We measured extracellular bioelectrical activities of the ectomycorrhizal basidiomycete Laccaria bicolor under field conditions to examine its response to environmental factors. Six fruit bodies of L. bicolor in a cluster, to which electrodes were attached, exhibited less electrical potentials at the beginning, probably due to the lack of precipitation for over a week. However, its electrical potential fluctuated after raining, sometimes over 100 mV. The electrical potential of the fruit bodies and its fluctuation were correlated with precipitation. Causality analysis of electrical potential after the rain showed electrical signal transport among fruit bodies, particularly between spatially close ones, with potential directionality. Our preliminary results bring a call for studies on fungal electrical potentials in a more ecological context under field conditions.
{"title":"Electrical potentials in the ectomycorrhizal fungus Laccaria bicolor after a rainfall event","authors":"Yu Fukasawa , Daisuke Akai , Masayuki Ushio , Takayuki Takehi","doi":"10.1016/j.funeco.2023.101229","DOIUrl":"https://doi.org/10.1016/j.funeco.2023.101229","url":null,"abstract":"<div><p>We measured extracellular bioelectrical activities of the ectomycorrhizal basidiomycete <em>Laccaria bicolor</em> under field conditions to examine its response to environmental factors. Six fruit bodies of <em>L. bicolor</em> in a cluster, to which electrodes were attached, exhibited less electrical potentials at the beginning, probably due to the lack of precipitation for over a week. However, its electrical potential fluctuated after raining, sometimes over 100 mV. The electrical potential of the fruit bodies and its fluctuation were correlated with precipitation. Causality analysis of electrical potential after the rain showed electrical signal transport among fruit bodies, particularly between spatially close ones, with potential directionality. Our preliminary results bring a call for studies on fungal electrical potentials in a more ecological context under field conditions.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"63 ","pages":"Article 101229"},"PeriodicalIF":2.9,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49763701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1016/j.funeco.2023.101243
Chun Xue Chai , Abdullah Samat , Farah Shafawati Mohd-Taib , Izwan Bharudin , Johari Tim
Fungal infection in sea turtle nests has become a potential threat to sea turtle embryos. We screened the hatchery nest sand, eggshells of failed eggs, and stillbirths of green turtles and hawksbills collected from hatcheries in Malacca, Pahang, Perak and Terengganu for the presence of fungi. The DNA sequence of the ITS region of the three highest occurring isolated fungi confirmed that these species were Pseudallescheria ellipsoidea (35.4%), Scedosporium aurantiacum (27.2%), and Fusarium solani (22.0%). Morphological characteristics of these fungi were recorded. Although the total fungi abundance had no significant effect on hatching success (p > 0.05), the abundance of P. ellipsoidea significantly increased mortality in the nests (r = 0.70, p < 0.05). Future research should focus on understanding the biological aspects of this species to establish a more effective mitigation technique for the prevention of fungal infection of sea turtle eggs and hatchery employees.
{"title":"Fungal infection of sea turtle eggs in the sea turtle hatcheries in Peninsular Malaysia","authors":"Chun Xue Chai , Abdullah Samat , Farah Shafawati Mohd-Taib , Izwan Bharudin , Johari Tim","doi":"10.1016/j.funeco.2023.101243","DOIUrl":"https://doi.org/10.1016/j.funeco.2023.101243","url":null,"abstract":"<div><p>Fungal infection in sea turtle nests has become a potential threat to sea turtle embryos. We screened the hatchery nest sand, eggshells of failed eggs, and stillbirths of green turtles and hawksbills collected from hatcheries in Malacca, Pahang, Perak and Terengganu for the presence of fungi. The DNA sequence of the ITS region of the three highest occurring isolated fungi confirmed that these species were <em>Pseudallescheria ellipsoidea</em> (35.4%), <em>Scedosporium aurantiacum</em> (27.2%), and <em>Fusarium solani</em> (22.0%). Morphological characteristics of these fungi were recorded. Although the total fungi abundance had no significant effect on hatching success (<em>p</em> > 0.05), the abundance of <em>P. ellipsoidea</em> significantly increased mortality in the nests (<em>r</em> = 0.70, <em>p</em> < 0.05). Future research should focus on understanding the biological aspects of this species to establish a more effective mitigation technique for the prevention of fungal infection of sea turtle eggs and hatchery employees.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"63 ","pages":"Article 101243"},"PeriodicalIF":2.9,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49743167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1016/j.funeco.2023.101232
Lisa Fagerli Lunde , Lynne Boddy , Anne Sverdrup-Thygeson , Rannveig M. Jacobsen , Håvard Kauserud , Tone Birkemoe
Wood decay fungi are considered to be dispersed by wind, but dispersal by animals may also be important, and more so in managed forests where dead wood is scarce. We investigated whether beetles could disperse spores of the keystone species Fomitopsis pinicola. Beetles were collected on sporocarps and newly felled spruce logs, a favourable habitat for spore deposition. Viable spores (and successful germination) of F. pinicola were detected by dikaryotization of monokaryotic bait mycelium from beetle samples. Viable spores were on the exoskeleton and in the faeces of all beetles collected from sporulating sporocarps. On fresh spruce logs, nine beetle species transported viable spores, of which several bore into the bark. Our results demonstrate that beetles can provide directed dispersal of wood decay fungi. Potentially, it could contribute to a higher persistence of some species in fragmented forests where spore deposition by wind on dead wood is less likely.
