The short-term tensile response is one of the key aspects in designing geogrid-reinforced soil structures. In this paper a simple data-driven 3D orthotropic model for the short-term tensile response is proposed. The Hill48 yield model is chosen to represent the orthotropic behaviour of the geogrid, and a procedure to obtain the necessary parameters, from simple tensile test data, is presented. The model is then implemented in ABAQUS, and validated against a realistic problem where the geogrid is embedded in soil. The influence of the orthotropy (against isotropy) on both the reinforcement and the overall soil–geogrid structure is evaluated. The results show that the orthotropic model can accurately predict the tensile response of the geogrid in different directions, with the orthotropy having a significant influence on the reinforcement and the overall structural response, especially in highly orthotropic materials. The study further examined stress redistribution capabilities in geogrids with notches, revealing enhanced stabilization performance using the orthotropic model. Parametric tests indicated that traditional isotropic assumptions might underpredict or overpredict reinforcement performance, emphasizing the advantages for accurate orthotropic characterization. The proposed 3D framework provides a robust, straightforward method for evaluating and optimizing geogrid designs, enabling better prediction of reinforced soil behaviour in geotechnical applications.
扫码关注我们
求助内容:
应助结果提醒方式:
