首页 > 最新文献

Graphical Models最新文献

英文 中文
Image restoration for digital line drawings using line masks 使用线条遮罩修复数字线条图的图像
IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-08-20 DOI: 10.1016/j.gmod.2024.101226
Yan Zhu, Yasushi Yamaguchi

The restoration of digital images holds practical significance due to the fact that degradation of digital image data on the internet is common. State-of-the-art image restoration methods usually employ end-to-end trained networks. However, we argue that a network trained with diverse image pairs is not optimal for restoring line drawings which have extensive plain backgrounds. We propose a line-drawing restoration framework which takes a restoration neural network as backbone and processes an input degraded line drawing in two steps. First, a proposed mask-predicting network predicts a line mask which indicates the possible location of foreground and background in the potential original line drawing. Next, we feed the degraded input line drawing together with the predicted line mask into the backbone restoration network. The traditional L1 loss for the backbone restoration network is substituted with a masked Mean Square Error (MSE) loss. We test our framework on two classical image restoration tasks: JPEG restoration and super-resolution, and experiments demonstrate that our framework can achieve better quantitative and visual results in most cases.

由于互联网上的数字图像数据普遍存在质量下降的问题,因此数字图像的修复具有重要的现实意义。最先进的图像修复方法通常采用端对端训练网络。然而,我们认为,用不同的图像对训练出的网络并不是修复线条图的最佳方法,因为线条图有大量的平淡背景。我们提出了一种线图修复框架,它以一个修复神经网络为骨干,分两步处理输入的退化线图。首先,一个拟议的掩码预测网络会预测一个线条掩码,该掩码会指示潜在原始线条图中前景和背景的可能位置。接下来,我们将退化的输入线条图与预测的线条掩码一起输入主干修复网络。主干修复网络的传统 L1 损失被掩码均方误差 (MSE) 损失所取代。我们在两个经典的图像复原任务中测试了我们的框架:实验证明,我们的框架在大多数情况下都能获得更好的定量和视觉效果。
{"title":"Image restoration for digital line drawings using line masks","authors":"Yan Zhu,&nbsp;Yasushi Yamaguchi","doi":"10.1016/j.gmod.2024.101226","DOIUrl":"10.1016/j.gmod.2024.101226","url":null,"abstract":"<div><p>The restoration of digital images holds practical significance due to the fact that degradation of digital image data on the internet is common. State-of-the-art image restoration methods usually employ end-to-end trained networks. However, we argue that a network trained with diverse image pairs is not optimal for restoring line drawings which have extensive plain backgrounds. We propose a line-drawing restoration framework which takes a restoration neural network as backbone and processes an input degraded line drawing in two steps. First, a proposed mask-predicting network predicts a line mask which indicates the possible location of foreground and background in the potential original line drawing. Next, we feed the degraded input line drawing together with the predicted line mask into the backbone restoration network. The traditional <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> loss for the backbone restoration network is substituted with a masked Mean Square Error (MSE) loss. We test our framework on two classical image restoration tasks: JPEG restoration and super-resolution, and experiments demonstrate that our framework can achieve better quantitative and visual results in most cases.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"135 ","pages":"Article 101226"},"PeriodicalIF":2.5,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1524070324000146/pdfft?md5=58619f9331f768a8dedffc9dc70f4dbb&pid=1-s2.0-S1524070324000146-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142012112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reconstruction of the bending line for free-form bent components extracting the centroids and exploiting NURBS curves 通过提取中心点和利用 NURBS 曲线重构自由形态弯曲部件的弯曲线
IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-08-19 DOI: 10.1016/j.gmod.2024.101227
Lorenzo Scandola, Maximilian Erber, Philipp Hagenlocher, Florian Steinlehner, Wolfram Volk

Free-form bending belongs to the kinematics-based forming processes and allows the manufacturing of arbitrary 3D-bent components. To obtain the desired part, the tool kinematics is adjusted by comparing the target and obtained bending line. While the target geometry consists of parametric CAD data, the obtained geometry is a surface mesh, making the bending line extraction a challenging task. In this paper the reconstruction of the bending line for free-form bent components is presented. The strategy relies on the extraction of the centroids, for which a ray casting algorithm is developed and compared to an existing Voronoi-based method. Subsequently the obtained points are used to fit a NURBS parametric model of the curve. The algorithm parameters are investigated with a sensitivity analysis, and its performance is evaluated with a defined error metric. Finally, the strategy is validated comparing its results with a Voronoi-based algorithm, and investigating different cross-sections and geometries.

