Pub Date : 2025-06-11DOI: 10.1016/j.geotexmem.2025.06.002
Huaxin Han , Chengzhi Xiao , Jianguang Yin , Yonghua Cao
To investigate the effect of interface temperature on the soil-reinforcement interaction mechanism, a series of pullout tests were conducted considering different types of reinforcement (geogrid and non-woven geotextile), backfill (dry sand, wet sand, and clay), and six interface temperatures. The test results indicate that at interface temperatures of 0 °C and above, reinforcement failure didn't occur during the pullout tests, whereas it predominantly occurred at subzero temperatures. Besides, the pullout resistance for the same soil-reinforcement interface gradually decreased as the interface temperature rose. At a given positive interface temperature, the pullout resistance between wet sand and reinforcement was significantly higher than that of the clay-reinforcement interface but lower than that of the dry sand-reinforcement interface. Compared with geotextile reinforcements, geogrids were more difficult to pull out under the same interface temperature and backfill conditions. In addition, the lag effect in the transfer of tensile forces within the reinforcements was significantly influenced by the type of soil-reinforcement interface and the interface temperature. Finally, the progressive deformation mechanism along the reinforcement length at different interface temperatures was analyzed based on the strain distribution in the reinforcement.
{"title":"Investigation on the effect of interface temperature on soil-reinforcement interaction mechanism by pullout test","authors":"Huaxin Han , Chengzhi Xiao , Jianguang Yin , Yonghua Cao","doi":"10.1016/j.geotexmem.2025.06.002","DOIUrl":"10.1016/j.geotexmem.2025.06.002","url":null,"abstract":"<div><div>To investigate the effect of interface temperature on the soil-reinforcement interaction mechanism, a series of pullout tests were conducted considering different types of reinforcement (geogrid and non-woven geotextile), backfill (dry sand, wet sand, and clay), and six interface temperatures. The test results indicate that at interface temperatures of 0 °C and above, reinforcement failure didn't occur during the pullout tests, whereas it predominantly occurred at subzero temperatures. Besides, the pullout resistance for the same soil-reinforcement interface gradually decreased as the interface temperature rose. At a given positive interface temperature, the pullout resistance between wet sand and reinforcement was significantly higher than that of the clay-reinforcement interface but lower than that of the dry sand-reinforcement interface. Compared with geotextile reinforcements, geogrids were more difficult to pull out under the same interface temperature and backfill conditions. In addition, the lag effect in the transfer of tensile forces within the reinforcements was significantly influenced by the type of soil-reinforcement interface and the interface temperature. Finally, the progressive deformation mechanism along the reinforcement length at different interface temperatures was analyzed based on the strain distribution in the reinforcement.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 6","pages":"Pages 1242-1256"},"PeriodicalIF":4.7,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144262322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-11DOI: 10.1016/j.geotexmem.2025.05.004
Yupeng Ren , Shuaidong Yang , Mi Zhou , Xihong Zhang , Jinhui Li , Yinghui Tian
A case study on a large geotextile mat cofferdam combined with steel sheet piles was conducted using field testing and numerical simulation to optimize the design and assess its performance. The failure mechanism and overall stability were investigated by numerical simulation, considering potential influence factors, including pile length, width ratio (), water level, and excavation depth. The width ratio was identified as a critical influencing factor. Specifically, an optimized ratio of demonstrated the best overall performance. When the steel sheet pile intersects the potential failure surface, the stability improvement is most significant, particularly with a length of 15 in the current case. Field tests were employed to examine the performance of the optimized cofferdam design. Water level fluctuations, surface displacements, and both horizontal and vertical displacements at various depths were monitored to assess the cofferdam’s behavior. Results from both numerical simulations and field monitoring conclusively affirm the cofferdam’s capability to meet stringent safety criterion during the construction and operational phases. This work fills gaps in standardization of large geotextile mat cofferdam design by providing guidance on geometric configuration, reinforcement integration, and soft soil risk management, thereby advancing engineering practices for similar projects.
