network Edge Intelligence 实现网络边缘智能的分散式容错任务卸载
IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-06-05 DOI: 10.1109/JSYST.2024.3403696
Huixiang Zhang;Kaihua Liao;Yu Tai;Wenqiang Ma;Guoyan Cao;Wen Sun;Lexi Xu
Edge intelligence has recently attracted great interest from industry and academia, and it greatly improves the processing speed at the edge by moving data and artificial intelligence to the edge of the network. However, edge devices have bottlenecks in battery capacity and computing power, making it challenging to perform computing tasks in dynamic and harsh network environments. Especially in disaster scenarios, edge (rescue) devices are more likely to fail due to unreliable wireless communications and scattered rescue requests, which makes it urgent to explore how to provide low-latency, reliable services through edge collaboration. In this article, we investigate the task offloading mechanism in mobile edge computing networks, aiming to ensure fault tolerance and rapid response of computing services in dynamic and harsh scenarios. Specifically, we design a fault-tolerant distributed task offloading scheme, which minimizes task execution time and system energy consumption through the multi-agent proximal policy optimization algorithm. Furthermore, we introduce logarithmic ratio reward functions and action masking to reduce the impact of different task queue lengths while accelerating model convergence. Numerical results show that the proposed algorithm is suitable for service failure scenarios, effectively meeting the reliability requirements of tasks while simultaneously reducing system energy consumption and processing latency.
边缘智能最近引起了工业界和学术界的极大兴趣,它通过将数据和人工智能转移到网络边缘,大大提高了边缘处理速度。然而,边缘设备在电池容量和计算能力方面存在瓶颈,因此在动态和恶劣的网络环境中执行计算任务具有挑战性。特别是在灾难场景中,边缘(救援)设备更容易因不可靠的无线通信和分散的救援请求而出现故障,这就迫切需要探索如何通过边缘协作提供低延迟、可靠的服务。本文研究了移动边缘计算网络中的任务卸载机制,旨在确保计算服务在动态和恶劣场景下的容错和快速响应。具体来说,我们设计了一种容错分布式任务卸载方案,通过多代理近端策略优化算法最大限度地减少了任务执行时间和系统能耗。此外,我们还引入了对数比率奖励函数和行动屏蔽,以减少不同任务队列长度的影响,同时加速模型收敛。数值结果表明,所提出的算法适用于服务故障场景,能有效满足任务的可靠性要求,同时降低系统能耗和处理延迟。
{"title":"Decentralized and Fault-Tolerant Task Offloading for Enabling Network Edge Intelligence","authors":"Huixiang Zhang;Kaihua Liao;Yu Tai;Wenqiang Ma;Guoyan Cao;Wen Sun;Lexi Xu","doi":"10.1109/JSYST.2024.3403696","DOIUrl":"https://doi.org/10.1109/JSYST.2024.3403696","url":null,"abstract":"Edge intelligence has recently attracted great interest from industry and academia, and it greatly improves the processing speed at the edge by moving data and artificial intelligence to the edge of the network. However, edge devices have bottlenecks in battery capacity and computing power, making it challenging to perform computing tasks in dynamic and harsh network environments. Especially in disaster scenarios, edge (rescue) devices are more likely to fail due to unreliable wireless communications and scattered rescue requests, which makes it urgent to explore how to provide low-latency, reliable services through edge collaboration. In this article, we investigate the task offloading mechanism in mobile edge computing networks, aiming to ensure fault tolerance and rapid response of computing services in dynamic and harsh scenarios. Specifically, we design a fault-tolerant distributed task offloading scheme, which minimizes task execution time and system energy consumption through the multi-agent proximal policy optimization algorithm. Furthermore, we introduce logarithmic ratio reward functions and action masking to reduce the impact of different task queue lengths while accelerating model convergence. Numerical results show that the proposed algorithm is suitable for service failure scenarios, effectively meeting the reliability requirements of tasks while simultaneously reducing system energy consumption and processing latency.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 2","pages":"1459-1470"},"PeriodicalIF":4.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asynchronous Observer-Based Fault-Tolerant Optimal Control of Multiagent Systems 基于异步观测器的多代理系统容错优化控制
IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-04-30 DOI: 10.1109/JSYST.2024.3391766
Haoyue Yang;Hao Zhang;Zhuping Wang;Chao Huang;Huaicheng Yan