自由形态弯曲属于基于运动学的成形工艺,可以制造任意的三维弯曲部件。为了获得所需的零件,需要通过比较目标折弯线和获得的折弯线来调整工具运动学。目标几何体由参数 CAD 数据组成,而获得的几何体是曲面网格,因此弯曲线提取是一项具有挑战性的任务。本文介绍了自由形态弯曲部件的弯曲线重建。该策略依赖于中心点的提取,为此开发了一种光线投射算法,并与现有的基于 Voronoi 的方法进行了比较。随后,获得的点被用于拟合曲线的 NURBS 参数模型。通过灵敏度分析对算法参数进行了研究,并通过定义的误差指标对其性能进行了评估。最后,将该策略的结果与基于 Voronoi 的算法进行了比较,并对不同的横截面和几何形状进行了研究,从而对该策略进行了验证。
{"title":"Reconstruction of the bending line for free-form bent components extracting the centroids and exploiting NURBS curves","authors":"Lorenzo Scandola,&nbsp;Maximilian Erber,&nbsp;Philipp Hagenlocher,&nbsp;Florian Steinlehner,&nbsp;Wolfram Volk","doi":"10.1016/j.gmod.2024.101227","DOIUrl":"10.1016/j.gmod.2024.101227","url":null,"abstract":"<div><p>Free-form bending belongs to the kinematics-based forming processes and allows the manufacturing of arbitrary 3D-bent components. To obtain the desired part, the tool kinematics is adjusted by comparing the target and obtained bending line. While the target geometry consists of parametric CAD data, the obtained geometry is a surface mesh, making the bending line extraction a challenging task. In this paper the reconstruction of the bending line for free-form bent components is presented. The strategy relies on the extraction of the centroids, for which a ray casting algorithm is developed and compared to an existing Voronoi-based method. Subsequently the obtained points are used to fit a NURBS parametric model of the curve. The algorithm parameters are investigated with a sensitivity analysis, and its performance is evaluated with a defined error metric. Finally, the strategy is validated comparing its results with a Voronoi-based algorithm, and investigating different cross-sections and geometries.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"135 ","pages":"Article 101227"},"PeriodicalIF":2.5,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1524070324000158/pdfft?md5=5ae58aca47e71146ef63b6cd34d29835&pid=1-s2.0-S1524070324000158-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142006829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mesh deformation-based single-view 3D reconstruction of thin eyeglasses frames with differentiable rendering 基于网格变形的单视角薄眼镜架三维重建与可变渲染
IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-08-09 DOI: 10.1016/j.gmod.2024.101225
Fan Zhang , Ziyue Ji , Weiguang Kang , Weiqing Li , Zhiyong Su

With the support of Virtual Reality (VR) and Augmented Reality (AR) technologies, the 3D virtual eyeglasses try-on application is well on its way to becoming a new trending solution that offers a “try on” option to select the perfect pair of eyeglasses at the comfort of your own home. Reconstructing eyeglasses frames from a single image with traditional depth and image-based methods is extremely difficult due to their unique characteristics such as lack of sufficient texture features, thin elements, and severe self-occlusions. In this paper, we propose the first mesh deformation-based reconstruction framework for recovering high-precision 3D full-frame eyeglasses models from a single RGB image, leveraging prior and domain-specific knowledge. Specifically, based on the construction of a synthetic eyeglasses frame dataset, we first define a class-specific eyeglasses frame template with pre-defined keypoints. Then, given an input eyeglasses frame image with thin structure and few texture features, we design a keypoint detector and refiner to detect predefined keypoints in a coarse-to-fine manner to estimate the camera pose accurately. After that, using differentiable rendering, we propose a novel optimization approach for producing correct geometry by progressively performing free-form deformation (FFD) on the template mesh. We define a series of loss functions to enforce consistency between the rendered result and the corresponding RGB input, utilizing constraints from inherent structure, silhouettes, keypoints, per-pixel shading information, and so on. Experimental results on both the synthetic dataset and real images demonstrate the effectiveness of the proposed algorithm.

