Pub Date : 2024-06-08DOI: 10.1016/j.geotexmem.2024.06.001
Gobinda Das, Priyanka Ghosh
The present investigation includes experimental and ANN-based intelligent modeling to explore the dynamic interference effect of closely positioned vibrating foundations placed on unreinforced and geogrid-reinforced soil beds. Large-scale field block vibration tests are conducted on isolated and interacting block footings placed on prepared foundation beds at IIT Kanpur, India. The dynamic interaction of various combinations of two-footing assemblies is examined where one footing (active footing) is excited with dynamic loadings, and the other (passive footing) carries static loadings. The tests involve three eccentric force settings for four distinct footing combinations at different clear spacings and reinforcement conditions. The responses of both footings are recorded at different loading frequencies. The interaction effect is presented in terms of the transmission ratio plotted against the frequency ratio. Additionally, an Artificial Neural Network (ANN) model is developed using the recorded field datasets to anticipate the dynamic interference effect. The predicted outcomes of the ANN model demonstrate promising agreement with the experimental findings reported in the literature, indicating the reliability and robustness of the intelligent model.
本研究包括实验和基于 ANN 的智能建模,以探索置于未加固和土工格栅加固土基上的紧密定位振动地基的动态干扰效应。在印度坎普尔国际理工学院,对放置在准备好的基床上的孤立和相互作用块状基脚进行了大规模现场块状振动试验。其中一个基脚(主动基脚)承受动荷载,另一个基脚(被动基脚)承受静荷载。测试包括在不同间距和加固条件下对四种不同地基组合的三种偏心力设置。两种基脚在不同加载频率下的响应都被记录下来。交互作用效应以传输比与频率比的关系表示。此外,还利用记录的现场数据集开发了一个人工神经网络(ANN)模型,以预测动态干扰效应。人工神经网络模型的预测结果与文献中报道的实验结果一致,表明了智能模型的可靠性和稳健性。
{"title":"Large-scale experimental and ANN modeling for dynamic interaction between vibrating and statically loaded foundations on geogrid-reinforced soil beds","authors":"Gobinda Das, Priyanka Ghosh","doi":"10.1016/j.geotexmem.2024.06.001","DOIUrl":"https://doi.org/10.1016/j.geotexmem.2024.06.001","url":null,"abstract":"<div><p>The present investigation includes experimental and ANN-based intelligent modeling to explore the dynamic interference effect of closely positioned vibrating foundations placed on unreinforced and geogrid-reinforced soil beds. Large-scale field block vibration tests are conducted on isolated and interacting block footings placed on prepared foundation beds at IIT Kanpur, India. The dynamic interaction of various combinations of two-footing assemblies is examined where one footing (active footing) is excited with dynamic loadings, and the other (passive footing) carries static loadings. The tests involve three eccentric force settings for four distinct footing combinations at different clear spacings and reinforcement conditions. The responses of both footings are recorded at different loading frequencies. The interaction effect is presented in terms of the transmission ratio plotted against the frequency ratio. Additionally, an Artificial Neural Network (ANN) model is developed using the recorded field datasets to anticipate the dynamic interference effect. The predicted outcomes of the ANN model demonstrate promising agreement with the experimental findings reported in the literature, indicating the reliability and robustness of the intelligent model.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"52 5","pages":"Pages 956-974"},"PeriodicalIF":5.2,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141294855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-05DOI: 10.1016/j.geotexmem.2024.05.009
Zi-Ang Gu , Jian-Feng Chen , Chungsik Yoo
The efficiency of geosynthetics has been proven in stone column-reinforced foundations. In this paper, loading tests were conducted on three stone column-reinforced foundations, experiencing four freeze-thaw cycles. The effects of geosynthetic encasement and lateral reinforcement were investigated on the behavior of ordinary stone column (OSC) – reinforced and geosynthetic encased stone column (GESC) – reinforced foundation. The results showed that particles of OSCs spread into foundation soil during freezing and thawing, and top of OSCs were replaced by foundation soil. The temperature gradient along the depth in OSC-reinforced foundation was smaller than in GESC-reinforced foundations, resulting in a lower negative pore pressure at the beginning of freezing. However, it was found that geosynthetic encasement helped maintain the integrity of GESCs, and increased the stress concentration ratio (SCR) during thawing, which led to a lower excess pore pressure in GESC-reinforced foundations. The lateral reinforcement was also found to not only reduce the differential settlement between GESCs and soil during thawing, but also restrain the frost heave during freezing. The tensile membrane effect of lateral reinforcement redistributed the stress and the overburden pressure throughout the freeze-thaw process. More water moved upwards during freezing in the OSC-reinforced foundation, leading to a larger amount of frost heave. However, the moisture migration became complex in the OSC-reinforced foundation, as OSCs were damaged by freeze-thaw cycles.
