首页 > 最新文献

Geotextiles and Geomembranes最新文献

英文 中文
A 9-year study of the degradation of a HDPE geomembrane liner used in different high pH mining applications 对高密度聚乙烯(HDPE)土工膜衬垫在不同高 pH 值采矿应用中的降解情况进行为期 9 年的研究
IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Pub Date : 2024-10-02 DOI: 10.1016/j.geotexmem.2024.09.012
Rodrigo A. e Silva , Fady B. Abdelaal , R. Kerry Rowe
The degradation of a HDPE geomembrane in heap leaching environments is evaluated using immersion tests at five temperatures. The incubation solutions had a pH of 9.5, 11.5, and 13.5, relevant to gold and silver pregnant liquor solutions. After 9.3 years, the geomembrane's mechanical properties had reached nominal failure at 95, 85, and 75 °C in all three solutions. It is shown that the pH 13.5 solution had the greatest effect on the antioxidant depletion (Stage I) and polymer degradation (Stage III), but was the least aggressive to initiate the degradation (Stage II) compared to the pH 11.5 and 9.5 solutions. Overall, the time to nominal failure (time to 50% of the initial or specified property value) in pH 13.5 was slightly shorter than the pH 9.5 and 11.5 solutions. Based purely on immsersion tests, the time to nominal failure of this specific geeomembrane at 30oC is predicted to be 150 years in the pH 9.5 and 11.5 solutions, and 140 years in the pH 13.5 solution. Assuming a good liner design that limits the tensile strains in the GMB, nominal failure in a composite liner configuration is predicted to exceed 260 years at 30 °C and the expected value could exceed 1000 years at 10 °C.
通过在五种温度下进行浸泡试验,评估了高密度聚乙烯(HDPE)土工膜在堆浸环境中的降解情况。培养液的 pH 值分别为 9.5、11.5 和 13.5,与金和银的孕液溶液相关。9.3 年后,在所有三种溶液中,土工膜的机械性能在 95、85 和 75 °C 下均达到额定失效值。结果表明,与 pH 值为 11.5 和 9.5 的溶液相比,pH 值为 13.5 的溶液对抗氧化剂消耗(第一阶段)和聚合物降解(第三阶段)的影响最大,但对启动降解(第二阶段)的作用最小。总体而言,pH 值为 13.5 的溶液的标称失效时间(达到初始值或指定性能值 50%的时间)略短于 pH 值为 9.5 和 11.5 的溶液。纯粹根据浸入试验,在 30 摄氏度的条件下,pH 值为 9.5 和 11.5 的溶液中,这种特定的吉奥膜的标称失效时间预计为 150 年,pH 值为 13.5 的溶液中为 140 年。假定有一个良好的内衬设计来限制 GMB 中的拉伸应变,在 30 °C 时,复合内衬配置的名义失效时间预计将超过 260 年,在 10 °C 时,预期值可能超过 1000 年。
{"title":"A 9-year study of the degradation of a HDPE geomembrane liner used in different high pH mining applications","authors":"Rodrigo A. e Silva ,&nbsp;Fady B. Abdelaal ,&nbsp;R. Kerry Rowe","doi":"10.1016/j.geotexmem.2024.09.012","DOIUrl":"10.1016/j.geotexmem.2024.09.012","url":null,"abstract":"<div><div>The degradation of a HDPE geomembrane in heap leaching environments is evaluated using immersion tests at five temperatures. The incubation solutions had a pH of 9.5, 11.5, and 13.5, relevant to gold and silver pregnant liquor solutions. After 9.3 years, the geomembrane's mechanical properties had reached nominal failure at 95, 85, and 75 °C in all three solutions. It is shown that the pH 13.5 solution had the greatest effect on the antioxidant depletion (Stage I) and polymer degradation (Stage III), but was the least aggressive to initiate the degradation (Stage II) compared to the pH 11.5 and 9.5 solutions. Overall, the time to nominal failure (time to 50% of the initial or specified property value) in pH 13.5 was slightly shorter than the pH 9.5 and 11.5 solutions. Based purely on immsersion tests, the time to nominal failure of this specific geeomembrane at 30<sup>o</sup>C is predicted to be 150 years in the pH 9.5 and 11.5 solutions, and 140 years in the pH 13.5 solution. Assuming a good liner design that limits the tensile strains in the GMB, nominal failure in a composite liner configuration is predicted to exceed 260 years at 30 °C and the expected value could exceed 1000 years at 10 °C.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 1","pages":"Pages 230-246"},"PeriodicalIF":4.7,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DEM investigation on mechanical behavior of geogrid-sand interface subjected to cyclic direct shear 土工格栅-砂界面在循环直接剪切作用下的力学行为 DEM 研究
IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Pub Date : 2024-10-01 DOI: 10.1016/j.geotexmem.2024.09.014
Qiang Ma , Chuchen Xi , Chenxi Miao , Yongli Liu , Feng Wu
The cyclic properties of geosynthetic soil interface are crucial for reinforced soil structures subject to seismic loading. To investigate the mechanical geogrid-sand interface behavior under cyclic shear conditions, a series of numerical simulation cyclic shear tests were conducted using the discrete element method. The results revealed with increasing of shear cycles, dense sand sample gradually shrunk, exhibiting obvious softening characteristics. The vertical displacement of the sample under simulated 10 cyclic shear increases by 0.27 mm, which is 0.41 mm lower than that under 1 cyclic shear. Meanwhile, obvious dilation was observed in the shear band. As the number of cyclic shear increases, the region where the particle rotation occurs does not change significantly, ranging from 75 mm to 125 mm. Higher sample density made it more difficult for particles at geogrid-sand interface to rotate. Under the same number of cycles, denser samples had narrower shear bands, smaller shear strain shifts, and larger shear stiffness. The sand size is 0.5 mm, and the particle displacement concentrated in the 3 mm shear zone. After the completion of cyclic shear, dense sand had little effect on the porosity of the unreinforced sand affected zone, and the porosity after cyclic cycle was close to the initial porosity.