在虚拟现实(VR)和增强现实(AR)技术的支持下,三维虚拟眼镜试戴应用程序正逐渐成为一种新的潮流解决方案,为用户提供 "试戴 "选项,让用户在家中就能挑选一副完美的眼镜。由于眼镜框的独特性,如缺乏足够的纹理特征、薄元素和严重的自遮挡,用传统的基于深度和图像的方法从单幅图像中重建眼镜框极其困难。在本文中,我们首次提出了基于网格变形的重建框架,利用先验知识和特定领域知识,从单张 RGB 图像中恢复高精度三维全框眼镜模型。具体来说,在构建合成眼镜框数据集的基础上,我们首先定义了带有预定义关键点的特定类别眼镜框模板。然后,给定一张结构单薄、纹理特征较少的眼镜框输入图像,我们设计了一个关键点检测器和细化器,以从粗到细的方式检测预定义的关键点,从而准确地估计相机姿态。之后,我们利用可微分渲染技术,提出了一种新颖的优化方法,通过在模板网格上逐步执行自由形态变形 (FFD) 来生成正确的几何图形。我们定义了一系列损失函数,利用来自固有结构、轮廓、关键点、每像素阴影信息等的约束条件,加强渲染结果与相应 RGB 输入之间的一致性。在合成数据集和真实图像上的实验结果证明了所提算法的有效性。
{"title":"Mesh deformation-based single-view 3D reconstruction of thin eyeglasses frames with differentiable rendering","authors":"Fan Zhang ,&nbsp;Ziyue Ji ,&nbsp;Weiguang Kang ,&nbsp;Weiqing Li ,&nbsp;Zhiyong Su","doi":"10.1016/j.gmod.2024.101225","DOIUrl":"10.1016/j.gmod.2024.101225","url":null,"abstract":"<div><p>With the support of Virtual Reality (VR) and Augmented Reality (AR) technologies, the 3D virtual eyeglasses try-on application is well on its way to becoming a new trending solution that offers a “try on” option to select the perfect pair of eyeglasses at the comfort of your own home. Reconstructing eyeglasses frames from a single image with traditional depth and image-based methods is extremely difficult due to their unique characteristics such as lack of sufficient texture features, thin elements, and severe self-occlusions. In this paper, we propose the first mesh deformation-based reconstruction framework for recovering high-precision 3D full-frame eyeglasses models from a single RGB image, leveraging prior and domain-specific knowledge. Specifically, based on the construction of a synthetic eyeglasses frame dataset, we first define a class-specific eyeglasses frame template with pre-defined keypoints. Then, given an input eyeglasses frame image with thin structure and few texture features, we design a keypoint detector and refiner to detect predefined keypoints in a coarse-to-fine manner to estimate the camera pose accurately. After that, using differentiable rendering, we propose a novel optimization approach for producing correct geometry by progressively performing free-form deformation (FFD) on the template mesh. We define a series of loss functions to enforce consistency between the rendered result and the corresponding RGB input, utilizing constraints from inherent structure, silhouettes, keypoints, per-pixel shading information, and so on. Experimental results on both the synthetic dataset and real images demonstrate the effectiveness of the proposed algorithm.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"135 ","pages":"Article 101225"},"PeriodicalIF":2.5,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1524070324000134/pdfft?md5=429e33b8e8d8f39cf8d47fa19b9c19f2&pid=1-s2.0-S1524070324000134-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141937896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-fidelity instructional fashion image editing 高保真时尚图像编辑教学
IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-07-30 DOI: 10.1016/j.gmod.2024.101223
Yinglin Zheng , Ting Zhang , Jianmin Bao , Dong Chen , Ming Zeng

Instructional image editing has received a significant surge of attention recently. In this work, we are interested in the challenging problem of instructional image editing within the particular fashion realm, a domain with significant potential demand in both commercial and personal contexts. This specific domain presents heightened challenges owing to the stringent quality requirements. It necessitates not only the creation of vivid details in alignment with instructions, but also the preservation of precise attributes unrelated to the text guidance. Naive extensions of existing image editing methods produce noticeable artifacts. In order to achieve high-fidelity fashion editing, we propose a novel framework, leveraging the generative prior of a pre-trained human generator and performing edit in the latent space. In addition, we introduce a novel CLIP-based loss to better align the generated target with the instruction. Extensive experiments demonstrate that our approach outperforms prior works including GAN-based editing as well as diffusion-based editing by a large margin, showing impressive visual quality.

最近,教学图像编辑受到了广泛关注。在这项工作中,我们关注的是在特定时尚领域中进行教学图像编辑这一具有挑战性的问题,该领域在商业和个人方面都有巨大的潜在需求。由于对质量的严格要求,这一特定领域面临着更大的挑战。它不仅需要根据说明创建生动的细节,还需要保留与文本指导无关的精确属性。现有图像编辑方法的简单扩展会产生明显的人工痕迹。为了实现高保真时装编辑,我们提出了一个新颖的框架,利用预先训练好的人类生成器的生成先验,在潜空间中进行编辑。此外,我们还引入了一种新颖的基于 CLIP 的损失,使生成的目标与指令更好地保持一致。广泛的实验证明,我们的方法远远优于之前的工作,包括基于 GAN 的编辑和基于扩散的编辑,显示出令人印象深刻的视觉质量。
{"title":"High-fidelity instructional fashion image editing","authors":"Yinglin Zheng ,&nbsp;Ting Zhang ,&nbsp;Jianmin Bao ,&nbsp;Dong Chen ,&nbsp;Ming Zeng","doi":"10.1016/j.gmod.2024.101223","DOIUrl":"10.1016/j.gmod.2024.101223","url":null,"abstract":"<div><p>Instructional image editing has received a significant surge of attention recently. In this work, we are interested in the challenging problem of instructional image editing within the particular fashion realm, a domain with significant potential demand in both commercial and personal contexts. This specific domain presents heightened challenges owing to the stringent quality requirements. It necessitates not only the creation of vivid details in alignment with instructions, but also the preservation of precise attributes unrelated to the text guidance. Naive extensions of existing image editing methods produce noticeable artifacts. In order to achieve high-fidelity fashion editing, we propose a novel framework, leveraging the generative prior of a pre-trained human generator and performing edit in the latent space. In addition, we introduce a novel CLIP-based loss to better align the generated target with the instruction. Extensive experiments demonstrate that our approach outperforms prior works including GAN-based editing as well as diffusion-based editing by a large margin, showing impressive visual quality.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"135 ","pages":"Article 101223"},"PeriodicalIF":2.5,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1524070324000110/pdfft?md5=480bdc352d9fc3901d6a01e1e2794553&pid=1-s2.0-S1524070324000110-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141886752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Make static person walk again via separating pose action from shape 通过将姿势动作与形状分离,让静止的人重新行走
IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-07-03 DOI: 10.1016/j.gmod.2024.101222
Yongwei Nie , Meihua Zhao , Qing Zhang , Ping Li , Jian Zhu , Hongmin Cai