{"title":"Behavior of surface loaded clay foundation reinforced by GESCs with lateral geosynthetic cushion under freeze-thaw cycles","authors":"Zi-Ang Gu , Jian-Feng Chen , Chungsik Yoo","doi":"10.1016/j.geotexmem.2024.05.009","DOIUrl":"https://doi.org/10.1016/j.geotexmem.2024.05.009","url":null,"abstract":"<div><p>The efficiency of geosynthetics has been proven in stone column-reinforced foundations. In this paper, loading tests were conducted on three stone column-reinforced foundations, experiencing four freeze-thaw cycles. The effects of geosynthetic encasement and lateral reinforcement were investigated on the behavior of ordinary stone column (OSC) – reinforced and geosynthetic encased stone column (GESC) – reinforced foundation. The results showed that particles of OSCs spread into foundation soil during freezing and thawing, and top of OSCs were replaced by foundation soil. The temperature gradient along the depth in OSC-reinforced foundation was smaller than in GESC-reinforced foundations, resulting in a lower negative pore pressure at the beginning of freezing. However, it was found that geosynthetic encasement helped maintain the integrity of GESCs, and increased the stress concentration ratio (SCR) during thawing, which led to a lower excess pore pressure in GESC-reinforced foundations. The lateral reinforcement was also found to not only reduce the differential settlement between GESCs and soil during thawing, but also restrain the frost heave during freezing. The tensile membrane effect of lateral reinforcement redistributed the stress and the overburden pressure throughout the freeze-thaw process. More water moved upwards during freezing in the OSC-reinforced foundation, leading to a larger amount of frost heave. However, the moisture migration became complex in the OSC-reinforced foundation, as OSCs were damaged by freeze-thaw cycles.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"52 5","pages":"Pages 941-955"},"PeriodicalIF":5.2,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141249985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-03DOI: 10.1016/j.geotexmem.2024.05.008
Qingming Wang , Chao Xu , Panpan Shen , Geye Li , Chongxi Zhao
This study conducted five centrifuge model tests to investigate the deformation characteristics of the Geosynthetics Reinforced Soil (GRS) abutments under vertical loads, considering the setback distance ab and beam seat width B as two major influencing factors. Test results show that a linear correlation existed between the maximum lateral facing displacements DL and the maximum settlements at the top of the GRS abutments Dv. The ab and the B had different effects on the deformation characteristics of the GRS abutments as well as the relationship between the DL and the Dv. The total volumetric strains of the GRS abutments were smaller than 0.3% for all the cases investigated in this study, indicating that it was reasonable to use the assumption of zero-volume change for the deformation calculation of the GRS abutments. This study proposed an improved semi-empirical method to describe the relationship between the DL and the Dv. Centrifuge test results and data collected from the literature were used to validate the improved method. It was concluded that the improved method had the advantage of considering the effects of the ab and the B separately and therefore significantly improved the prediction accuracy of the deformations of the GRS abutments.