{"title":"Case study: Design optimization and field tests of a large geotextile mat cofferdam combined with steel sheet piles","authors":"Yupeng Ren , Shuaidong Yang , Mi Zhou , Xihong Zhang , Jinhui Li , Yinghui Tian","doi":"10.1016/j.geotexmem.2025.05.004","DOIUrl":"10.1016/j.geotexmem.2025.05.004","url":null,"abstract":"<div><div>A case study on a large geotextile mat cofferdam combined with steel sheet piles was conducted using field testing and numerical simulation to optimize the design and assess its performance. The failure mechanism and overall stability were investigated by numerical simulation, considering potential influence factors, including pile length, width ratio (<span><math><mrow><msub><mrow><mi>W</mi></mrow><mrow><mtext>2</mtext></mrow></msub><mo>/</mo><msub><mrow><mi>W</mi></mrow><mrow><mtext>1</mtext></mrow></msub></mrow></math></span>), water level, and excavation depth. The width ratio was identified as a critical influencing factor. Specifically, an optimized ratio of <span><math><mrow><msub><mrow><mi>W</mi></mrow><mrow><mtext>2</mtext></mrow></msub><mo>/</mo><msub><mrow><mi>W</mi></mrow><mrow><mtext>1</mtext></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>6</mn></mrow></math></span> demonstrated the best overall performance. When the steel sheet pile intersects the potential failure surface, the stability improvement is most significant, particularly with a length of 15 <span><math><mi>m</mi></math></span> in the current case. Field tests were employed to examine the performance of the optimized cofferdam design. Water level fluctuations, surface displacements, and both horizontal and vertical displacements at various depths were monitored to assess the cofferdam’s behavior. Results from both numerical simulations and field monitoring conclusively affirm the cofferdam’s capability to meet stringent safety criterion during the construction and operational phases. This work fills gaps in standardization of large geotextile mat cofferdam design by providing guidance on geometric configuration, reinforcement integration, and soft soil risk management, thereby advancing engineering practices for similar projects.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 6","pages":"Pages 1257-1265"},"PeriodicalIF":4.7,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144262323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-10DOI: 10.1016/j.geotexmem.2025.06.001
Minghao Liu , Jiming Liu , Sam Bhat , Rishi Gupta , Cheng Lin
Water accumulation in road bases and subgrade is one of the primary causes of road distress. To counteract this adverse impact, this study introduces a novel geosynthetic composite, consisting of biaxial polypropylene geogrids heat-bonded to wicking nonwoven geotextiles (WNWGs). This new composite integrates wicking capabilities with reinforcement. Unlike wicking woven geotextiles (WWGs), which rely on deep-grooved fibers for wetting and wicking, the wicking mechanism of WNWGs is primarily based on the microstructure and unique fiber orientation of the nonwoven geotextile component, further enhanced by proprietary chemical treatment to convert the fibers from hydrophobic to hydrophilic. This modification allows WNWGs to exhibit rapid wetting and wicking properties while preserving the large lateral drainage functionality of conventional nonwoven geotextiles. To assess the wicking performance of this material, a series of wicking tests were conducted in both water and saturated soils under controlled temperature and relative humidity. Additionally, contact angle measurements and microscopic analyses using Scanning Electron Microscopy (SEM) were conducted to elucidate the underlying wicking mechanisms. The results confirmed that the WNWGs possessed superior spontaneous and forced wetting and wicking capabilities compared to traditional nonwoven geotextiles. The findings offer valuable reference for evaluating the performance of the WNWG-geogrid composite.