This paper addresses the problem of animating a person in static images, the core task of which is to infer future poses for the person. Existing approaches predict future poses in the 2D space, suffering from entanglement of pose action and shape. We propose a method that generates actions in the 3D space and then transfers them to the 2D person. We first lift the 2D pose of the person to a 3D skeleton, then propose a 3D action synthesis network predicting future skeletons, and finally devise a self-supervised action transfer network that transfers the actions of 3D skeletons to the 2D person. Actions generated in the 3D space look plausible and vivid. More importantly, self-supervised action transfer allows our method to be trained only on a 3D MoCap dataset while being able to process images in different domains. Experiments on three image datasets validate the effectiveness of our method.

本文探讨了在静态图像中制作人物动画的问题,其核心任务是推断人物的未来姿势。现有的方法是在二维空间中预测未来的姿势,存在姿势动作和形状的纠缠问题。我们提出了一种在三维空间生成动作,然后将其转移到二维人物的方法。我们首先将人的二维姿势提升为三维骨架,然后提出一个预测未来骨架的三维动作合成网络,最后设计一个自我监督的动作转移网络,将三维骨架的动作转移到二维人身上。在三维空间中生成的动作看起来合理而生动。更重要的是,自监督动作转移使我们的方法只需在三维 MoCap 数据集上进行训练,就能处理不同领域的图像。在三个图像数据集上的实验验证了我们方法的有效性。
{"title":"Make static person walk again via separating pose action from shape","authors":"Yongwei Nie ,&nbsp;Meihua Zhao ,&nbsp;Qing Zhang ,&nbsp;Ping Li ,&nbsp;Jian Zhu ,&nbsp;Hongmin Cai","doi":"10.1016/j.gmod.2024.101222","DOIUrl":"https://doi.org/10.1016/j.gmod.2024.101222","url":null,"abstract":"<div><p>This paper addresses the problem of animating a person in static images, the core task of which is to infer future poses for the person. Existing approaches predict future poses in the 2D space, suffering from entanglement of pose action and shape. We propose a method that generates actions in the 3D space and then transfers them to the 2D person. We first lift the 2D pose of the person to a 3D skeleton, then propose a 3D action synthesis network predicting future skeletons, and finally devise a self-supervised action transfer network that transfers the actions of 3D skeletons to the 2D person. Actions generated in the 3D space look plausible and vivid. More importantly, self-supervised action transfer allows our method to be trained only on a 3D MoCap dataset while being able to process images in different domains. Experiments on three image datasets validate the effectiveness of our method.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"134 ","pages":"Article 101222"},"PeriodicalIF":2.5,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1524070324000109/pdfft?md5=625da7fe01537f9691e2758137e210d0&pid=1-s2.0-S1524070324000109-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141541322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bilateral transformer 3D planar recovery 双边变压器三维平面恢复
IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-06-21 DOI: 10.1016/j.gmod.2024.101221
Fei Ren , Chunhua Liao , Zhina Xie

In recent years, deep learning based methods for single image 3D planar recovery have made significant progress, but most of the research has focused on overall plane segmentation performance rather than the accuracy of small scale plane segmentation. In order to solve the problem of feature loss in the feature extraction process of small target object features, a three dimensional planar recovery method based on bilateral transformer was proposed. The two sided network branches capture rich small object target features through different scale sampling, and are used for detecting planar and non-planar regions respectively. In addition, the loss of variational information is used to share the parameters of the bilateral network, which achieves the output consistency of the bilateral network and alleviates the problem of feature loss of small target objects. The method is verified on Scannet and Nyu V2 datasets, and a variety of evaluation indexes are superior to the current popular algorithms, proving the effectiveness of the method in three dimensional planar recovery.