本研究进行了五次离心机模型试验,以研究土工合成材料加固土(GRS)桥墩在垂直荷载作用下的变形特性,并将后退距离 ab 和梁座宽度 B 作为两个主要影响因素。试验结果表明,最大侧向位移 DL 与土工合成材料加固基台顶部的最大沉降 Dv 之间存在线性相关关系。ab 和 B 对 GRS 基台的变形特性以及 DL 和 Dv 之间的关系有着不同的影响。在本研究调查的所有情况下,高铁基台的总体积应变均小于 0.3%,这表明在高铁基台的变形计算中使用零体积变化假设是合理的。本研究提出了一种改进的半经验方法来描述 DL 与 Dv 之间的关系。离心机测试结果和从文献中收集的数据被用来验证改进后的方法。结果表明,改进后的方法具有将 ab 和 B 的影响分开考虑的优点,因此大大提高了 GRS 基台变形的预测精度。
{"title":"Experimental and theoretical studies on deformation characteristics of Geosynthetic-Reinforced Soil (GRS) abutments induced by vertical loads","authors":"Qingming Wang , Chao Xu , Panpan Shen , Geye Li , Chongxi Zhao","doi":"10.1016/j.geotexmem.2024.05.008","DOIUrl":"https://doi.org/10.1016/j.geotexmem.2024.05.008","url":null,"abstract":"<div><p>This study conducted five centrifuge model tests to investigate the deformation characteristics of the Geosynthetics Reinforced Soil (GRS) abutments under vertical loads, considering the setback distance <em>a</em><sub><em>b</em></sub> and beam seat width <em>B</em> as two major influencing factors. Test results show that a linear correlation existed between the maximum lateral facing displacements <em>D</em><sub><em>L</em></sub> and the maximum settlements at the top of the GRS abutments <em>D</em><sub><em>v</em></sub>. The <em>a</em><sub><em>b</em></sub> and the <em>B</em> had different effects on the deformation characteristics of the GRS abutments as well as the relationship between the <em>D</em><sub><em>L</em></sub> and the <em>D</em><sub><em>v</em></sub>. The total volumetric strains of the GRS abutments were smaller than 0.3% for all the cases investigated in this study, indicating that it was reasonable to use the assumption of zero-volume change for the deformation calculation of the GRS abutments. This study proposed an improved semi-empirical method to describe the relationship between the <em>D</em><sub><em>L</em></sub> and the <em>D</em><sub><em>v</em></sub>. Centrifuge test results and data collected from the literature were used to validate the improved method. It was concluded that the improved method had the advantage of considering the effects of the <em>a</em><sub><em>b</em></sub> and the <em>B</em> separately and therefore significantly improved the prediction accuracy of the deformations of the GRS abutments.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"52 5","pages":"Pages 925-940"},"PeriodicalIF":5.2,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141240189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-25DOI: 10.1016/j.geotexmem.2024.05.004
Maria Delli Carpini, Pascal Villard, Fabrice Emeriault
Cavity formations by soil dissolution or underground collapses are at the origin of large surface subsidence that constitutes a risk of damage or failure for infrastructures. Soil reinforcement with geosynthetics positioned at shallow depth is an economical and functional solution to reduce the induced surface settlements. Previous research has mainly focused on the load transfer mechanism and the arching effect in cohesionless reinforced backfills when the cavity opens. Experimental and numerical studies dealing with cohesive soils are very rare, although this situation is commonly found in practice. To overcome this lack of knowledge, a numerical study based on Discrete Element Modelling is carried out to better understand the load transfer mechanisms that are mobilized in cohesive embankments prone to underground cavity opening. The results are compared with experimental data obtained on a small-scale laboratory model in terms of vertical and horizontal displacements of both soil and geosynthetics. The numerical results focus on the collapse mechanisms of the cohesive embankment, the load transfer mechanisms, the shape of the vertical load distribution acting on the geosynthetic layer, the strain and traction forces within the geosynthetic sheet.
