In this study, the dynamic response and damage mode of a pile-geogrid composite reinforced high-speed railway subgrade under seismic action were investigated based on a unidirectional shaking table test. Various seismic waves were applied to the subgrade, allowing for an analysis of acceleration, dynamic soil pressure, displacement, and strain responses. The displacement field of the subgrade was visualized using particle image velocimetry (PIV). The study shows that changes in peak ground acceleration (PGA) amplification factors become evident with height due to the presence of geogrid layers. The increase in peak ground motion causes a redistribution of dynamic soil pressures inside the subgrade. The transverse and longitudinal ribs of the geogrids provide an “anchoring effect”. The peak strain of the piles in the center is greater than that of the piles on the sides. The direction of soil particle displacement is closely related to the damage patterns observed in the subgrade. Damage begins to occur once the peak ground motion exceeds 0.4 g, characterized by collapse at the bottom of the subgrade.