近年来,基于深度学习的单幅图像三维平面恢复方法取得了显著进展,但大部分研究都集中在整体平面分割性能上,而不是小尺度平面分割的精度上。为了解决小目标物体特征提取过程中的特征丢失问题,提出了一种基于双边变换器的三维平面恢复方法。双侧网络分支通过不同尺度采样捕捉丰富的小目标物目标特征,分别用于检测平面区域和非平面区域。此外,利用变异信息的丢失来共享双边网络的参数,实现了双边网络输出的一致性,缓解了小目标物体特征丢失的问题。该方法在 Scannet 和 Nyu V2 数据集上进行了验证,各种评价指标均优于目前流行的算法,证明了该方法在三维平面恢复方面的有效性。
{"title":"Bilateral transformer 3D planar recovery","authors":"Fei Ren ,&nbsp;Chunhua Liao ,&nbsp;Zhina Xie","doi":"10.1016/j.gmod.2024.101221","DOIUrl":"https://doi.org/10.1016/j.gmod.2024.101221","url":null,"abstract":"<div><p>In recent years, deep learning based methods for single image 3D planar recovery have made significant progress, but most of the research has focused on overall plane segmentation performance rather than the accuracy of small scale plane segmentation. In order to solve the problem of feature loss in the feature extraction process of small target object features, a three dimensional planar recovery method based on bilateral transformer was proposed. The two sided network branches capture rich small object target features through different scale sampling, and are used for detecting planar and non-planar regions respectively. In addition, the loss of variational information is used to share the parameters of the bilateral network, which achieves the output consistency of the bilateral network and alleviates the problem of feature loss of small target objects. The method is verified on Scannet and Nyu V2 datasets, and a variety of evaluation indexes are superior to the current popular algorithms, proving the effectiveness of the method in three dimensional planar recovery.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"134 ","pages":"Article 101221"},"PeriodicalIF":2.5,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1524070324000092/pdfft?md5=b6e8dcdf8c08f479bd4a08431705f4a8&pid=1-s2.0-S1524070324000092-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Persistent geometry-topology descriptor for porous structure retrieval based on Heat Kernel Signature 基于热核特征的多孔结构检索持久几何拓扑描述符
IF 1.7 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-06-01 DOI: 10.1016/j.gmod.2024.101219
Peisheng Zhuo , Zitong He , Hongwei Lin
<div><p>Porous structures are essential in a variety of fields such as materials science and chemistry. To retrieve porous materials efficiently, novel descriptors are required to quantify the geometric and topological features. In this paper, we present a novel framework to create a descriptor that incorporates both topological and geometric information of a porous structure. To capture geometric information, we keep track of the <span><math><mrow><mi>b</mi><mi>i</mi><mi>r</mi><mi>t</mi><mi>h</mi><mspace></mspace><mspace></mspace><mi>t</mi><mi>i</mi><mi>m</mi><mi>e</mi></mrow></math></span> and <span><math><mrow><mi>d</mi><mi>e</mi><mi>a</mi><mi>t</mi><mi>h</mi><mspace></mspace><mspace></mspace><mi>t</mi><mi>i</mi><mi>m</mi><mi>e</mi></mrow></math></span> of the <span><math><mrow><mi>p</mi><mi>e</mi><mi>r</mi><mi>s</mi><mi>i</mi><mi>s</mi><mi>t</mi><mi>e</mi><mi>n</mi><mi>t</mi><mspace></mspace><mi>f</mi><mi>e</mi><mi>a</mi><mi>t</mi><mi>u</mi><mi>r</mi><mi>e</mi></mrow></math></span>s of a real-valued function on the surface that evolves with a parameter. Then, we generate the corresponding <span><math><mrow><mi>p</mi><mi>e</mi><mi>r</mi><mi>s</mi><mi>i</mi><mi>s</mi><mi>t</mi><mi>e</mi><mi>n</mi><mi>t</mi><mspace></mspace><mspace></mspace><mi>f</mi><mi>e</mi><mi>a</mi><mi>t</mi><mi>u</mi><mi>r</mi><mi>e</mi><mspace></mspace><mspace></mspace><mi>d</mi><mi>i</mi><mi>a</mi><mi>g</mi><mi>r</mi><mi>a</mi><mi>m</mi></mrow></math></span> (<span><math><mrow><mi>D</mi><mi>g</mi><msub><mrow><mi>m</mi></mrow><mrow><mi>P</mi><mi>F</mi></mrow></msub></mrow></math></span>) and convert it into a vector called <span><math><mrow><mi>p</mi><mi>e</mi><mi>r</mi><mi>s</mi><mi>i</mi><mi>s</mi><mi>t</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mspace></mspace><mspace></mspace><mi>f</mi><mi>e</mi><mi>a</mi><mi>t</mi><mi>u</mi><mi>r</mi><mi>e</mi><mspace></mspace><mspace></mspace><mi>d</mi><mi>e</mi><mi>s</mi><mi>c</mi><mi>r</mi><mi>i</mi><mi>p</mi><mi>t</mi><mi>o</mi><mi>r</mi></mrow></math></span> (PFD). To extract topological information, we sample points from the pore surface and compute the corresponding persistence diagram, which is then transformed into the Persistence B-Spline Grids (PBSG). Our proposed descriptor, namely <span><math><mrow><mi>p</mi><mi>e</mi><mi>r</mi><mi>s</mi><mi>i</mi><mi>s</mi><mi>t</mi><mi>e</mi><mi>n</mi><mi>t</mi><mspace></mspace><mspace></mspace><mi>g</mi><mi>e</mi><mi>o</mi><mi>m</mi><mi>e</mi><mi>t</mi><mi>r</mi><mi>y</mi><mo>−</mo><mi>t</mi><mi>o</mi><mi>p</mi><mi>o</mi><mi>l</mi><mi>o</mi><mi>g</mi><mi>y</mi><mspace></mspace><mspace></mspace><mi>d</mi><mi>e</mi><mi>s</mi><mi>c</mi><mi>r</mi><mi>i</mi><mi>p</mi><mi>t</mi><mi>o</mi><mi>r</mi></mrow></math></span> (PGTD), is obtained by concatenating PFD with PBSG. In our experiments, we use the heat kernel signature (HKS) as the real-valued function to compute the descriptor. We test the method on a synthetic porous dataset and a zeolite dataset and find that it is competitive compa
多孔结构在材料科学和化学等多个领域都至关重要。为了有效检索多孔材料,需要新颖的描述符来量化几何和拓扑特征。在本文中,我们提出了一个新颖的框架,用于创建一个同时包含多孔结构拓扑和几何信息的描述符。为了捕捉几何信息,我们跟踪表面上随参数变化的实值函数的持久特征的诞生时间和消亡时间。然后,我们生成相应的持久特征图(DgmPF),并将其转换为称为持久特征描述器(PFD)的向量。为了提取拓扑信息,我们从孔隙表面采样点并计算相应的持久图,然后将其转换为持久 B 样条网格(PBSG)。我们提出的描述符,即持久几何拓扑描述符(PGTD),是通过将 PFD 与 PBSG 连接得到的。在实验中,我们使用热核特征(HKS)作为实值函数来计算描述符。我们在一个合成多孔数据集和一个沸石数据集上测试了该方法,发现与其他基于 HKS 的描述符和高级拓扑描述符相比,该方法具有很强的竞争力。
{"title":"Persistent geometry-topology descriptor for porous structure retrieval based on Heat Kernel Signature","authors":"Peisheng Zhuo ,&nbsp;Zitong He ,&nbsp;Hongwei Lin","doi":"10.1016/j.gmod.2024.101219","DOIUrl":"10.1016/j.gmod.2024.101219","url":null,"abstract":"&lt;div&gt;&lt;p&gt;Porous structures are essential in a variety of fields such as materials science and chemistry. To retrieve porous materials efficiently, novel descriptors are required to quantify the geometric and topological features. In this paper, we present a novel framework to create a descriptor that incorporates both topological and geometric information of a porous structure. To capture geometric information, we keep track of the &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; of the &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;s of a real-valued function on the surface that evolves with a parameter. Then, we generate the corresponding &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;) and convert it into a vector called &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; (PFD). To extract topological information, we sample points from the pore surface and compute the corresponding persistence diagram, which is then transformed into the Persistence B-Spline Grids (PBSG). Our proposed descriptor, namely &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; (PGTD), is obtained by concatenating PFD with PBSG. In our experiments, we use the heat kernel signature (HKS) as the real-valued function to compute the descriptor. We test the method on a synthetic porous dataset and a zeolite dataset and find that it is competitive compa","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"133 ","pages":"Article 101219"},"PeriodicalIF":1.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1524070324000079/pdfft?md5=499cdacea6ff6d72e1f6c905040f66c2&pid=1-s2.0-S1524070324000079-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141232284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An exact algorithm for two-dimensional cutting problems based on multi-level pattern 基于多级模式的二维切割问题精确算法
IF 1.7 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-05-25 DOI: 10.1016/j.gmod.2024.101220
Weiping Pan