土工合成材料土壤界面的循环特性对于承受地震荷载的加筋土结构至关重要。为研究土工格栅-砂土界面在循环剪切条件下的力学行为,采用离散元法进行了一系列数值模拟循环剪切试验。结果表明,随着剪切循环次数的增加,致密砂样逐渐收缩,表现出明显的软化特征。在模拟 10 次循环剪切作用下,试样的垂直位移增加了 0.27 毫米,比 1 次循环剪切作用下的垂直位移减少了 0.41 毫米。同时,剪切带出现了明显的扩张。随着循环剪切次数的增加,颗粒发生旋转的区域变化不大,从 75 毫米到 125 毫米不等。样品密度越高,土工格栅-砂界面上的颗粒越难旋转。在相同的循环次数下,密度大的样品剪切带更窄、剪切应变位移更小、剪切刚度更大。砂的粒径为 0.5 毫米,颗粒位移集中在 3 毫米的剪切区。循环剪切完成后,致密砂对未加固砂影响区的孔隙率影响不大,循环周期后的孔隙率接近初始孔隙率。
{"title":"DEM investigation on mechanical behavior of geogrid-sand interface subjected to cyclic direct shear","authors":"Qiang Ma ,&nbsp;Chuchen Xi ,&nbsp;Chenxi Miao ,&nbsp;Yongli Liu ,&nbsp;Feng Wu","doi":"10.1016/j.geotexmem.2024.09.014","DOIUrl":"10.1016/j.geotexmem.2024.09.014","url":null,"abstract":"<div><div>The cyclic properties of geosynthetic soil interface are crucial for reinforced soil structures subject to seismic loading. To investigate the mechanical geogrid-sand interface behavior under cyclic shear conditions, a series of numerical simulation cyclic shear tests were conducted using the discrete element method. The results revealed with increasing of shear cycles, dense sand sample gradually shrunk, exhibiting obvious softening characteristics. The vertical displacement of the sample under simulated 10 cyclic shear increases by 0.27 mm, which is 0.41 mm lower than that under 1 cyclic shear. Meanwhile, obvious dilation was observed in the shear band. As the number of cyclic shear increases, the region where the particle rotation occurs does not change significantly, ranging from 75 mm to 125 mm. Higher sample density made it more difficult for particles at geogrid-sand interface to rotate. Under the same number of cycles, denser samples had narrower shear bands, smaller shear strain shifts, and larger shear stiffness. The sand size is 0.5 mm, and the particle displacement concentrated in the 3 mm shear zone. After the completion of cyclic shear, dense sand had little effect on the porosity of the unreinforced sand affected zone, and the porosity after cyclic cycle was close to the initial porosity.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 1","pages":"Pages 217-229"},"PeriodicalIF":4.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental study on deformation and failure mechanism of geogrid-reinforced soil above voids 空隙上方土工格栅加固土体的变形和破坏机理试验研究
IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Pub Date : 2024-09-28 DOI: 10.1016/j.geotexmem.2024.09.015
Yu-Xin Gao , Hong-Hu Zhu , Jing-Wen Su , Xu-Yan Ren , Xu-Hui Guo , Hannah Wan-Huan Zhou , Bin Shi
Geosynthetic materials are crucial for reinforcing soil above subterranean voids. However, the complexities of load transfer mechanisms in reinforced structures remain elusive. This study investigates the deformation and failure mechanisms in geogrid-reinforced soil using trapdoor experiments. The particle image velocimetry (PIV) technique was utilized for detailed observation of soil deformation, while fiber optic strain sensing cables were used to monitor tensile strains within geogrids. Results indicate that soil arching redistributes loads across the trapdoor area, effectively transferring loads from subsiding to adjacent stable regions. As trapdoor displacement increases, the initial soil arch collapses, prompting the formation of another stable arch. This cycle of development and failure of soil arch continues until shear bands reach the ground surface. Soil arches are more prone to failure over shallower voids. Strain data reveal that the geogrid's tension varies with the tensile strain and is highest near the void's edges. For shallow voids, the tensioned membrane effect of the geogrid bears more of the overlying soil weight, whereas for deeper voids, soil arching plays a more significant role in load transfer. This study provides important insights into the interaction between soil arching and tensioned membrane effects, offering potential implications for optimizing geosynthetic design.