In this article, the optimal consensus problem for a class of nonlinear multiagent systems in discrete-time case is investigated under jump faults and false data injection (FDI) attacks. First, a general fault model with coefficients obeying a semi-Markov process is introduced into system dynamics. A joint state and fault observer based on the hidden semi-Markov model is designed to estimate both the agent's state and the fault signals. Sufficient conditions for the existence of observer gains are established by constructing the stochastic Lyapunov function with hidden mode, observed mode, and elapsed time dependencies. Based on the observed states, we reconstruct the local performance metric functions of agents and design a policy-value iteration algorithm to address the multiplayer game problem. Then, an neural network policy-value iteration approximation algorithm is proposed, which obtains an approximate Nash equilibrium solution of the multiplayer games. Further, a secure fault-tolerant optimal consensus controller with fault compensation and attack attenuation terms is designed to achieve optimal tracking control, and the stability of the neighbor tracking error system is rigorously demonstrated. Finally, illustrative example and comparison simulations are provided to verify the validity and applicability of the proposed results.
本文研究了离散时间情况下一类非线性多代理系统在跳跃故障和虚假数据注入(FDI)攻击下的最优共识问题。首先,在系统动力学中引入了系数服从半马尔可夫过程的一般故障模型。设计了一个基于隐藏半马尔可夫模型的状态和故障联合观测器,以估计代理的状态和故障信号。通过构建具有隐藏模式、观测模式和经过时间相关性的随机 Lyapunov 函数,建立了观测器增益存在的充分条件。根据观察到的状态,我们重构了代理的局部性能指标函数,并设计了一种策略值迭代算法来解决多人博弈问题。然后,提出了一种神经网络策略值迭代近似算法,该算法可获得多人博弈的近似纳什均衡解。此外,还设计了一种带有故障补偿和攻击衰减项的安全容错最优共识控制器,以实现最优跟踪控制,并严格证明了邻域跟踪误差系统的稳定性。最后,还提供了示例和对比模拟,以验证所提结果的有效性和适用性。
{"title":"Asynchronous Observer-Based Fault-Tolerant Optimal Control of Multiagent Systems","authors":"Haoyue Yang;Hao Zhang;Zhuping Wang;Chao Huang;Huaicheng Yan","doi":"10.1109/JSYST.2024.3391766","DOIUrl":"10.1109/JSYST.2024.3391766","url":null,"abstract":"In this article, the optimal consensus problem for a class of nonlinear multiagent systems in discrete-time case is investigated under jump faults and false data injection (FDI) attacks. First, a general fault model with coefficients obeying a semi-Markov process is introduced into system dynamics. A joint state and fault observer based on the hidden semi-Markov model is designed to estimate both the agent's state and the fault signals. Sufficient conditions for the existence of observer gains are established by constructing the stochastic Lyapunov function with hidden mode, observed mode, and elapsed time dependencies. Based on the observed states, we reconstruct the local performance metric functions of agents and design a policy-value iteration algorithm to address the multiplayer game problem. Then, an neural network policy-value iteration approximation algorithm is proposed, which obtains an approximate Nash equilibrium solution of the multiplayer games. Further, a secure fault-tolerant optimal consensus controller with fault compensation and attack attenuation terms is designed to achieve optimal tracking control, and the stability of the neighbor tracking error system is rigorously demonstrated. Finally, illustrative example and comparison simulations are provided to verify the validity and applicability of the proposed results.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 2","pages":"1402-1413"},"PeriodicalIF":4.0,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140832010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy Efficiency Maximization for UAV-Assisted Full-Duplex Communication in the Presence of Multiple Malicious Jammers 存在多个恶意干扰器时无人机辅助全双工通信的能效最大化
IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-04-30 DOI: 10.1109/JSYST.2024.3390554
Zhiyu Huang;Zhichao Sheng;Ali A. Nasir;Hongwen Yu
A full-duplex unmanned aerial vehicle (UAV)-based communication network is investigated, where the UAV is dispatched to transmit information to multiple downlink users (DLUs) and receive signal from uplink users (ULUs) simultaneously in the existence of malicious jammers. Considering the limited battery power of the UAV and the quality of service required, 3-D trajectory, DLUs scheduling, ULUs scheduling, and uplink/downlink transmit power allocation are jointly optimized to maximize the energy efficiency of the network. However, the formulated optimization problem with high coupling variables and fractional objective function is nonconvex and therefore mathematically intractable. To address the problem, the BCD method is implemented to decompose the optimization problem into four independent subproblems. An iterative algorithm based on Dinkelbach's algorithm and successive convex approximation technique is developed to solve the problem efficiently. Numerical simulation results are presented to evaluate the performance of different schemes and demonstrate the advantages of the proposed algorithm.