{"title":"Beetles provide directed dispersal of viable spores of a keystone wood decay fungus","authors":"Lisa Fagerli Lunde , Lynne Boddy , Anne Sverdrup-Thygeson , Rannveig M. Jacobsen , Håvard Kauserud , Tone Birkemoe","doi":"10.1016/j.funeco.2023.101232","DOIUrl":"https://doi.org/10.1016/j.funeco.2023.101232","url":null,"abstract":"<div><p>Wood decay fungi are considered to be dispersed by wind, but dispersal by animals may also be important, and more so in managed forests where dead wood is scarce. We investigated whether beetles could disperse spores of the keystone species <em>Fomitopsis pinicola</em>. Beetles were collected on sporocarps and newly felled spruce logs, a favourable habitat for spore deposition. Viable spores (and successful germination) of <em>F. pinicola</em> were detected by dikaryotization of monokaryotic bait mycelium from beetle samples. Viable spores were on the exoskeleton and in the faeces of all beetles collected from sporulating sporocarps. On fresh spruce logs, nine beetle species transported viable spores, of which several bore into the bark. Our results demonstrate that beetles can provide directed dispersal of wood decay fungi. Potentially, it could contribute to a higher persistence of some species in fragmented forests where spore deposition by wind on dead wood is less likely.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"63 ","pages":"Article 101232"},"PeriodicalIF":2.9,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49763668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1016/j.funeco.2023.101231
Fredrik Rustøen , Klaus Høiland , Einar Heegaard , Lynne Boddy , Alan C. Gange , Håvard Kauserud , Carrie Andrew
Wood decomposing fungi differ in their substrate affinities, but to what extent factors like wood properties influence host specialization, compared to climate, is largely unknown. In this study, we analysed British field observations of 61 common wood decay species associated with 41 tree and shrub genera. While white rot fungi ranged from low-to high-substrate affinity, brown rot fungi were exclusively mid-to high-affinity. White rot fungi associated with dead fallen wood demonstrated the least substrate affinity. The composition of wood decomposer fungi was mostly structured by substrate properties, sorted between angiosperms and conifers. Any relationships with temporal and regional climate variability were of far less significance, but did predict community-based and substrate-usage host shifts, especially for fungi on fallen deadwood. Our results demonstrate that substrate shifts by wood-decay fungi will depend primarily upon their degree of affinity to, and the distribution of, related woody genera, followed less at regional levels by climate impacts.