{"title":"Evaluation of water removal capability of wicking nonwoven geotextiles","authors":"Minghao Liu , Jiming Liu , Sam Bhat , Rishi Gupta , Cheng Lin","doi":"10.1016/j.geotexmem.2025.06.001","DOIUrl":"10.1016/j.geotexmem.2025.06.001","url":null,"abstract":"<div><div>Water accumulation in road bases and subgrade is one of the primary causes of road distress. To counteract this adverse impact, this study introduces a novel geosynthetic composite, consisting of biaxial polypropylene geogrids heat-bonded to wicking nonwoven geotextiles (WNWGs). This new composite integrates wicking capabilities with reinforcement. Unlike wicking woven geotextiles (WWGs), which rely on deep-grooved fibers for wetting and wicking, the wicking mechanism of WNWGs is primarily based on the microstructure and unique fiber orientation of the nonwoven geotextile component, further enhanced by proprietary chemical treatment to convert the fibers from hydrophobic to hydrophilic. This modification allows WNWGs to exhibit rapid wetting and wicking properties while preserving the large lateral drainage functionality of conventional nonwoven geotextiles. To assess the wicking performance of this material, a series of wicking tests were conducted in both water and saturated soils under controlled temperature and relative humidity. Additionally, contact angle measurements and microscopic analyses using Scanning Electron Microscopy (SEM) were conducted to elucidate the underlying wicking mechanisms. The results confirmed that the WNWGs possessed superior spontaneous and forced wetting and wicking capabilities compared to traditional nonwoven geotextiles. The findings offer valuable reference for evaluating the performance of the WNWG-geogrid composite.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 6","pages":"Pages 1228-1241"},"PeriodicalIF":4.7,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144239915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-07DOI: 10.1016/j.geotexmem.2025.05.006
Han Wang , Youngdae Kim , Mingu Kang , Erol Tutumluer , Heather Shoup
Geogrids are commonly used in pavement structures to mechanically stabilize unbound aggregate layers to improve structural performance and extend lifespan. Geogrids stabilize aggregate particles by restraining their lateral movements through mechanisms such as interlocking and friction. This paper presents a multiscale experimental study conducted on extruded and welded geogrids, having different aperture shapes and properties, for their stabilization effectiveness through quantifying modulus enhancement using the bender element (BE) sensor technology. The study examines geogrid-stabilized aggregates both in a large-scale testbed with three embedded BE field sensors and in a repeated load triaxial device with geogrid coupons installed at midheight and embedded BE sensor pairs above geogrids. The large-scale testbed allowed lateral pressure measurements under a series of loading and unloading stages. Small strain moduli from the shear wave measurements determined from both experiments quantified geogrid stiffened zones when tested with the same dense-graded aggregates. All four geogrids showed modulus enhancements in both test setups when compared to control test results. The geogrid mechanical stabilization influence zone was observed to be as large as 6 in. (15 cm) above one extruded geogrid. Such quantified modulus enhancements and influence zones are essential for incorporating geogrid into mechanistic-empirical (M-E) pavement design framework.
{"title":"Geogrid stabilization effectiveness – Comprehensive assessment through multiscale experiments with bender element sensor technology","authors":"Han Wang , Youngdae Kim , Mingu Kang , Erol Tutumluer , Heather Shoup","doi":"10.1016/j.geotexmem.2025.05.006","DOIUrl":"10.1016/j.geotexmem.2025.05.006","url":null,"abstract":"<div><div>Geogrids are commonly used in pavement structures to mechanically stabilize unbound aggregate layers to improve structural performance and extend lifespan. Geogrids stabilize aggregate particles by restraining their lateral movements through mechanisms such as interlocking and friction. This paper presents a multiscale experimental study conducted on extruded and welded geogrids, having different aperture shapes and properties, for their stabilization effectiveness through quantifying modulus enhancement using the bender element (BE) sensor technology. The study examines geogrid-stabilized aggregates both in a large-scale testbed with three embedded BE field sensors and in a repeated load triaxial device with geogrid coupons installed at midheight and embedded BE sensor pairs above geogrids. The large-scale testbed allowed lateral pressure measurements under a series of loading and unloading stages. Small strain moduli from the shear wave measurements determined from both experiments quantified geogrid stiffened zones when tested with the same dense-graded aggregates. All four geogrids showed modulus enhancements in both test setups when compared to control test results. The geogrid mechanical stabilization influence zone was observed to be as large as 6 in. (15 cm) above one extruded geogrid. Such quantified modulus enhancements and influence zones are essential for incorporating geogrid into mechanistic-empirical (M-E) pavement design framework.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 6","pages":"Pages 1200-1214"},"PeriodicalIF":4.7,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144230481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-07DOI: 10.1016/j.geotexmem.2025.05.007
Jun Wang, Zhiqiang Xiang, Hongtao Fu, Yu Rao, Ziyang Gao, Junfeng Ni
Earthquakes are common geological disasters, and slopes under seismic loading can trigger coseismic landslides, while also becoming unstable due to accumulated damage caused by the seismic activity. Reinforced soil slopes are widely used as seismic-resistant geotechnical systems. However, traditional geosynthetics cannot sense internal damage in reinforced soil systems, and existing in-situ distributed monitoring technologies are not suitable for seismic conditions, thus limiting accurate post-earthquake stability assessments of slopes. This study presents, for the first time, the use of a batch molding process to fabricate self-sensing piezoelectric geogrids (SPGG) for distributed monitoring of soil behavior under seismic conditions. The SPGG's reinforcement and damage sensing abilities were verified through model experiments. Results show that SPGG significantly enhances soil seismic resistance and can detect soil failure locations through voltage distortions. Additionally, the tensile deformation of the reinforcement material can be quantified with sub-centimeter precision by tracking impedance changes, enabling high-precision distributed monitoring of reinforced soil under seismic conditions. Notably, when integrated with wireless transmission technology, the SPGG-based monitoring system offers a promising solution for real-time monitoring and early warning in road infrastructure, where rapid detection and response to seismic hazards are critical for mitigating catastrophic outcomes.