土工合成材料对于加固地下空隙上的土壤至关重要。然而,加固结构中荷载传递机制的复杂性仍然难以捉摸。本研究利用活门实验研究了土工格栅加固土壤的变形和破坏机制。利用粒子图像测速仪(PIV)技术对土壤变形进行了详细观测,同时使用光纤应变传感电缆监测土工格栅内的拉伸应变。结果表明,土壤拱起重新分配了整个活门区域的荷载,有效地将荷载从下沉区域转移到邻近的稳定区域。随着活门位移的增加,最初的土拱坍塌,促使另一个稳定的土拱形成。土拱的形成和破坏循环往复,直到剪切带到达地表。土拱在较浅的空隙处更容易破坏。应变数据显示,土工格栅的拉力随拉伸应变而变化,在空隙边缘附近拉力最大。对于较浅的空隙,土工格栅的拉伸膜效应承担了更多的上覆土壤重量,而对于较深的空隙,土壤拱起在荷载传递中起着更重要的作用。这项研究为了解土壤拱起和拉伸膜效应之间的相互作用提供了重要的见解,为优化土工合成材料的设计提供了潜在的影响。
{"title":"Experimental study on deformation and failure mechanism of geogrid-reinforced soil above voids","authors":"Yu-Xin Gao ,&nbsp;Hong-Hu Zhu ,&nbsp;Jing-Wen Su ,&nbsp;Xu-Yan Ren ,&nbsp;Xu-Hui Guo ,&nbsp;Hannah Wan-Huan Zhou ,&nbsp;Bin Shi","doi":"10.1016/j.geotexmem.2024.09.015","DOIUrl":"10.1016/j.geotexmem.2024.09.015","url":null,"abstract":"<div><div>Geosynthetic materials are crucial for reinforcing soil above subterranean voids. However, the complexities of load transfer mechanisms in reinforced structures remain elusive. This study investigates the deformation and failure mechanisms in geogrid-reinforced soil using trapdoor experiments. The particle image velocimetry (PIV) technique was utilized for detailed observation of soil deformation, while fiber optic strain sensing cables were used to monitor tensile strains within geogrids. Results indicate that soil arching redistributes loads across the trapdoor area, effectively transferring loads from subsiding to adjacent stable regions. As trapdoor displacement increases, the initial soil arch collapses, prompting the formation of another stable arch. This cycle of development and failure of soil arch continues until shear bands reach the ground surface. Soil arches are more prone to failure over shallower voids. Strain data reveal that the geogrid's tension varies with the tensile strain and is highest near the void's edges. For shallow voids, the tensioned membrane effect of the geogrid bears more of the overlying soil weight, whereas for deeper voids, soil arching plays a more significant role in load transfer. This study provides important insights into the interaction between soil arching and tensioned membrane effects, offering potential implications for optimizing geosynthetic design.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 1","pages":"Pages 203-216"},"PeriodicalIF":4.7,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142358710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-scale behaviour of sand-geosynthetic interactions considering particle size effects 考虑到粒径效应的砂土合成相互作用的多尺度行为
IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Pub Date : 2024-09-26 DOI: 10.1016/j.geotexmem.2024.09.008
Rizwan Khan, Gali Madhavi Latha
The continuous evolution of digital imaging and sensing technologies helps in understanding the multi-scale interactions between soils and geosynthetic inclusions in a progressively better way. In this study, advanced techniques like X-ray micro-computed tomography (μCT) and profilometry are used to provide better understanding of the multi-scale interactions between sand and geosynthetic materials in direct shear interface tests. To cover the dilative and non-dilative interfaces and sands of different particle sizes, shear tests were carried out with a woven geotextile and a smooth geomembrane interfacing with three graded sands at different normal stresses. The shear response of different interfaces is analyzed in the light of 3D multi-scale morphology of particles and the roughness of tested geosynthetic surfaces to compare the peak and residual friction angles and shear zone thickness determined using Digital Image Correlation (DIC) technique. The average peak frictional efficiencies for sand-geotextile and sand-geomembrane interfaces are 0.84 and 0.52, respectively. The extent of the shear zone increased with the increase in particle size, with its average thickness ranging from 2.22 to 11.41 times the mean particle size. On a microscopic level, fine sands cause increased shear-induced changes on geomembrane surfaces because of their greater effective contact per unit area.