{"title":"Substrate affinities of wood decay fungi are foremost structured by wood properties not climate","authors":"Fredrik Rustøen , Klaus Høiland , Einar Heegaard , Lynne Boddy , Alan C. Gange , Håvard Kauserud , Carrie Andrew","doi":"10.1016/j.funeco.2023.101231","DOIUrl":"https://doi.org/10.1016/j.funeco.2023.101231","url":null,"abstract":"<div><p>Wood decomposing fungi differ in their substrate affinities, but to what extent factors like wood properties influence host specialization, compared to climate, is largely unknown. In this study, we analysed British field observations of 61 common wood decay species associated with 41 tree and shrub genera. While white rot fungi ranged from low-to high-substrate affinity, brown rot fungi were exclusively mid-to high-affinity. White rot fungi associated with dead fallen wood demonstrated the least substrate affinity. The composition of wood decomposer fungi was mostly structured by substrate properties, sorted between angiosperms and conifers. Any relationships with temporal and regional climate variability were of far less significance, but did predict community-based and substrate-usage host shifts, especially for fungi on fallen deadwood. Our results demonstrate that substrate shifts by wood-decay fungi will depend primarily upon their degree of affinity to, and the distribution of, related woody genera, followed less at regional levels by climate impacts.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"63 ","pages":"Article 101231"},"PeriodicalIF":2.9,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49743262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1016/j.funeco.2023.101241
Sanni M.A. Färkkilä , Anu Valtonen , Karita Saravesi , Sten Anslan , Annamari Markkola , Sari Kontunen-Soppela
Soil microbes, especially root symbiotic fungi, often have drastic effects on the successful growth and establishment of plants. While plant intraspecific genetic variation is known to affect many ecosystem processes and functions, the effect it has on root fungal communities has received less attention. To determine the effect plant origin and genotype have on root fungal communities, we used high-throughput amplicon sequencing of ITS-regions to detect fungi from the roots of 64 clonally propagated silver birch (Betula pendula) trees representing four different geographical origins and 16 genotypes, all grown together in a common garden. We found that fungal alpha and beta-diversity but not community composition differ by silver birch genotype. Some birch genotypes are potentially more plastic in terms of their fungal interactions, which could make them more robust against environmental changes and provide a competitive advantage especially in disturbed habitats.
{"title":"The effects of geographic origin and genotype on fungal diversity of silver birch (Betula pendula)","authors":"Sanni M.A. Färkkilä , Anu Valtonen , Karita Saravesi , Sten Anslan , Annamari Markkola , Sari Kontunen-Soppela","doi":"10.1016/j.funeco.2023.101241","DOIUrl":"https://doi.org/10.1016/j.funeco.2023.101241","url":null,"abstract":"<div><p>Soil microbes, especially root symbiotic fungi, often have drastic effects on the successful growth and establishment of plants. While plant intraspecific genetic variation is known to affect many ecosystem processes and functions, the effect it has on root fungal communities has received less attention. To determine the effect plant origin and genotype have on root fungal communities, we used high-throughput amplicon sequencing of ITS-regions to detect fungi from the roots of 64 clonally propagated silver birch (<em>Betula pendula</em>) trees representing four different geographical origins and 16 genotypes, all grown together in a common garden. We found that fungal alpha and beta-diversity but not community composition differ by silver birch genotype. Some birch genotypes are potentially more plastic in terms of their fungal interactions, which could make them more robust against environmental changes and provide a competitive advantage especially in disturbed habitats.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"63 ","pages":"Article 101241"},"PeriodicalIF":2.9,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49742867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1016/j.funeco.2023.101246
Erica E. Packard, Daniel M. Durall, Melanie D. Jones
With wildfires reaching unprecedented levels of severity, size and frequency, their impact on soil microbial communities is an important concern. Commencing just weeks following a wildfire in a Douglas-fir-Ponderosa pine forest, we collected surface and mineral soil samples four times over 10 months from four severity levels to better understand the effect of wildfire severity on fungi and their guilds. At medium severity and above, there was a decrease in fungal diversity and a shift in community composition in both layers, while the fungal community from soils burnt by low severity fires remained similar to unburnt soils. Although the richness of putative saprotrophic and pathotrophic fungi in burnt microplots returned to levels comparable to that in the unburnt microplots within weeks of burning, the richness of symbiotrophic, including ectomycorrhizal fungi in burnt plots, did not. The DNA of many putative pyrophilous fungi peaked in estimated abundance within weeks after the fire, even though fruiting was not observed until the following spring.