{"title":"Laboratory validation of seismic damage assessment in reinforced soil models based on sensor-enabled piezoelectric geogrids (SPGG)","authors":"Jun Wang, Zhiqiang Xiang, Hongtao Fu, Yu Rao, Ziyang Gao, Junfeng Ni","doi":"10.1016/j.geotexmem.2025.05.007","DOIUrl":"10.1016/j.geotexmem.2025.05.007","url":null,"abstract":"<div><div>Earthquakes are common geological disasters, and slopes under seismic loading can trigger coseismic landslides, while also becoming unstable due to accumulated damage caused by the seismic activity. Reinforced soil slopes are widely used as seismic-resistant geotechnical systems. However, traditional geosynthetics cannot sense internal damage in reinforced soil systems, and existing in-situ distributed monitoring technologies are not suitable for seismic conditions, thus limiting accurate post-earthquake stability assessments of slopes. This study presents, for the first time, the use of a batch molding process to fabricate self-sensing piezoelectric geogrids (SPGG) for distributed monitoring of soil behavior under seismic conditions. The SPGG's reinforcement and damage sensing abilities were verified through model experiments. Results show that SPGG significantly enhances soil seismic resistance and can detect soil failure locations through voltage distortions. Additionally, the tensile deformation of the reinforcement material can be quantified with sub-centimeter precision by tracking impedance changes, enabling high-precision distributed monitoring of reinforced soil under seismic conditions. Notably, when integrated with wireless transmission technology, the SPGG-based monitoring system offers a promising solution for real-time monitoring and early warning in road infrastructure, where rapid detection and response to seismic hazards are critical for mitigating catastrophic outcomes.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 6","pages":"Pages 1215-1227"},"PeriodicalIF":4.7,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144237430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-05DOI: 10.1016/j.geotexmem.2025.05.008
Juan Hou , Xuelei Xie , Craig H. Benson
Effect of geomembrane texturing method on interface shear behavior between textured geomembranes (GM) and the nonwoven side of a dry geosynthetic clay liner (GCL) was evaluated using large-scale direct shear tests conducted using geomembranes with four different types of texturing and a range of asperity heights: impinged texturing (GMTI), coextruded texturing (GMTC), low asperity embossed texturing (GMTEL), and high asperity embossed texturing (GMTEH). The GCL contained granular bentonite between woven and nonwoven geotextiles bonded by needlepunching. Tests were conducted on the dry GCL to isolate GM-GCL interface behavior from other factors. All interfaces exhibited similar strain-softening shear behavior. Type of texturing had a strong influence on GM-GCL interface behavior. Comparable shear-displacement curves involving direct surface engagement between the texturing asperities and geotextile fibers were obtained with GMTI and GMTC. GMTI texturing delaminated during shear, reducing geotextile combing compared to GMTC. The GMTEL engaged the geotextile on the GCL via tip penetration and surface friction, as evinced by striations on the GCL surface, resulting in the lowest interface strengths of the textured GMs. GMTEH engaged deep into the interior of the GCL, resulting in dilation, tearing of the geotextile, furrows in the bentonite, and the highest interface strength of those tested.