数字成像和传感技术的不断发展有助于更好地理解土壤与土工合成材料之间的多尺度相互作用。在这项研究中,X 射线微型计算机断层扫描(μCT)和轮廓测量等先进技术被用来更好地理解砂和土工合成材料在直接剪切界面试验中的多尺度相互作用。为了涵盖扩张性和非扩张性界面以及不同粒径的砂,在不同法向应力下,对编织土工织物和光滑土工膜与三种分级砂的界面进行了剪切试验。根据颗粒的三维多尺度形态和测试土工合成材料表面的粗糙度分析了不同界面的剪切响应,比较了峰值摩擦角和残余摩擦角以及使用数字图像相关(DIC)技术测定的剪切区厚度。砂-土工织物和砂-土工膜界面的平均峰值摩擦效率分别为 0.84 和 0.52。剪切区的范围随着粒径的增加而增大,其平均厚度为平均粒径的 2.22 至 11.41 倍。在微观层面上,细砂由于单位面积上的有效接触面积更大,因此在土工膜表面引起的剪切变化也更大。
{"title":"Multi-scale behaviour of sand-geosynthetic interactions considering particle size effects","authors":"Rizwan Khan,&nbsp;Gali Madhavi Latha","doi":"10.1016/j.geotexmem.2024.09.008","DOIUrl":"10.1016/j.geotexmem.2024.09.008","url":null,"abstract":"<div><div>The continuous evolution of digital imaging and sensing technologies helps in understanding the multi-scale interactions between soils and geosynthetic inclusions in a progressively better way. In this study, advanced techniques like X-ray micro-computed tomography (μCT) and profilometry are used to provide better understanding of the multi-scale interactions between sand and geosynthetic materials in direct shear interface tests. To cover the dilative and non-dilative interfaces and sands of different particle sizes, shear tests were carried out with a woven geotextile and a smooth geomembrane interfacing with three graded sands at different normal stresses. The shear response of different interfaces is analyzed in the light of 3D multi-scale morphology of particles and the roughness of tested geosynthetic surfaces to compare the peak and residual friction angles and shear zone thickness determined using Digital Image Correlation (DIC) technique. The average peak frictional efficiencies for sand-geotextile and sand-geomembrane interfaces are 0.84 and 0.52, respectively. The extent of the shear zone increased with the increase in particle size, with its average thickness ranging from 2.22 to 11.41 times the mean particle size. On a microscopic level, fine sands cause increased shear-induced changes on geomembrane surfaces because of their greater effective contact per unit area.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 1","pages":"Pages 169-187"},"PeriodicalIF":4.7,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biological clogging of geotextiles under discontinuous fermentation scenario 非连续发酵情况下土工织物的生物堵塞问题
IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Pub Date : 2024-09-26 DOI: 10.1016/j.geotexmem.2024.09.013
Julieta de Goycoechea , Marcos A. Montoro , Daniel A. Glatstein , Karina F. Crespo Andrada , María Gabriela Paraje
This article presents the effect of biological clogging on the hydraulic performance of geotextiles used for the construction of filter and drainage in landfills. Clogging tests were performed on specimens of woven and non-woven geotextiles in a discontinuous fermentation scenario using natural leachate and a nutrient solution. The consequences of biological clogging were assessed through experimental measurements of changes in the cross-plane hydraulic conductivity and the impregnation ratio of different geotextiles specimens at different immersion times. Porosity reduction was then back-calculated from the hydraulic conductivity results using the Kozeny-Carman equation. Additionally, the impact of an antibiotic and antifungal solution on biofilm development was evaluated. It was demonstrated that the cross-plane hydraulic conductivity of geotextile specimens decreases as biomass accumulation per unit area increases with immersion time. The application of an antibiotic and antifungal solution resulted in a porosity recovery of over 90% and a hydraulic conductivity recovery ranging from 78 to 83% for both woven and non-woven geotextiles. These results demonstrate that the clogging was primarily due to biological activity. Despite certain limitations in measurement and definition, the impregnation ratio proved to be a reliable parameter for the evaluation of biological clogging.
本文介绍了生物堵塞对用于垃圾填埋场过滤和排水工程的土工织物水力性能的影响。在使用天然渗滤液和营养液进行不连续发酵的情况下,对有纺和无纺土工织物试样进行了堵塞测试。通过实验测量不同土工织物试样在不同浸泡时间下的横面水导率和浸渍率的变化,评估了生物堵塞的后果。然后利用 Kozeny-Carman 方程根据水力传导结果反向计算孔隙率的降低。此外,还评估了抗生素和抗真菌溶液对生物膜发展的影响。结果表明,随着浸泡时间的延长,单位面积上的生物量积累越多,土工织物试样的横面水力传导率就越低。使用抗生素和抗真菌溶液后,编织土工织物和无纺土工织物的孔隙率恢复了 90% 以上,水导率恢复了 78% 至 83%。这些结果表明,堵塞主要是由于生物活性造成的。尽管在测量和定义方面存在一定的局限性,但事实证明浸渍率是评估生物堵塞的一个可靠参数。
{"title":"Biological clogging of geotextiles under discontinuous fermentation scenario","authors":"Julieta de Goycoechea ,&nbsp;Marcos A. Montoro ,&nbsp;Daniel A. Glatstein ,&nbsp;Karina F. Crespo Andrada ,&nbsp;María Gabriela Paraje","doi":"10.1016/j.geotexmem.2024.09.013","DOIUrl":"10.1016/j.geotexmem.2024.09.013","url":null,"abstract":"<div><div>This article presents the effect of biological clogging on the hydraulic performance of geotextiles used for the construction of filter and drainage in landfills. Clogging tests were performed on specimens of woven and non-woven geotextiles in a discontinuous fermentation scenario using natural leachate and a nutrient solution. The consequences of biological clogging were assessed through experimental measurements of changes in the cross-plane hydraulic conductivity and the impregnation ratio of different geotextiles specimens at different immersion times. Porosity reduction was then back-calculated from the hydraulic conductivity results using the Kozeny-Carman equation. Additionally, the impact of an antibiotic and antifungal solution on biofilm development was evaluated. It was demonstrated that the cross-plane hydraulic conductivity of geotextile specimens decreases as biomass accumulation per unit area increases with immersion time. The application of an antibiotic and antifungal solution resulted in a porosity recovery of over 90% and a hydraulic conductivity recovery ranging from 78 to 83% for both woven and non-woven geotextiles. These results demonstrate that the clogging was primarily due to biological activity. Despite certain limitations in measurement and definition, the impregnation ratio proved to be a reliable parameter for the evaluation of biological clogging.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 1","pages":"Pages 188-202"},"PeriodicalIF":4.7,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New theoretical solution for soft soil consolidation under vacuum pressure via horizontal drainage enhanced geotextile sheets 通过水平排水增强土工织物片材实现真空压力下软土固结的新理论解决方案
IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Pub Date : 2024-09-25 DOI: 10.1016/j.geotexmem.2024.09.011
Hao Chen , Jian Chu , Shifan Wu , Wei Guo , Kokpang Lam
Land reclamation is a major construction activity in Singapore and other Asian countries. When granular fills become scarce, soft materials have to be used for land reclamation. A new land reclamation and soil improvement method using vacuum preloading and horizontal drainage enhanced non-woven geotextile (HDeG) sheets for soft soil consolidation has been proposed to reduce consolidation time and save costs. This paper presents a new theoretical solution for analysing the consolidation process of soil under vacuum pressure via horizontal drainage enhanced geotextile sheets as such a solution is not available yet. To verify the proposed theoretical solution, model tests and finite element analyses (FEA) have also been conducted. The proposed analytical solution agrees well with the results from FEA and the model tests in settlement, average effective stress and degree of consolidation. Thus, this solution could be used for design and analysis for land reclamation with soft materials consolidated using vacuum preloading together with HDeG sheets or other horizontal drainage materials with an adequately high transmissivity. The prediction of the consolidation performance relies on the proper selection of the coefficient of consolidation based on the effective stress history of soil.
在新加坡和其他亚洲国家,填海造地是一项主要的建筑活动。当粒状填料变得稀缺时,就必须使用软质材料进行土地开垦。有人提出了一种新的土地开垦和土壤改良方法,利用真空预加载和水平排水增强型无纺土工织物(HDeG)片材进行软土固结,以缩短固结时间并节约成本。本文提出了一种新的理论解决方案,用于分析真空压力下通过水平排水增强土工织物片材进行土壤固结的过程,因为目前还没有这种解决方案。为了验证所提出的理论解决方案,还进行了模型试验和有限元分析(FEA)。在沉降、平均有效应力和固结程度方面,所提出的分析解决方案与有限元分析和模型试验的结果非常吻合。因此,该方案可用于设计和分析使用真空预加载技术加固的软质材料以及高密度聚乙烯板材或其他具有足够高渗透率的水平排水材料的土地开垦。固结性能的预测依赖于根据土壤的有效应力历史正确选择固结系数。
{"title":"New theoretical solution for soft soil consolidation under vacuum pressure via horizontal drainage enhanced geotextile sheets","authors":"Hao Chen ,&nbsp;Jian Chu ,&nbsp;Shifan Wu ,&nbsp;Wei Guo ,&nbsp;Kokpang Lam","doi":"10.1016/j.geotexmem.2024.09.011","DOIUrl":"10.1016/j.geotexmem.2024.09.011","url":null,"abstract":"<div><div>Land reclamation is a major construction activity in Singapore and other Asian countries. When granular fills become scarce, soft materials have to be used for land reclamation. A new land reclamation and soil improvement method using vacuum preloading and horizontal drainage enhanced non-woven geotextile (HDeG) sheets for soft soil consolidation has been proposed to reduce consolidation time and save costs. This paper presents a new theoretical solution for analysing the consolidation process of soil under vacuum pressure via horizontal drainage enhanced geotextile sheets as such a solution is not available yet. To verify the proposed theoretical solution, model tests and finite element analyses (FEA) have also been conducted. The proposed analytical solution agrees well with the results from FEA and the model tests in settlement, average effective stress and degree of consolidation. Thus, this solution could be used for design and analysis for land reclamation with soft materials consolidated using vacuum preloading together with HDeG sheets or other horizontal drainage materials with an adequately high transmissivity. The prediction of the consolidation performance relies on the proper selection of the coefficient of consolidation based on the effective stress history of soil.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 1","pages":"Pages 155-168"},"PeriodicalIF":4.7,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implications of single and double liners on the impact of PFOA in landfills on an underlying aquifer 单层和双层衬垫对垃圾填埋场中全氟辛烷磺酸对地下含水层影响的影响
IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Pub Date : 2024-09-20 DOI: 10.1016/j.geotexmem.2024.09.009
Farah B. Barakat , R. Kerry Rowe

The transport of perfluorooctanoic acid (PFOA) through the base of a municipal solid waste landfill lined by a single or double composite liner system underlain by an aquifer is examined. Experiments conducted to obtain permeation coefficients for PFOA (and other PFAS) through HDPE and a GCL at different stress levels are described and the results presented. Experimentally derived interface transmissivity and GCL hydraulic conductivity permeated by a PFAS solution are presented. The experimentally derived parameters for PFOA are then used together with finite element software to model diffusive and diffusive-advective transport of PFOA through holed wrinkles from a landfill. The peak concentrations of PFOA in the modelled aquifer are reported and compared to the maximum allowable drinking water regulations for PFOA in different jurisdictions. A sensitivity analysis is performed to assess the effect of different parameters on the degree of contamination of the aquifer. With no holes in the geomembrane (pure diffusive transport), all regulatory limits are met for both single and double-lined barrier systems. The amount of leakage through holed wrinkles required for PFOA to exceed regulatory limits varies depending on the initial concentration of PFOA and jurisdictional allowable limits. Most results showed that the single composite liner barrier system examined is unlikely to be sufficient to contain PFOA to an acceptable level. The double liner system is more likely to meet regulatory requirements if most of the leakage through the primary is collected.