A multi-level pattern is proposed for the unconstrained two-dimensional cutting problems of rectangular items, and an exact generation algorithm is constructed. The arrangement of rectangular items with the same type in multiple rows and columns is referred to as a 0-level pattern. An n-level pattern is the horizontal or vertical combination of an n-1 level pattern with a pattern whose level will not exceed n-1. The generation algorithm of multi-level pattern is constructed on the base of dynamic programming, and the multi-level patterns with various sizes are generated with increased level order. The normal size is chosen to reduce unnecessary computation in the algorithm. Three sets of benchmark instances and one set of random production instance from the literatures are used for comparison. Comparing to the exact algorithm in the literature, the results in this paper are equivalent, but the computation time is shorter. Comparing to heuristic algorithms in literatures, the results in this paper are better and the computation time is still good enough for practical applications.

针对矩形物品的无约束二维切割问题,提出了一种多层次模式,并构建了精确的生成算法。同一类型的矩形物品在多行和多列中的排列称为 0 级模式。n 级模式是 n-1 级模式与级别不超过 n-1 的模式的水平或垂直组合。多级图案的生成算法是在动态编程的基础上构建的,不同大小的多级图案随着级序的增加而生成。选择正常大小是为了减少算法中不必要的计算。比较使用了三组基准实例和一组来自文献的随机生产实例。与文献中的精确算法相比,本文的结果相当,但计算时间更短。与文献中的启发式算法相比,本文的结果更好,计算时间也足够实际应用。
{"title":"An exact algorithm for two-dimensional cutting problems based on multi-level pattern","authors":"Weiping Pan","doi":"10.1016/j.gmod.2024.101220","DOIUrl":"https://doi.org/10.1016/j.gmod.2024.101220","url":null,"abstract":"<div><p>A multi-level pattern is proposed for the unconstrained two-dimensional cutting problems of rectangular items, and an exact generation algorithm is constructed. The arrangement of rectangular items with the same type in multiple rows and columns is referred to as a 0-level pattern. An <em>n</em>-level pattern is the horizontal or vertical combination of an <em>n</em>-1 level pattern with a pattern whose level will not exceed <em>n</em>-1. The generation algorithm of multi-level pattern is constructed on the base of dynamic programming, and the multi-level patterns with various sizes are generated with increased level order. The normal size is chosen to reduce unnecessary computation in the algorithm. Three sets of benchmark instances and one set of random production instance from the literatures are used for comparison. Comparing to the exact algorithm in the literature, the results in this paper are equivalent, but the computation time is shorter. Comparing to heuristic algorithms in literatures, the results in this paper are better and the computation time is still good enough for practical applications.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"133 ","pages":"Article 101220"},"PeriodicalIF":1.7,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1524070324000080/pdfft?md5=7ba46c24bfd0defb95fae7879ef5f757&pid=1-s2.0-S1524070324000080-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141095105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rod-Bonded Discrete Element Method 杆结合离散元素法
IF 1.7 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-04-11 DOI: 10.1016/j.gmod.2024.101218
Kangrui Zhang , Han Yan , Jia-Ming Lu , Bo Ren

The Bonded Discrete Element Method (BDEM) has raised interests in the graphics community in recent years because of its good performance in fracture simulations. However, current explicit BDEM usually needs to work under very small time steps to avoid numerical instability. We propose a new BDEM, namely Rod-BDEM (RBDEM), which uses Cosserat energy and yields integrable forces and torques. We further derive a novel Cosserat rod discretization method to effectively represent the three-dimensional topological connections between discrete elements. Then, a complete implicit BDEM system integrating the appropriate fracture model and contact model is constructed using the implicit Euler integration scheme. Our method allows high Young’s modulus and larger time steps in elastic deformation, breaking, cracking, and impacting, achieving up to 8 times speed up of the total simulation.

近年来,粘结离散元素法(BDEM)因其在断裂模拟中的良好性能而引起了图形学界的兴趣。然而,目前的显式 BDEM 通常需要在非常小的时间步长下工作,以避免数值不稳定性。我们提出了一种新的 BDEM,即 Rod-BDEM (RBDEM),它使用 Cosserat 能量并产生可积分的力和扭矩。我们进一步推导出一种新颖的 Cosserat 杆离散化方法,以有效表示离散元素之间的三维拓扑连接。然后,我们使用隐式欧拉积分方案构建了一个完整的隐式 BDEM 系统,该系统集成了适当的断裂模型和接触模型。我们的方法允许在弹性变形、断裂、开裂和撞击中使用高杨氏模量和更大的时间步长,使总模拟速度提高了 8 倍。
{"title":"Rod-Bonded Discrete Element Method","authors":"Kangrui Zhang ,&nbsp;Han Yan ,&nbsp;Jia-Ming Lu ,&nbsp;Bo Ren","doi":"10.1016/j.gmod.2024.101218","DOIUrl":"https://doi.org/10.1016/j.gmod.2024.101218","url":null,"abstract":"<div><p>The Bonded Discrete Element Method (BDEM) has raised interests in the graphics community in recent years because of its good performance in fracture simulations. However, current explicit BDEM usually needs to work under very small time steps to avoid numerical instability. We propose a new BDEM, namely Rod-BDEM (RBDEM), which uses Cosserat energy and yields integrable forces and torques. We further derive a novel Cosserat rod discretization method to effectively represent the three-dimensional topological connections between discrete elements. Then, a complete implicit BDEM system integrating the appropriate fracture model and contact model is constructed using the implicit Euler integration scheme. Our method allows high Young’s modulus and larger time steps in elastic deformation, breaking, cracking, and impacting, achieving up to 8 times speed up of the total simulation.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"133 ","pages":"Article 101218"},"PeriodicalIF":1.7,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1524070324000067/pdfft?md5=8b3b530fbeef40a4b36880d3c7a36d0c&pid=1-s2.0-S1524070324000067-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140542596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DINA: Deformable INteraction Analogy DINA:可变形交互类比
IF 1.7 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-03-20 DOI: 10.1016/j.gmod.2024.101217
Zeyu Huang , Sisi Dai , Kai Xu , Hao Zhang , Hui Huang , Ruizhen Hu