研究了一种基于无人飞行器(UAV)的全双工通信网络,在该网络中,无人飞行器被派遣同时向多个下行链路用户(DLUs)发送信息,并接收来自上行链路用户(ULUs)的信号,以应对恶意干扰。考虑到无人机有限的电池电量和对服务质量的要求,对三维轨迹、下行用户调度、上行用户调度和上行/下行发射功率分配进行了联合优化,以最大限度地提高网络的能效。然而,所制定的优化问题具有高耦合变量和分数目标函数,是非凸的,因此在数学上难以解决。为解决这一问题,采用 BCD 方法将优化问题分解为四个独立的子问题。基于 Dinkelbach 算法和连续凸近似技术开发了一种迭代算法,以高效解决该问题。文中给出了数值模拟结果,以评估不同方案的性能,并证明所提算法的优势。
{"title":"Energy Efficiency Maximization for UAV-Assisted Full-Duplex Communication in the Presence of Multiple Malicious Jammers","authors":"Zhiyu Huang;Zhichao Sheng;Ali A. Nasir;Hongwen Yu","doi":"10.1109/JSYST.2024.3390554","DOIUrl":"10.1109/JSYST.2024.3390554","url":null,"abstract":"A full-duplex unmanned aerial vehicle (UAV)-based communication network is investigated, where the UAV is dispatched to transmit information to multiple downlink users (DLUs) and receive signal from uplink users (ULUs) simultaneously in the existence of malicious jammers. Considering the limited battery power of the UAV and the quality of service required, 3-D trajectory, DLUs scheduling, ULUs scheduling, and uplink/downlink transmit power allocation are jointly optimized to maximize the energy efficiency of the network. However, the formulated optimization problem with high coupling variables and fractional objective function is nonconvex and therefore mathematically intractable. To address the problem, the BCD method is implemented to decompose the optimization problem into four independent subproblems. An iterative algorithm based on Dinkelbach's algorithm and successive convex approximation technique is developed to solve the problem efficiently. Numerical simulation results are presented to evaluate the performance of different schemes and demonstrate the advantages of the proposed algorithm.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 2","pages":"1257-1268"},"PeriodicalIF":4.0,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140831984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Joint Computation Offloading and Resource Optimization for Minimizing Network-Wide Energy Consumption in Ultradense MEC Networks 联合计算卸载和资源优化,最大限度降低超密集 MEC 网络的全网能耗
IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-04-29 DOI: 10.1109/JSYST.2024.3391811
Tianqing Zhou;Dong Qin;Xuefang Nie;Xuan Li;Nan Jiang;Chunguo Li
In this article, the orthogonal frequency-division multiple access (OFDMA) integrated with frequency spectrum (band) partitioning and equal bandwidth allocation is first introduced to mitigate the complicated, severe, and average network interferences in ultradense mobile edge computing (MEC) networks. Then, under such OFDMA, the system energy consumed by all users [mobile devices (MDs)] and base stations (BSs) is minimized to reduce the huge energy consumed by ultradense small BSs (SBSs) and prolong the standby time of MDs, jointly optimizing the spectrum partitioning factor, local and remote computation capacities, local power, and binary offloading decision. According to the coupling form of optimization parameters in the formulated problem, this problem is first cut into a joint power control and resource (frequency spectrum) partitioning (PCRP) subproblem, a joint user association, and a computation capacity optimization (UACCO) subproblem. Then, we try to design an effective iteration algorithm to attain the solutions to these problems using convex optimization methods. As for this algorithm, we give some detailed convergence, computation complexity, and simulation analyses. The simulation results show that it may achieve a guaranteed offloading performance and lower energy consumption than other existing algorithms.