{"title":"Effect of geomembrane texturing method on geomembrane-dry GCL interface shear behavior","authors":"Juan Hou , Xuelei Xie , Craig H. Benson","doi":"10.1016/j.geotexmem.2025.05.008","DOIUrl":"10.1016/j.geotexmem.2025.05.008","url":null,"abstract":"<div><div>Effect of geomembrane texturing method on interface shear behavior between textured geomembranes (GM) and the nonwoven side of a dry geosynthetic clay liner (GCL) was evaluated using large-scale direct shear tests conducted using geomembranes with four different types of texturing and a range of asperity heights: impinged texturing (GMTI), coextruded texturing (GMTC), low asperity embossed texturing (GMTE<sub>L</sub>), and high asperity embossed texturing (GMTE<sub>H</sub>). The GCL contained granular bentonite between woven and nonwoven geotextiles bonded by needlepunching. Tests were conducted on the dry GCL to isolate GM-GCL interface behavior from other factors. All interfaces exhibited similar strain-softening shear behavior. Type of texturing had a strong influence on GM-GCL interface behavior. Comparable shear-displacement curves involving direct surface engagement between the texturing asperities and geotextile fibers were obtained with GMTI and GMTC. GMTI texturing delaminated during shear, reducing geotextile combing compared to GMTC. The GMTE<sub>L</sub> engaged the geotextile on the GCL via tip penetration and surface friction, as evinced by striations on the GCL surface, resulting in the lowest interface strengths of the textured GMs. GMTE<sub>H</sub> engaged deep into the interior of the GCL, resulting in dilation, tearing of the geotextile, furrows in the bentonite, and the highest interface strength of those tested.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 6","pages":"Pages 1185-1199"},"PeriodicalIF":4.7,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144212268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-25DOI: 10.1016/j.geotexmem.2025.05.005
Yifan Wang , Yongkang Wu , Xu Li , Shaowei Wei , Hongye Yan
Excessive moisture within subgrade layers significantly diminishes subgrade stiffness and induces pavement deformation. A multilayer wicking fabric (WF) composed of deeply grooved fibers was developed to regulate moisture in unsaturated fine-grained soils. This study introduces a novel methodology for determining the water retention curve (WRC) over the full suction range. At the same time, an efficient method for predicting WF's WRC via NMR technology was pointed, and clarifying the material's microscopic drainage mechanisms. Building on this foundation, soil column drying experiments were conducted to verify WF's moisture regulation capacity in unsaturated fine-grained soils. The results demonstrate that WF exhibits its highest water retention under conditions of elevated matric suction. Additionally, soil column drying experiments reveal that WF incorporation significantly reduces average soil water content and accelerates drying rates. WF's drainage efficiency shows high sensitivity to initial water contents (wi) and evaporation segment length (L), with drainage performance increasing proportionally to these parameters. Moreover, soil water profiles are influenced by water retention capacity, capillary migration rate, and hydraulic gradient. These findings underscore the potential of multilayer wicking fabrics in managing moisture within fine-grained subgrades, presenting a novel and effective strategy for maintaining subgrade dryness and enhancing long-term stability.