研究了全氟辛酸(PFOA)在含水层下通过单层或双层复合衬垫系统衬垫的城市固体废物填埋场底部的迁移情况。介绍了为获得 PFOA(和其他 PFAS)在不同应力水平下通过高密度聚乙烯和 GCL 的渗透系数而进行的实验,并给出了实验结果。介绍了实验得出的 PFAS 溶液渗透界面渗透率和 GCL 水导率。然后将实验得出的 PFOA 参数与有限元软件一起用于模拟 PFOA 通过垃圾填埋场孔状皱纹的扩散和扩散-平流传输。报告了建模含水层中全氟辛烷磺酸的峰值浓度,并将其与不同辖区的全氟辛烷磺酸最高允许饮用水规定进行了比较。进行了敏感性分析,以评估不同参数对含水层污染程度的影响。在土工膜无孔的情况下(纯扩散传输),单层和双层阻隔系统均符合所有法规限值。PFOA 通过有孔皱褶的渗漏量超过监管限值的情况各不相同,这取决于 PFOA 的初始浓度和辖区允许的限值。大多数结果表明,所研究的单层复合衬垫阻隔系统不太可能将 PFOA 控制在可接受的水平。如果通过主衬垫收集到大部分泄漏物,双衬垫系统更有可能满足监管要求。
{"title":"Implications of single and double liners on the impact of PFOA in landfills on an underlying aquifer","authors":"Farah B. Barakat ,&nbsp;R. Kerry Rowe","doi":"10.1016/j.geotexmem.2024.09.009","DOIUrl":"10.1016/j.geotexmem.2024.09.009","url":null,"abstract":"<div><p>The transport of perfluorooctanoic acid (PFOA) through the base of a municipal solid waste landfill lined by a single or double composite liner system underlain by an aquifer is examined. Experiments conducted to obtain permeation coefficients for PFOA (and other PFAS) through HDPE and a GCL at different stress levels are described and the results presented. Experimentally derived interface transmissivity and GCL hydraulic conductivity permeated by a PFAS solution are presented. The experimentally derived parameters for PFOA are then used together with finite element software to model diffusive and diffusive-advective transport of PFOA through holed wrinkles from a landfill. The peak concentrations of PFOA in the modelled aquifer are reported and compared to the maximum allowable drinking water regulations for PFOA in different jurisdictions. A sensitivity analysis is performed to assess the effect of different parameters on the degree of contamination of the aquifer. With no holes in the geomembrane (pure diffusive transport), all regulatory limits are met for both single and double-lined barrier systems. The amount of leakage through holed wrinkles required for PFOA to exceed regulatory limits varies depending on the initial concentration of PFOA and jurisdictional allowable limits. Most results showed that the single composite liner barrier system examined is unlikely to be sufficient to contain PFOA to an acceptable level. The double liner system is more likely to meet regulatory requirements if most of the leakage through the primary is collected.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 1","pages":"Pages 140-154"},"PeriodicalIF":4.7,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0266114424001109/pdfft?md5=d470727bc23b223253de6962c115d4a9&pid=1-s2.0-S0266114424001109-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlinear creep consolidation of vertical drain-improved soft ground with time-dependent permeable boundary under linearly construction load 具有随时间变化的渗透边界的垂直排水改良软土地基在线性施工荷载作用下的非线性蠕变固结
IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Pub Date : 2024-09-19 DOI: 10.1016/j.geotexmem.2024.09.001
Penglu Cui , Hongyuan Fang , Fuming Wang , Wengui Cao , Xingyi Zhang , Bocheng Peng , Huixin Li , Shao Yue , Jiachao Zhang

This paper presents an upgraded nonlinear creep consolidation model for VDI soft ground, incorporating a modified UH relation to capture soil creep deformation. Key novelties also include considering linear construction loads, TDP boundary conditions, and Swartzendruber's flow in the small strain consolidation domain. The system was solved using the implicit finite difference method, and numerical solutions were rigorously validated. A parametric analysis reveals that soil viscosity causes abnormal EPP increases under poor drainage conditions during early consolidation. Meanwhile, neglecting the time effect of the secondary consolidation coefficient delayed the overall EPP dissipation process and overestimated the settlement during the middle and late consolidation stages. Furthermore, TDP boundaries, Swartzendruber's flow, and construction processes significantly influence the creep consolidation process but not the final settlement. These findings offer fresh insights into the nonlinear creep consolidation of VDI soft ground, advancing the field.