本文首先介绍了正交频分多址(OFDMA)与频谱(频段)划分和等带宽分配相结合的方法,以减轻超密集移动边缘计算(MEC)网络中复杂、严重和平均的网络干扰。然后,在这种 OFDMA 下,通过联合优化频谱划分因子、本地和远程计算能力、本地功率和二进制卸载决策,使所有用户(移动设备(MD))和基站(BS)消耗的系统能量最小化,从而减少超密集小型基站(SBS)消耗的巨大能量,延长 MD 的待机时间。根据所提问题中优化参数的耦合形式,首先将该问题切割为联合功率控制和资源(频谱)分配(PCRP)子问题、联合用户关联和计算能力优化(UACCO)子问题。然后,我们尝试设计一种有效的迭代算法,利用凸优化方法获得这些问题的解决方案。对于该算法,我们给出了一些详细的收敛性、计算复杂度和仿真分析。仿真结果表明,与其他现有算法相比,该算法可以实现有保证的卸载性能和更低的能耗。
{"title":"Joint Computation Offloading and Resource Optimization for Minimizing Network-Wide Energy Consumption in Ultradense MEC Networks","authors":"Tianqing Zhou;Dong Qin;Xuefang Nie;Xuan Li;Nan Jiang;Chunguo Li","doi":"10.1109/JSYST.2024.3391811","DOIUrl":"10.1109/JSYST.2024.3391811","url":null,"abstract":"In this article, the orthogonal frequency-division multiple access (OFDMA) integrated with frequency spectrum (band) partitioning and equal bandwidth allocation is first introduced to mitigate the complicated, severe, and average network interferences in ultradense mobile edge computing (MEC) networks. Then, under such OFDMA, the system energy consumed by all users [mobile devices (MDs)] and base stations (BSs) is minimized to reduce the huge energy consumed by ultradense small BSs (SBSs) and prolong the standby time of MDs, jointly optimizing the spectrum partitioning factor, local and remote computation capacities, local power, and binary offloading decision. According to the coupling form of optimization parameters in the formulated problem, this problem is first cut into a joint power control and resource (frequency spectrum) partitioning (PCRP) subproblem, a joint user association, and a computation capacity optimization (UACCO) subproblem. Then, we try to design an effective iteration algorithm to attain the solutions to these problems using convex optimization methods. As for this algorithm, we give some detailed convergence, computation complexity, and simulation analyses. The simulation results show that it may achieve a guaranteed offloading performance and lower energy consumption than other existing algorithms.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 2","pages":"1115-1126"},"PeriodicalIF":4.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140831847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complementarity and Compatibility of Systems Integration and Building Information Management 系统集成和楼宇信息管理的互补性和兼容性
IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-04-23 DOI: 10.1109/JSYST.2024.3387064
Mikela Chatzimichailidou;Tim Whitcher;Nikola Suzic
The introduction of building information management (BIM) to enable the management and delivery of megaprojects has illuminated the importance of system integration (SI) to coordinate and bring together complex interdependent technical and organizational systems. SI can inform and address the emerging interdependencies with BIM processes and technologies in megaprojects. Thus, in this article, we extend the theorizing of SI and BIM for the management of megaprojects in the infrastructure sector. This process involves 1) conceptualizing the complementarity and compatibility of SI and BIM in the management of megaprojects, and 2) offering an integrative framework and model of SI and BIM. Finally, we discuss and highlight this twofold contribution and offer insights into future research.