{"title":"Experimental investigation of the capillary drainage performance of multilayer wicking fabric","authors":"Yifan Wang , Yongkang Wu , Xu Li , Shaowei Wei , Hongye Yan","doi":"10.1016/j.geotexmem.2025.05.005","DOIUrl":"10.1016/j.geotexmem.2025.05.005","url":null,"abstract":"<div><div>Excessive moisture within subgrade layers significantly diminishes subgrade stiffness and induces pavement deformation. A multilayer wicking fabric (WF) composed of deeply grooved fibers was developed to regulate moisture in unsaturated fine-grained soils. This study introduces a novel methodology for determining the water retention curve (WRC) over the full suction range. At the same time, an efficient method for predicting WF's WRC via NMR technology was pointed, and clarifying the material's microscopic drainage mechanisms. Building on this foundation, soil column drying experiments were conducted to verify WF's moisture regulation capacity in unsaturated fine-grained soils. The results demonstrate that WF exhibits its highest water retention under conditions of elevated matric suction. Additionally, soil column drying experiments reveal that WF incorporation significantly reduces average soil water content and accelerates drying rates. WF's drainage efficiency shows high sensitivity to initial water contents (<em>w</em><sub>i</sub>) and evaporation segment length (<em>L</em>), with drainage performance increasing proportionally to these parameters. Moreover, soil water profiles are influenced by water retention capacity, capillary migration rate, and hydraulic gradient. These findings underscore the potential of multilayer wicking fabrics in managing moisture within fine-grained subgrades, presenting a novel and effective strategy for maintaining subgrade dryness and enhancing long-term stability.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 5","pages":"Pages 1168-1183"},"PeriodicalIF":4.7,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144134016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-21DOI: 10.1016/j.geotexmem.2025.05.002
Sarper Demirdogen, Ayhan Gurbuz
In performance-based design, it is crucial to understand deformation characteristics of geocell layers in soil under footing loads. To explore this, a series of laboratory loading tests were carried out to investigate the influence of varying parameters on the strain levels within the geocell layer in a sandy soil under axial strip footing loading. The results were analyzed in terms of maximum strain levels, strain variation along the geocell layer and the correlation between horizontal and vertical strains. In this study, the maximum observed strain levels for geocell-reinforced strip footing systems reached 2.3 % for horizontal (tensile) strain and 1.4 % for vertical (compressive) strain. Furthermore, most strain levels were concentrated within a distance of 1.5 times the footing width from the axis of strip footing. In geocell-reinforced footing systems, the interaction between horizontal and vertical strains becomes a key factor, with the ratio of horizontal to vertical cell wall strains ranging approximately from 1 to 2.5. The outcomes of this study are expected to contribute to the practical applications of geocell-reinforced footing systems.
{"title":"Load-induced strain analysis in geocell reinforced footing systems","authors":"Sarper Demirdogen, Ayhan Gurbuz","doi":"10.1016/j.geotexmem.2025.05.002","DOIUrl":"10.1016/j.geotexmem.2025.05.002","url":null,"abstract":"<div><div>In performance-based design, it is crucial to understand deformation characteristics of geocell layers in soil under footing loads. To explore this, a series of laboratory loading tests were carried out to investigate the influence of varying parameters on the strain levels within the geocell layer in a sandy soil under axial strip footing loading. The results were analyzed in terms of maximum strain levels, strain variation along the geocell layer and the correlation between horizontal and vertical strains. In this study, the maximum observed strain levels for geocell-reinforced strip footing systems reached 2.3 % for horizontal (tensile) strain and 1.4 % for vertical (compressive) strain. Furthermore, most strain levels were concentrated within a distance of 1.5 times the footing width from the axis of strip footing. In geocell-reinforced footing systems, the interaction between horizontal and vertical strains becomes a key factor, with the ratio of horizontal to vertical cell wall strains ranging approximately from 1 to 2.5. The outcomes of this study are expected to contribute to the practical applications of geocell-reinforced footing systems.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 5","pages":"Pages 1156-1167"},"PeriodicalIF":4.7,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144099166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-20DOI: 10.1016/j.geotexmem.2025.05.003
Long Chen , Desheng Li , Yonghui Chen , Yi Zhu , Kaizhe Shang
For artificial solidified crust (ASC)–vertical drain ground, an analytical consolidation solution (IB solution: regarding ASC as an impervious boundary) is proposed, which considers both the radial and vertical seepage. The orthogonal relation is proven and the computing efficiency is greatly improved. Then, consolidation solutions applicable to ASC–vertical drain ground, include IB solution, RDL solution (radial consolidation solution of double-layered ground) by Li et al. (2025), the quasi-rigorous solution by Tang and Onitsuka (2001), are compared and discussed. Compared to the quasi-rigorous solution, IB solution slightly overestimates the consolidation rate, but it can be promoted in engineering according to the following reasons: a) the convergence is easier to be achieved; b) its accuracy is not affected by the ratio of the vertical time factor to the radial time factor; c) common major parameters of ASC (i.e., thickness and permeability) have little effect on the applicability. By ignoring the vertical seepage in soil, IB solution degenerates to the simplified solution. Consolidation rate calculated by the simplified solution is slower than that of IB solution, and the solution can be a simple method for estimating the consolidation behavior of ASC–vertical drain ground.