{"title":"Investigation of load transfer mechanisms in reinforced cohesive soil embankments in case of subsidence using DEM","authors":"Maria Delli Carpini, Pascal Villard, Fabrice Emeriault","doi":"10.1016/j.geotexmem.2024.05.004","DOIUrl":"https://doi.org/10.1016/j.geotexmem.2024.05.004","url":null,"abstract":"<div><p>Cavity formations by soil dissolution or underground collapses are at the origin of large surface subsidence that constitutes a risk of damage or failure for infrastructures. Soil reinforcement with geosynthetics positioned at shallow depth is an economical and functional solution to reduce the induced surface settlements. Previous research has mainly focused on the load transfer mechanism and the arching effect in cohesionless reinforced backfills when the cavity opens. Experimental and numerical studies dealing with cohesive soils are very rare, although this situation is commonly found in practice. To overcome this lack of knowledge, a numerical study based on Discrete Element Modelling is carried out to better understand the load transfer mechanisms that are mobilized in cohesive embankments prone to underground cavity opening. The results are compared with experimental data obtained on a small-scale laboratory model in terms of vertical and horizontal displacements of both soil and geosynthetics. The numerical results focus on the collapse mechanisms of the cohesive embankment, the load transfer mechanisms, the shape of the vertical load distribution acting on the geosynthetic layer, the strain and traction forces within the geosynthetic sheet.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"52 5","pages":"Pages 912-924"},"PeriodicalIF":5.2,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0266114424000463/pdfft?md5=913dd8683eda01ffe1f7ac2ecd2c5c63&pid=1-s2.0-S0266114424000463-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141094910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-24DOI: 10.1016/j.geotexmem.2024.05.006
Dong Li , Hanrui Zhao , Kuo Tian
Hydraulic conductivity of conventional mock sodium bentonite (Na–B) and bentonite-polymer (B–P) geosynthetic clay liners (GCLs) were evaluated with three synthetic leachates that are chemically representative of aggressive leachates from coal combustion product (CCR) (I = 3179 mM), mining waste (MW) (I = 2127 mM, pH = 2.0), and municipal solid waste incineration ash landfill (MSWI) (I = 2590 mM). The mock B–P GCLs were created by dry mixing bentonite with branched, linear, or crosslinked polymer. The polymer loading of mock B–P GCLs ranged from 3 to 15%. Comparative tests were also conducted with Na–B GCLs. The mock Na–B GCLs cannot maintain low hydraulic conductivity to aggressive CCR, MW, and MSWI leachates. Mock B–P GCLs with 10% branched polymer had low hydraulic conductivity (< 1.0 × 10−10 m/s) to synthetic MW and MSWI leachates at 20 kPa effective confining stress, whereas the hydraulic conductivity of mock B–P GCLs with 10% linear or crosslinked polymer ranged from 1.5 × 10−9 to 1.4 × 10−7 m/s. As the effective stress increased, the B–P GCLs branched polymer showed a faster decreasing trend than that of Na–B and B–P GCLs with linear or crosslinked polymer.
{"title":"Hydraulic conductivity of bentonite-polymer geosynthetic clay liners to aggressive solid waste leachates","authors":"Dong Li , Hanrui Zhao , Kuo Tian","doi":"10.1016/j.geotexmem.2024.05.006","DOIUrl":"https://doi.org/10.1016/j.geotexmem.2024.05.006","url":null,"abstract":"<div><p>Hydraulic conductivity of conventional mock sodium bentonite (Na–B) and bentonite-polymer (B–P) geosynthetic clay liners (GCLs) were evaluated with three synthetic leachates that are chemically representative of aggressive leachates from coal combustion product (CCR) (I = 3179 mM), mining waste (MW) (I = 2127 mM, pH = 2.0), and municipal solid waste incineration ash landfill (MSWI) (I = 2590 mM). The mock B–P GCLs were created by dry mixing bentonite with branched, linear, or crosslinked polymer. The polymer loading of mock B–P GCLs ranged from 3 to 15%. Comparative tests were also conducted with Na–B GCLs. The mock Na–B GCLs cannot maintain low hydraulic conductivity to aggressive CCR, MW, and MSWI leachates. Mock B–P GCLs with 10% branched polymer had low hydraulic conductivity (< 1.0 × 10<sup>−10</sup> m/s) to synthetic MW and MSWI leachates at 20 kPa effective confining stress, whereas the hydraulic conductivity of mock B–P GCLs with 10% linear or crosslinked polymer ranged from 1.5 × 10<sup>−9</sup> to 1.4 × 10<sup>−7</sup> m/s. As the effective stress increased, the B–P GCLs branched polymer showed a faster decreasing trend than that of Na–B and B–P GCLs with linear or crosslinked polymer.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"52 5","pages":"Pages 900-911"},"PeriodicalIF":5.2,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141094909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-22DOI: 10.1016/j.geotexmem.2024.05.007
Kang Yang , Mengmeng Lu , Jinxin Sun , Ganbin Liu
Nowadays, the utilization of prefabricated vertical drains (PVDs) or prefabricated horizontal drains (PHDs) in combination with vacuum preloading (VP) has emerged as a prevalent and effective strategy for treating dredged slurry. Nevertheless, both of these methods possess certain inherent limitations. In this study, three groups of parallel model experiments are conducted to compare the effectiveness of PVDs, PHDs and PHDs-PVDs under step VP in treating dredged slurry. Firstly, the water discharge, settlement and pore water pressure are monitored during the experiments. Then, the shear strength and water content of the soil at various locations after experiments are measured and the soil profiles at different cross sections are gauged. Additionally, soil excavation is conducted to evaluate the deformation characteristics of PHDs and PVDs. Finally, a scanning electron microscopy analysis is to assess the clogging of filter membranes. The results indicate that the proposed method can combine the advantages of both PHDs and PVDs, effectively enhancing the treatment effectiveness of the slurry. These findings elucidate the dewatering and reinforcement mechanism of PHDs-PVDs-VP and provide valuable insights for its practical engineering application.