引入建筑信息管理(BIM)以实现超大型项目的管理和交付,揭示了系统集成(SI)在协调和汇集复杂的相互依存的技术和组织系统方面的重要性。系统集成可以为超大型项目中的 BIM 流程和技术提供信息,并解决新出现的相互依存问题。因此,在本文中,我们将扩展 SI 和 BIM 的理论,用于基础设施领域的超大型项目管理。这一过程包括:1)将 SI 和 BIM 在巨型项目管理中的互补性和兼容性概念化;2)提供 SI 和 BIM 的整合框架和模型。最后,我们讨论并强调了这两方面的贡献,并对未来研究提出了见解。
{"title":"Complementarity and Compatibility of Systems Integration and Building Information Management","authors":"Mikela Chatzimichailidou;Tim Whitcher;Nikola Suzic","doi":"10.1109/JSYST.2024.3387064","DOIUrl":"10.1109/JSYST.2024.3387064","url":null,"abstract":"The introduction of building information management (BIM) to enable the management and delivery of megaprojects has illuminated the importance of system integration (SI) to coordinate and bring together complex interdependent technical and organizational systems. SI can inform and address the emerging interdependencies with BIM processes and technologies in megaprojects. Thus, in this article, we extend the theorizing of SI and BIM for the management of megaprojects in the infrastructure sector. This process involves 1) conceptualizing the complementarity and compatibility of SI and BIM in the management of megaprojects, and 2) offering an integrative framework and model of SI and BIM. Finally, we discuss and highlight this twofold contribution and offer insights into future research.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 2","pages":"1198-1207"},"PeriodicalIF":4.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140806732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reference Tracking MPC for Cyber-Physical Systems Under Denial-of-Service Attacks: An Omnidirectional Robot Application 拒绝服务攻击下网络物理系统的参考跟踪 MPC:全方位机器人应用
IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-04-17 DOI: 10.1109/JSYST.2024.3384372
Daotong Zhang;Peng Shi;Ramesh K. Agarwal;Levente Kovács
This article presents a novel model predictive control (MPC) framework with an integrated disturbance observer for cyber-physical systems (CPSs) under denial-of-service (DoS) attacks. Uniquely incorporating a memory module, our MPC approach is tailored to maintain stability and security in CPS during DoS attacks, which typically disrupt communication and degrade performance. Our method stands out by addressing time-varying system uncertainties through the disturbance observer, enhancing robustness under these attack conditions. The effectiveness of our approach is validated through numerical simulations, hardware-in-the-loop experiments, and comparative analyses using an omnidirectional robot, highlighting its practical applicability and advancement over existing methods.
本文介绍了一种新颖的模型预测控制(MPC)框架,该框架集成了干扰观测器,可用于拒绝服务(DoS)攻击下的网络物理系统(CPS)。我们的 MPC 方法独特地集成了内存模块,专门用于在 DoS 攻击期间保持 CPS 的稳定性和安全性,DoS 攻击通常会破坏通信并降低性能。我们的方法通过干扰观测器解决了时变系统不确定性问题,增强了在这些攻击条件下的鲁棒性。我们通过数值模拟、硬件在环实验以及使用全向机器人进行比较分析,验证了我们方法的有效性,突出了其实际适用性以及与现有方法相比的先进性。
{"title":"Reference Tracking MPC for Cyber-Physical Systems Under Denial-of-Service Attacks: An Omnidirectional Robot Application","authors":"Daotong Zhang;Peng Shi;Ramesh K. Agarwal;Levente Kovács","doi":"10.1109/JSYST.2024.3384372","DOIUrl":"10.1109/JSYST.2024.3384372","url":null,"abstract":"This article presents a novel model predictive control (MPC) framework with an integrated disturbance observer for cyber-physical systems (CPSs) under denial-of-service (DoS) attacks. Uniquely incorporating a memory module, our MPC approach is tailored to maintain stability and security in CPS during DoS attacks, which typically disrupt communication and degrade performance. Our method stands out by addressing time-varying system uncertainties through the disturbance observer, enhancing robustness under these attack conditions. The effectiveness of our approach is validated through numerical simulations, hardware-in-the-loop experiments, and comparative analyses using an omnidirectional robot, highlighting its practical applicability and advancement over existing methods.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 2","pages":"1248-1256"},"PeriodicalIF":4.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140804840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal DDoS Attack Strategy for Cyber–Physical Systems: A Multiattacker–Defender Game 网络物理系统的最佳 DDoS 攻击策略:多攻击者-防御者博弈
IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-04-16 DOI: 10.1109/JSYST.2024.3381304
Hao Zhang;Jie Yao;Zhuping Wang;Sheng Gao;Huaicheng Yan
This article studies the optimal distributed denial-of-service attack strategy for cyber–physical systems with multiple attackers and multiple defenders. An advanced attack strategy is proposed to cause the great damage to system in a multiattacker–defender form. First, a novel model of signal-to-interference-to-noise ratio for the multiattacker and multidefender is built. Taking the energy constraints into consideration, the objective of defenders is to minimize the system performance, while the attackers tend to deteriorate it by emitting interference energy. Thus, the optimal channel selection and optimal energy allocation strategies are proposed to answer which channel both of them should choose and how much power both of them should allocate to each channel in a finite time horizon. Second, a two-player zero-sum matrix game is formulated to solve the optimal problem by linear programming and obtain the Nash equilibrium. When the channel parameters are time-varying, a dynamic optimal channel selection problem is considered and a multistage game algorithm is proposed to find the Nash equilibrium. In addition, the designed optimal strategies of both players are demonstrated and analyzed. Finally, a numerical simulation is provided to illustrate the effectiveness of the proposed approach.
本文研究了具有多个攻击者和多个防御者的网络物理系统的最优分布式拒绝服务攻击策略。提出了一种先进的攻击策略,可在多攻击方-防御方形式下对系统造成巨大破坏。首先,为多攻击者和多防御者建立了一个新颖的信号-干扰-噪声比模型。考虑到能量约束,防御者的目标是最大限度地降低系统性能,而攻击者则倾向于通过发射干扰能量来降低系统性能。因此,提出了最优信道选择和最优能量分配策略,以回答在有限的时间跨度内,防御方和攻击方应选择哪个信道以及每个信道应分配多少能量。其次,提出了一个双人零和矩阵博弈,通过线性规划求解最优问题,并得到纳什均衡。当信道参数时变时,考虑了动态最优信道选择问题,并提出了一种多阶段博弈算法来寻找纳什均衡。此外,还演示和分析了所设计的博弈双方的最优策略。最后,通过数值模拟说明了所提方法的有效性。
{"title":"Optimal DDoS Attack Strategy for Cyber–Physical Systems: A Multiattacker–Defender Game","authors":"Hao Zhang;Jie Yao;Zhuping Wang;Sheng Gao;Huaicheng Yan","doi":"10.1109/JSYST.2024.3381304","DOIUrl":"10.1109/JSYST.2024.3381304","url":null,"abstract":"This article studies the optimal distributed denial-of-service attack strategy for cyber–physical systems with multiple attackers and multiple defenders. An advanced attack strategy is proposed to cause the great damage to system in a multiattacker–defender form. First, a novel model of signal-to-interference-to-noise ratio for the multiattacker and multidefender is built. Taking the energy constraints into consideration, the objective of defenders is to minimize the system performance, while the attackers tend to deteriorate it by emitting interference energy. Thus, the optimal channel selection and optimal energy allocation strategies are proposed to answer which channel both of them should choose and how much power both of them should allocate to each channel in a finite time horizon. Second, a two-player zero-sum matrix game is formulated to solve the optimal problem by linear programming and obtain the Nash equilibrium. When the channel parameters are time-varying, a dynamic optimal channel selection problem is considered and a multistage game algorithm is proposed to find the Nash equilibrium. In addition, the designed optimal strategies of both players are demonstrated and analyzed. Finally, a numerical simulation is provided to illustrate the effectiveness of the proposed approach.