本文针对 VDI 软土地基提出了一种升级的非线性蠕变固结模型,该模型采用了改进的 UH 关系来捕捉土壤蠕变变形。主要创新还包括考虑线性施工荷载、TDP 边界条件和小应变固结域中的 Swartzendruber 流。该系统采用隐式有限差分法求解,并对数值解进行了严格验证。参数分析表明,在排水条件较差的早期固结过程中,土壤粘性会导致 EPP 异常增加。同时,忽略二次固结系数的时间效应会延迟整个 EPP 消散过程,并高估中后期固结阶段的沉降量。此外,TDP 边界、Swartzendruber 流量和施工过程对蠕变固结过程有显著影响,但对最终沉降没有影响。这些发现为 VDI 软土地基的非线性蠕变固结提供了新的见解,推动了该领域的发展。
{"title":"Nonlinear creep consolidation of vertical drain-improved soft ground with time-dependent permeable boundary under linearly construction load","authors":"Penglu Cui ,&nbsp;Hongyuan Fang ,&nbsp;Fuming Wang ,&nbsp;Wengui Cao ,&nbsp;Xingyi Zhang ,&nbsp;Bocheng Peng ,&nbsp;Huixin Li ,&nbsp;Shao Yue ,&nbsp;Jiachao Zhang","doi":"10.1016/j.geotexmem.2024.09.001","DOIUrl":"10.1016/j.geotexmem.2024.09.001","url":null,"abstract":"<div><p>This paper presents an upgraded nonlinear creep consolidation model for VDI soft ground, incorporating a modified UH relation to capture soil creep deformation. Key novelties also include considering linear construction loads, TDP boundary conditions, and Swartzendruber's flow in the small strain consolidation domain. The system was solved using the implicit finite difference method, and numerical solutions were rigorously validated. A parametric analysis reveals that soil viscosity causes abnormal EPP increases under poor drainage conditions during early consolidation. Meanwhile, neglecting the time effect of the secondary consolidation coefficient delayed the overall EPP dissipation process and overestimated the settlement during the middle and late consolidation stages. Furthermore, TDP boundaries, Swartzendruber's flow, and construction processes significantly influence the creep consolidation process but not the final settlement. These findings offer fresh insights into the nonlinear creep consolidation of VDI soft ground, advancing the field.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 1","pages":"Pages 121-139"},"PeriodicalIF":4.7,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructural characteristics and prediction of hydraulic properties of geotextile envelopes via image analysis and pore network modeling 通过图像分析和孔隙网络建模预测土工织物包层的微观结构特征和水力特性
IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Pub Date : 2024-09-17 DOI: 10.1016/j.geotexmem.2024.09.007
Hang Li, Jingwei Wu, Chenyao Guo, Haoyu Yang, Zhe Wu, Shuai Qin

In this study, the microstructural characteristics of geotextile envelopes were investigated via two-dimensional (2D) and three-dimensional (3D) image analysis. A pore network model was constructed to predict the hydraulic properties of the geotextile envelopes. Based on image analysis, the representative domain size of the geotextile envelopes was estimated and was further confirmed by pore network modeling. The results showed that while nonuniformity existed in geotextile envelopes, no noticeable difference was observed in porosity among samples of different sizes. The porosity derived from 3D image analysis was much closer to the theoretical value, with relative error less than 12%. The fibers of the geotextile envelopes were mainly distributed in the in-plane direction and were nearly uniform. The prediction of the permeability coefficient was optimal when hybrid cones and cylinders were considered as the geometric shapes and when the equivalent diameter, inscribed diameter, and total length were used as the geometric properties of the extracted pore network. The capillary pressure curves matched experimental values more closely when using the equivalent diameter for throat diameter. The representative domain size of geotextile envelopes was at least 3500 μm, but no meaningful length could be found along the through-plane direction.