{"title":"Experimental study on dewatering and reinforcement of dredged slurry treated by PHDs-PVDs under step vacuum preloading","authors":"Kang Yang , Mengmeng Lu , Jinxin Sun , Ganbin Liu","doi":"10.1016/j.geotexmem.2024.05.007","DOIUrl":"https://doi.org/10.1016/j.geotexmem.2024.05.007","url":null,"abstract":"<div><p>Nowadays, the utilization of prefabricated vertical drains (PVDs) or prefabricated horizontal drains (PHDs) in combination with vacuum preloading (VP) has emerged as a prevalent and effective strategy for treating dredged slurry. Nevertheless, both of these methods possess certain inherent limitations. In this study, three groups of parallel model experiments are conducted to compare the effectiveness of PVDs, PHDs and PHDs-PVDs under step VP in treating dredged slurry. Firstly, the water discharge, settlement and pore water pressure are monitored during the experiments. Then, the shear strength and water content of the soil at various locations after experiments are measured and the soil profiles at different cross sections are gauged. Additionally, soil excavation is conducted to evaluate the deformation characteristics of PHDs and PVDs. Finally, a scanning electron microscopy analysis is to assess the clogging of filter membranes. The results indicate that the proposed method can combine the advantages of both PHDs and PVDs, effectively enhancing the treatment effectiveness of the slurry. These findings elucidate the dewatering and reinforcement mechanism of PHDs-PVDs-VP and provide valuable insights for its practical engineering application.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"52 5","pages":"Pages 887-899"},"PeriodicalIF":5.2,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141084022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Traffic-induced cyclic loading generates repetitive stresses and cumulative deformations on the GRS abutments, which affect the serviceability of GRS abutments. To evaluate the stress distribution of GRS abutments under cyclic traffic loading, this paper presents reduced-scale GRS abutment models constructed with sand backfill and geogrid reinforcements. The GRS abutment models were subjected to staged cyclic loading with different cyclic loading amplitudes to investigate the influences of cyclic loading amplitude, bridge superstructure load, and reinforcement vertical spacing on the dynamic soil stress distributions. The results indicate that the increase in residual stresses due to stress redistribution induced by cyclic loading is most pronounced at the top of the abutment, while there is little stress redistribution down to the foundation level. Increasing the static load of bridge superstructure or the amplitude of cyclic loading results in an increase in the incremental dynamic vertical soil stresses. Reinforcement vertical spacing does not significantly impact the incremental dynamic vertical soil stresses under cyclic loading, while the cyclic load has the most significant influence. Closer reinforcement vertical spacing could provide stronger lateral confinement, resulting in larger dynamic lateral soil stresses behind wall facing.