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 2","pages":"929-940"},"PeriodicalIF":4.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140615033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Security-Reliability Analysis for Adaptive Semi-Grant-Free Transmissions 自适应半无权传输的安全可靠性分析
IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-04-15 DOI: 10.1109/JSYST.2024.3378699
Long Ma;Yuan Zhang
Internet of Things (IoT) devices frequently encounter various challenges, including limited power, spectrum, and memory resources, as well as harsh environments conditions. Therefore, the development of an efficient transmission scheme is crucial for ensuring reliable and secure communication in IoT networks. In this article, an adaptive semi-grant-free (SGF) transmission scheme is proposed for reliable uplink nonorthogonal multiple access systems with enhanced security, in which a ratio-based user scheduling criterion and a hybrid successive interference cancellation technique are employed to suppress the activity of untrusted nodes while ensuring reliable transmission. To evaluate the superiority of the adaptive scheme, a conventional static transmission scheme and a worst-case eavesdropping scenario are used as benchmarks. Simulation results show that the adaptive scheme outperforms the conventional schemes in terms of outage and intercept probability. In addition, the closed-form results of grant-based user's and grant-free user's outage probability and untrusted node's intercept probability are derived. Compared to existing literature, this work provides a comprehensive view of security-reliability tradeoff analysis of SGF transmissions.
物联网(IoT)设备经常会遇到各种挑战,包括有限的功率、频谱和内存资源,以及恶劣的环境条件。因此,开发高效的传输方案对于确保物联网网络通信的可靠性和安全性至关重要。本文为具有增强安全性的可靠上行非正交多址系统提出了一种自适应半无补助(SGF)传输方案,其中采用了基于比率的用户调度准则和混合连续干扰消除技术,以抑制不信任节点的活动,同时确保可靠传输。为了评估自适应方案的优越性,使用了传统的静态传输方案和最坏情况下的窃听方案作为基准。仿真结果表明,自适应方案在中断和截获概率方面优于传统方案。此外,还推导出了基于授予的用户和无授予用户的中断概率以及不信任节点的截获概率的闭式结果。与现有文献相比,这项研究为 SGF 传输的安全性-可靠性权衡分析提供了一个全面的视角。
{"title":"Security-Reliability Analysis for Adaptive Semi-Grant-Free Transmissions","authors":"Long Ma;Yuan Zhang","doi":"10.1109/JSYST.2024.3378699","DOIUrl":"10.1109/JSYST.2024.3378699","url":null,"abstract":"Internet of Things (IoT) devices frequently encounter various challenges, including limited power, spectrum, and memory resources, as well as harsh environments conditions. Therefore, the development of an efficient transmission scheme is crucial for ensuring reliable and secure communication in IoT networks. In this article, an adaptive semi-grant-free (SGF) transmission scheme is proposed for reliable uplink nonorthogonal multiple access systems with enhanced security, in which a ratio-based user scheduling criterion and a hybrid successive interference cancellation technique are employed to suppress the activity of untrusted nodes while ensuring reliable transmission. To evaluate the superiority of the adaptive scheme, a conventional static transmission scheme and a worst-case eavesdropping scenario are used as benchmarks. Simulation results show that the adaptive scheme outperforms the conventional schemes in terms of outage and intercept probability. In addition, the closed-form results of grant-based user's and grant-free user's outage probability and untrusted node's intercept probability are derived. Compared to existing literature, this work provides a comprehensive view of security-reliability tradeoff analysis of SGF transmissions.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 2","pages":"1080-1091"},"PeriodicalIF":4.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140582673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Systems Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1