We introduce deformable interaction analogy (DINA) as a means to generate close interactions between two 3D objects. Given a single demo interaction between an anchor object (e.g. a hand) and a source object (e.g. a mug grasped by the hand), our goal is to generate many analogous 3D interactions between the same anchor object and various new target objects (e.g. a toy airplane), where the anchor object is allowed to be rigid or deformable. To this end, we optimize the pose or shape of the anchor object to adapt it to a new target object to mimic the demo. To facilitate the optimization, we advocate using interaction interface (ITF), defined by a set of points sampled on the anchor object, as a descriptive and robust interaction representation that is amenable to non-rigid deformation. We model similarity between interactions using ITF, while for interaction analogy, we transform the ITF, either rigidly or non-rigidly, to guide the feature matching to the reposing and deformation of the anchor object. Qualitative and quantitative experiments show that our ITF-guided deformable interaction analogy works surprisingly well even with simple distance features compared to variants of state-of-the-art methods that utilize more sophisticated interaction representations and feature learning from large datasets.

我们引入了可变形交互类比(DINA)作为生成两个三维物体之间密切交互的一种手段。给定锚对象(如手)和源对象(如手抓住的杯子)之间的单次演示交互,我们的目标是在同一锚对象和各种新目标对象(如玩具飞机)之间生成许多类似的三维交互,其中锚对象可以是刚性的,也可以是可变形的。为此,我们将优化锚定对象的姿势或形状,使其适应新的目标对象,以模仿演示。为了便于优化,我们主张使用交互界面(ITF),它由锚定对象上的一组点采样定义,是一种可用于非刚性变形的描述性和稳健的交互表示。我们使用 ITF 对交互之间的相似性进行建模,而对于交互类比,我们则对 ITF 进行刚性或非刚性转换,以引导特征匹配与锚定对象的重新摆放和变形相匹配。定性和定量实验表明,与利用更复杂的交互表征和大型数据集特征学习的最先进方法的变体相比,即使是简单的距离特征,我们的 ITF 引导的可变形交互类比也能达到令人惊讶的效果。
{"title":"DINA: Deformable INteraction Analogy","authors":"Zeyu Huang ,&nbsp;Sisi Dai ,&nbsp;Kai Xu ,&nbsp;Hao Zhang ,&nbsp;Hui Huang ,&nbsp;Ruizhen Hu","doi":"10.1016/j.gmod.2024.101217","DOIUrl":"https://doi.org/10.1016/j.gmod.2024.101217","url":null,"abstract":"<div><p>We introduce deformable interaction analogy (DINA) as a means to generate close interactions between two 3D objects. Given a single demo interaction between an anchor object (e.g. a hand) and a source object (e.g. a mug grasped by the hand), our goal is to generate many analogous 3D interactions between the same anchor object and various new target objects (e.g. a toy airplane), where the anchor object is allowed to be rigid or deformable. To this end, we optimize the pose or shape of the anchor object to adapt it to a new target object to mimic the demo. To facilitate the optimization, we advocate using interaction interface (ITF), defined by a set of points sampled on the anchor object, as a descriptive and robust interaction representation that is amenable to non-rigid deformation. We model similarity between interactions using ITF, while for interaction analogy, we transform the ITF, either rigidly or non-rigidly, to guide the feature matching to the reposing and deformation of the anchor object. Qualitative and quantitative experiments show that our ITF-guided deformable interaction analogy works surprisingly well even with simple distance features compared to variants of state-of-the-art methods that utilize more sophisticated interaction representations and feature learning from large datasets.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"133 ","pages":"Article 101217"},"PeriodicalIF":1.7,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1524070324000055/pdfft?md5=94513ad40e92d864add74b24ff48c5e2&pid=1-s2.0-S1524070324000055-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140163180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Graphical Models
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1