{"title":"Evaluation of dynamic soil stress distribution in GRS bridge abutments subjected to cyclic loading","authors":"Yafei Jia , Chuan-Bao Xu , Jun Zhang , Jun-jie Zheng , Yewei Zheng","doi":"10.1016/j.geotexmem.2024.05.003","DOIUrl":"10.1016/j.geotexmem.2024.05.003","url":null,"abstract":"<div><p>Traffic-induced cyclic loading generates repetitive stresses and cumulative deformations on the GRS abutments, which affect the serviceability of GRS abutments. To evaluate the stress distribution of GRS abutments under cyclic traffic loading, this paper presents reduced-scale GRS abutment models constructed with sand backfill and geogrid reinforcements. The GRS abutment models were subjected to staged cyclic loading with different cyclic loading amplitudes to investigate the influences of cyclic loading amplitude, bridge superstructure load, and reinforcement vertical spacing on the dynamic soil stress distributions. The results indicate that the increase in residual stresses due to stress redistribution induced by cyclic loading is most pronounced at the top of the abutment, while there is little stress redistribution down to the foundation level. Increasing the static load of bridge superstructure or the amplitude of cyclic loading results in an increase in the incremental dynamic vertical soil stresses. Reinforcement vertical spacing does not significantly impact the incremental dynamic vertical soil stresses under cyclic loading, while the cyclic load has the most significant influence. Closer reinforcement vertical spacing could provide stronger lateral confinement, resulting in larger dynamic lateral soil stresses behind wall facing.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"52 4","pages":"Pages 855-869"},"PeriodicalIF":5.2,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141034560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-17DOI: 10.1016/j.geotexmem.2024.05.001
Kendra White , Yuntong She , Knut Oberhagemann , Angela Thompson , Wenming Zhang
Geobag stability has not been extensively studied under river current loading. In this study, the impacts of geobag characteristics (shape, bag material, and fill ratio of sand) and channel side slope (flat and 1V:2H) on a single geobag's stability were systematically investigated in a physical model to form the solid foundation for the research of group geobags. Overall, a geobag with a higher fill ratio, combined with the more flexible cloth material, was found to be the most stable. Critical Shields parameters were estimated between 0.0018 and 0.019, and the cross-sectional averaged flow velocity at incipient motion ranged from 0.49 m/s to 1.08 m/s. A shape factor was introduced to better describe the relationship between geobag characteristics and their stability on both riverbed configurations. Both the fill ratio and the bed side slope had higher importance on the geobag's stability compared to the relative depth, bag shape, and angle of flexibility.
{"title":"Effects of bag characteristics and channel side slope on incipient motion of a single Geobag under river current loading","authors":"Kendra White , Yuntong She , Knut Oberhagemann , Angela Thompson , Wenming Zhang","doi":"10.1016/j.geotexmem.2024.05.001","DOIUrl":"https://doi.org/10.1016/j.geotexmem.2024.05.001","url":null,"abstract":"<div><p>Geobag stability has not been extensively studied under river current loading. In this study, the impacts of geobag characteristics (shape, bag material, and fill ratio of sand) and channel side slope (flat and 1V:2H) on a single geobag's stability were systematically investigated in a physical model to form the solid foundation for the research of group geobags. Overall, a geobag with a higher fill ratio, combined with the more flexible cloth material, was found to be the most stable. Critical Shields parameters were estimated between 0.0018 and 0.019, and the cross-sectional averaged flow velocity at incipient motion ranged from 0.49 m/s to 1.08 m/s. A shape factor was introduced to better describe the relationship between geobag characteristics and their stability on both riverbed configurations. Both the fill ratio and the bed side slope had higher importance on the geobag's stability compared to the relative depth, bag shape, and angle of flexibility.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"52 5","pages":"Pages 874-886"},"PeriodicalIF":5.2,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0266114424000438/pdfft?md5=3ca8d62e10099beee5196bdc6bc4f041&pid=1-s2.0-S0266114424000438-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141066780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-17DOI: 10.1016/j.geotexmem.2024.05.002
M.P.S. Silva , J.G. Zornberg , N.S. Correia
Innovation in the use of geosynthetics in roadway applications has resulted in the development of several different products, such as asphalt reinforcement geogrids and paving mats to minimize reflective cracks and limit moisture infiltration. For a proper performance of the reinforced asphalt systems, an adequate interface bond strength has proven to be crucial. However, the influence of the different paving interlayer characteristics, combined with tack coat types, and tack coat rates on the interface bond strength remains unclear. In this study, a comprehensive program of interface shear tests was conducted using Leutner shear device and laboratory-prepared reinforced asphalt specimens. The program involved eight geosynthetic types, two tack coat types, and three application rates. Results revealed that the geosynthetic type, tack coat type and rate, as well as the interactions among the parameters significantly affect interface bond strength. Multiple linear regression analysis indicated that geogrid aperture area, geosynthetic thickness, geotextile backing thickness, and the presence of bitumen coating are the most affecting parameters on bond strength. A predictive model for the bond strength based on geosynthetic parameters is presented. Based on literature results for specimens extracted from the field, the proposed predictive models were found to adequately predict interface bond strength.