本研究通过二维(2D)和三维(3D)图像分析研究了土工织物包层的微观结构特征。通过构建孔隙网络模型来预测土工织物包层的水力特性。根据图像分析,估算出了土工织物包层的代表域尺寸,并通过孔隙网络模型得到了进一步确认。结果表明,虽然土工织物包层存在不均匀性,但不同尺寸的样本之间的孔隙率没有明显差异。三维图像分析得出的孔隙率更接近理论值,相对误差小于 12%。土工织物包层的纤维主要分布在平面内,几乎均匀。将混合锥体和圆柱体作为几何形状,将等效直径、内径和总长度作为提取孔隙网络的几何属性时,渗透系数的预测结果最佳。当使用等效直径作为喉部直径时,毛细管压力曲线与实验值更为接近。土工织物包层的代表性域尺寸至少为 3500 μm,但沿通孔方向找不到有意义的长度。
{"title":"Microstructural characteristics and prediction of hydraulic properties of geotextile envelopes via image analysis and pore network modeling","authors":"Hang Li,&nbsp;Jingwei Wu,&nbsp;Chenyao Guo,&nbsp;Haoyu Yang,&nbsp;Zhe Wu,&nbsp;Shuai Qin","doi":"10.1016/j.geotexmem.2024.09.007","DOIUrl":"10.1016/j.geotexmem.2024.09.007","url":null,"abstract":"<div><p>In this study, the microstructural characteristics of geotextile envelopes were investigated via two-dimensional (2D) and three-dimensional (3D) image analysis. A pore network model was constructed to predict the hydraulic properties of the geotextile envelopes. Based on image analysis, the representative domain size of the geotextile envelopes was estimated and was further confirmed by pore network modeling. The results showed that while nonuniformity existed in geotextile envelopes, no noticeable difference was observed in porosity among samples of different sizes. The porosity derived from 3D image analysis was much closer to the theoretical value, with relative error less than 12%. The fibers of the geotextile envelopes were mainly distributed in the in-plane direction and were nearly uniform. The prediction of the permeability coefficient was optimal when hybrid cones and cylinders were considered as the geometric shapes and when the equivalent diameter, inscribed diameter, and total length were used as the geometric properties of the extracted pore network. The capillary pressure curves matched experimental values more closely when using the equivalent diameter for throat diameter. The representative domain size of geotextile envelopes was at least 3500 μm, but no meaningful length could be found along the through-plane direction.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 1","pages":"Pages 106-120"},"PeriodicalIF":4.7,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characteristics of electro-osmosis consolidation and resistivity evolution in soft clay reinforced with recycled carbon fibers 用再生碳纤维加固的软粘土中的电渗固结和电阻率演变特征
IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Pub Date : 2024-09-17 DOI: 10.1016/j.geotexmem.2024.09.006
Guanyu Chen , Lingwei Zheng , Xunli Zhang , Guoqiang Wu , Cheng Feng , Xudong Zheng , Xinyu Xie

This study repurposed discarded carbon fiber fabric by mechanically cutting it into short-cut carbon fibers and utilized these fibers in electro-osmosis experiments with varying lengths (5 mm, 10 mm, and 15 mm) and mixing ratios (0.05%, 0.10%, and 0.25%). The results indicated that increasing the length and mixing ratio of recycled carbon fibers effectively reduced the soil resistivity. Furthermore, incorporating an appropriate amount of carbon fibers not only reduced the energy consumption coefficient but also enhanced the electro-osmotic drainage performance. Increasing the length and mixing ratio of carbon fiber also improved the vane shear strength after electro-osmosis consolidation. To promote the application of carbon fiber in electro-osmosis consolidation and to provide support for the development of electro-osmosis consolidation theory and numerical analysis, a resistivity calculation model of carbon fiber-reinforced soil during the electro-osmosis process was developed based on the Ohm's Law and tunneling transmission theory. The model elucidates that during the electro-osmosis process, soil resistivity is influenced by the increase in barrier thickness, which consequently raises the tunneling transmission resistance.

本研究通过机械方法将废弃的碳纤维织物切割成短切碳纤维,并将这些纤维用于不同长度(5 毫米、10 毫米和 15 毫米)和不同混合比(0.05%、0.10% 和 0.25%)的电渗实验。结果表明,增加回收碳纤维的长度和混合比例可有效降低土壤电阻率。此外,加入适量的碳纤维不仅能降低能耗系数,还能提高电渗排水性能。增加碳纤维的长度和混合比还能提高电渗固结后的叶片剪切强度。为了促进碳纤维在电渗固结中的应用,并为电渗固结理论和数值分析的发展提供支持,基于欧姆定律和隧道传输理论,建立了碳纤维加固土壤在电渗过程中的电阻率计算模型。该模型阐明了在电渗过程中,土壤电阻率受屏障厚度增加的影响,从而提高了隧道传输阻力。
{"title":"Characteristics of electro-osmosis consolidation and resistivity evolution in soft clay reinforced with recycled carbon fibers","authors":"Guanyu Chen ,&nbsp;Lingwei Zheng ,&nbsp;Xunli Zhang ,&nbsp;Guoqiang Wu ,&nbsp;Cheng Feng ,&nbsp;Xudong Zheng ,&nbsp;Xinyu Xie","doi":"10.1016/j.geotexmem.2024.09.006","DOIUrl":"10.1016/j.geotexmem.2024.09.006","url":null,"abstract":"<div><p>This study repurposed discarded carbon fiber fabric by mechanically cutting it into short-cut carbon fibers and utilized these fibers in electro-osmosis experiments with varying lengths (5 mm, 10 mm, and 15 mm) and mixing ratios (0.05%, 0.10%, and 0.25%). The results indicated that increasing the length and mixing ratio of recycled carbon fibers effectively reduced the soil resistivity. Furthermore, incorporating an appropriate amount of carbon fibers not only reduced the energy consumption coefficient but also enhanced the electro-osmotic drainage performance. Increasing the length and mixing ratio of carbon fiber also improved the vane shear strength after electro-osmosis consolidation. To promote the application of carbon fiber in electro-osmosis consolidation and to provide support for the development of electro-osmosis consolidation theory and numerical analysis, a resistivity calculation model of carbon fiber-reinforced soil during the electro-osmosis process was developed based on the Ohm's Law and tunneling transmission theory. The model elucidates that during the electro-osmosis process, soil resistivity is influenced by the increase in barrier thickness, which consequently raises the tunneling transmission resistance.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 1","pages":"Pages 96-105"},"PeriodicalIF":4.7,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Geotextiles and Geomembranes
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1