{"title":"Consolidation solution of ground improved with artificial solidified crust–vertical drain","authors":"Long Chen , Desheng Li , Yonghui Chen , Yi Zhu , Kaizhe Shang","doi":"10.1016/j.geotexmem.2025.05.003","DOIUrl":"10.1016/j.geotexmem.2025.05.003","url":null,"abstract":"<div><div>For artificial solidified crust (ASC)–vertical drain ground, an analytical consolidation solution (IB solution: regarding ASC as an impervious boundary) is proposed, which considers both the radial and vertical seepage. The orthogonal relation is proven and the computing efficiency is greatly improved. Then, consolidation solutions applicable to ASC–vertical drain ground, include IB solution, RDL solution (radial consolidation solution of double-layered ground) by Li et al. (2025), the quasi-rigorous solution by Tang and Onitsuka (2001), are compared and discussed. Compared to the quasi-rigorous solution, IB solution slightly overestimates the consolidation rate, but it can be promoted in engineering according to the following reasons: a) the convergence is easier to be achieved; b) its accuracy is not affected by the ratio of the vertical time factor to the radial time factor; c) common major parameters of ASC (i.e., thickness and permeability) have little effect on the applicability. By ignoring the vertical seepage in soil, IB solution degenerates to the simplified solution. Consolidation rate calculated by the simplified solution is slower than that of IB solution, and the solution can be a simple method for estimating the consolidation behavior of ASC–vertical drain ground.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 5","pages":"Pages 1145-1155"},"PeriodicalIF":4.7,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144099167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-17DOI: 10.1016/j.geotexmem.2025.05.001
Aykut Erol, Zulkuf Kaya
The geotechnical behavior of undisturbed peat subgrade within geogrid-reinforced foundation systems remains inadequately understood, despite its high compressibility and engineering complexities. This study conducts a systematic investigation into the bearing capacity and settlement characteristics of an isolated footing on geogrid-reinforced fill over undisturbed peat, utilizing laboratory-scale model tests. Unlike previous studies that rely on disturbed peat samples, this research preserves natural stratification and in-situ response mechanisms, providing a more accurate representation of reinforcement performance. The results demonstrate that geogrid reinforcement enhances bearing capacity by up to 149.7 % and mitigates settlement by 79 %, with optimal reinforcement efficiency achieved at h/B = 0.3. These findings underscore the critical role of geogrid embedment depth, fill thickness, and relative density in optimizing foundation stability. By integrating undisturbed peat in physical modeling, this study bridges the gap between controlled laboratory experiments and real-world geotechnical applications, providing a framework for optimizing geosynthetic reinforcement strategies in highly compressible subgrades and paving the way for more reliable foundation designs in challenging ground conditions.
{"title":"Response of isolated footing on a geogrid reinforced fill and undisturbed peat subgrade soil system","authors":"Aykut Erol, Zulkuf Kaya","doi":"10.1016/j.geotexmem.2025.05.001","DOIUrl":"10.1016/j.geotexmem.2025.05.001","url":null,"abstract":"<div><div>The geotechnical behavior of undisturbed peat subgrade within geogrid-reinforced foundation systems remains inadequately understood, despite its high compressibility and engineering complexities. This study conducts a systematic investigation into the bearing capacity and settlement characteristics of an isolated footing on geogrid-reinforced fill over undisturbed peat, utilizing laboratory-scale model tests. Unlike previous studies that rely on disturbed peat samples, this research preserves natural stratification and in-situ response mechanisms, providing a more accurate representation of reinforcement performance. The results demonstrate that geogrid reinforcement enhances bearing capacity by up to 149.7 % and mitigates settlement by 79 %, with optimal reinforcement efficiency achieved at h/B = 0.3. These findings underscore the critical role of geogrid embedment depth, fill thickness, and relative density in optimizing foundation stability. By integrating undisturbed peat in physical modeling, this study bridges the gap between controlled laboratory experiments and real-world geotechnical applications, providing a framework for optimizing geosynthetic reinforcement strategies in highly compressible subgrades and paving the way for more reliable foundation designs in challenging ground conditions.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 5","pages":"Pages 1122-1144"},"PeriodicalIF":4.7,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144071811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}