{"title":"Predictive model for the interface bond strength of geosynthetic-reinforced asphalt layers","authors":"M.P.S. Silva , J.G. Zornberg , N.S. Correia","doi":"10.1016/j.geotexmem.2024.05.002","DOIUrl":"10.1016/j.geotexmem.2024.05.002","url":null,"abstract":"<div><p>Innovation in the use of geosynthetics in roadway applications has resulted in the development of several different products, such as asphalt reinforcement geogrids and paving mats to minimize reflective cracks and limit moisture infiltration. For a proper performance of the reinforced asphalt systems, an adequate interface bond strength has proven to be crucial. However, the influence of the different paving interlayer characteristics, combined with tack coat types, and tack coat rates on the interface bond strength remains unclear. In this study, a comprehensive program of interface shear tests was conducted using Leutner shear device and laboratory-prepared reinforced asphalt specimens. The program involved eight geosynthetic types, two tack coat types, and three application rates. Results revealed that the geosynthetic type, tack coat type and rate, as well as the interactions among the parameters significantly affect interface bond strength. Multiple linear regression analysis indicated that geogrid aperture area, geosynthetic thickness, geotextile backing thickness, and the presence of bitumen coating are the most affecting parameters on bond strength. A predictive model for the bond strength based on geosynthetic parameters is presented. Based on literature results for specimens extracted from the field, the proposed predictive models were found to adequately predict interface bond strength.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"52 4","pages":"Pages 841-854"},"PeriodicalIF":5.2,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141052916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Geosynthetic-reinforced soil (GRS) walls built on hillslopes are more increasingly incorporated with geo-composite side drain in order to prevent the side-seepage entering the fill. This study evaluates the long-term moisture, pore-water pressure, and shear modulus, of a 6.5 m-high geogrid-reinforced soil wall in western Thailand. Through extensive field monitoring and in-situ spectral analysis of surface wave (SASW) tests, conducted during the Years 2018–2019, as well as laboratory tests, several key findings emerge. Free-free resonant frequency (FFR) testing of non-reinforced samples reveals the role of soil wetting and drying history and hysteresis in the stiffness-moisture relationship. In-situ pore-water pressure was found to be highest below the road surface near the wall face, decreasing with depth due to underdrainage, with values ranging from −27 to 5 kPa. The intersection of the side drainage board with the underdrain bottom layer shows the highest water content. In-situ and laboratory-derived soil-water retention curve (SWRC) were found to differ at greater depths. In unsaturated conditions, the in-situ small strain modulus of GRS appeared insensitive to suction stress below 10 kPa but was slightly affected under positive pore-water pressure, with multiple linear regression modeling indicating a dependency of stiffness on depth and pore-water pressure.
{"title":"Field evaluation of moisture-suction regime and modulus of geosynthetic-reinforced soil wall with geo-composite side-drain","authors":"Susit Chaiprakaikeow , Apiniti Jotisankasa , Washirawat Praphatsorn , Avishek Shrestha , Sawek Cheento , Sony Pramusandi , Pragith Chaisri , Shinya Inazumi","doi":"10.1016/j.geotexmem.2024.05.005","DOIUrl":"https://doi.org/10.1016/j.geotexmem.2024.05.005","url":null,"abstract":"<div><p>Geosynthetic-reinforced soil (GRS) walls built on hillslopes are more increasingly incorporated with geo-composite side drain in order to prevent the side-seepage entering the fill. This study evaluates the long-term moisture, pore-water pressure, and shear modulus, of a 6.5 m-high geogrid-reinforced soil wall in western Thailand. Through extensive field monitoring and in-situ spectral analysis of surface wave (SASW) tests, conducted during the Years 2018–2019, as well as laboratory tests, several key findings emerge. Free-free resonant frequency (FFR) testing of non-reinforced samples reveals the role of soil wetting and drying history and hysteresis in the stiffness-moisture relationship. In-situ pore-water pressure was found to be highest below the road surface near the wall face, decreasing with depth due to underdrainage, with values ranging from −27 to 5 kPa. The intersection of the side drainage board with the underdrain bottom layer shows the highest water content. In-situ and laboratory-derived soil-water retention curve (SWRC) were found to differ at greater depths. In unsaturated conditions, the in-situ small strain modulus of GRS appeared insensitive to suction stress below 10 kPa but was slightly affected under positive pore-water pressure, with multiple linear regression modeling indicating a dependency of stiffness on depth and pore-water pressure.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"52 5","pages":"Pages 860-873"},"PeriodicalIF":5.2,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141066779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}