{"title":"Successional changes in fungal communities occur a few weeks following wildfire in a mixed Douglas-fir-ponderosa pine forest","authors":"Erica E. Packard, Daniel M. Durall, Melanie D. Jones","doi":"10.1016/j.funeco.2023.101246","DOIUrl":"https://doi.org/10.1016/j.funeco.2023.101246","url":null,"abstract":"<div><p>With wildfires reaching unprecedented levels of severity, size and frequency, their impact on soil microbial communities is an important concern. Commencing just weeks following a wildfire in a Douglas-fir-Ponderosa pine forest, we collected surface and mineral soil samples four times over 10 months from four severity levels to better understand the effect of wildfire severity on fungi and their guilds. At medium severity and above, there was a decrease in fungal diversity and a shift in community composition in both layers, while the fungal community from soils burnt by low severity fires remained similar to unburnt soils. Although the richness of putative saprotrophic and pathotrophic fungi in burnt microplots returned to levels comparable to that in the unburnt microplots within weeks of burning, the richness of symbiotrophic, including ectomycorrhizal fungi in burnt plots, did not. The DNA of many putative pyrophilous fungi peaked in estimated abundance within weeks after the fire, even though fruiting was not observed until the following spring.</p></div><div><h3>Index descriptors</h3><p>pyrophilous fungi; wildfire severity; ITS; metabarcoding; <em>Pseudotsuga menziesii</em> var. <em>glauca;</em> fungal community; disturbance; succession.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"63 ","pages":"Article 101246"},"PeriodicalIF":2.9,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49743043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1016/j.funeco.2023.101228
Magdalena Tanona , Pawel Czarnota
We investigated which of the following environmental factors: the number of years since the windthrow of the tree (the age of dead wood), the phytocenosis (the type of forest community), altitude, exposure, wood hardness and the spatial scale of forest disturbances (small gaps with a few fallen spruces vs large-area windthrows) contributed to the diversity and abundance of lichens inhabiting the exposed wood of windthrown spruce trees in Polish Western Carpathian forests. Both Shannon H index and sum of coverage coefficients rose with increasing age of the wood, levelling off after 11–14 y (diversity) and 14–17 y (abundance). This factor appeared to be the most important for this group of lichens, but the significant positive impact of large-area windthrows on the lichen abundance was also demonstrated by using a GLM model. The age of the wood we precisely determined on the basis of data on Norway spruce mortality collected annually in permanent plots of the Gorce National Park since 2000. Using the Shore durometer we linked the course of the wood-inhabiting lichen succession with wood decay more precisely than before. The largest number of species was associated with medium hard wood, i.e., 51 < x ≤ 80 on the Shore scale. Based on the NMDS analysis, we distinguished four age groups of logs, differing in lichen abundance and defined by the dominance of distinctive species. A large number of usually corticolous lichen species used the wood of windthrown spruce logs as an optional habitat to survive large-scale, post-hurricane forest disturbances.
{"title":"The response of lichens inhabiting exposed wood of spruce logs to post-hurricane disturbances in Western Carpathian forests","authors":"Magdalena Tanona , Pawel Czarnota","doi":"10.1016/j.funeco.2023.101228","DOIUrl":"https://doi.org/10.1016/j.funeco.2023.101228","url":null,"abstract":"<div><p>We investigated which of the following environmental factors: the number of years since the windthrow of the tree (the age of dead wood), the phytocenosis (the type of forest community), altitude, exposure, wood hardness and the spatial scale of forest disturbances (small gaps with a few fallen spruces <em>vs</em> large-area windthrows) contributed to the diversity and abundance of lichens inhabiting the exposed wood of windthrown spruce trees in Polish Western Carpathian forests. Both Shannon H index and sum of coverage coefficients rose with increasing age of the wood, levelling off after 11–14 y (diversity) and 14–17 y (abundance). This factor appeared to be the most important for this group of lichens, but the significant positive impact of large-area windthrows on the lichen abundance was also demonstrated by using a GLM model. The age of the wood we precisely determined on the basis of data on Norway spruce mortality collected annually in permanent plots of the Gorce National Park since 2000. Using the Shore durometer we linked the course of the wood-inhabiting lichen succession with wood decay more precisely than before. The largest number of species was associated with medium hard wood, i.e., 51 < x ≤ 80 on the Shore scale. Based on the NMDS analysis, we distinguished four age groups of logs, differing in lichen abundance and defined by the dominance of distinctive species. A large number of usually corticolous lichen species used the wood of windthrown spruce logs as an optional habitat to survive large-scale, post-hurricane forest disturbances.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"63 ","pages":"Article 101228"},"PeriodicalIF":2.9,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49742803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1016/j.funeco.2023.101242
Janneke Aylward , Nombuso P. Ngubane , Léanne L. Dreyer , Kenneth Oberlander , Michael J. Wingfield , Francois Roets
Knoxdaviesia and Sporothrix species occupy the flower heads of some Protea plants in southern Africa. Knoxdaviesia species display exceptional genetic diversity within the Core Cape Subregion (CCR) and are readily dispersed across large distances. This study aimed to determine whether overlapping ecologies have led to a similar population genetic structure in Sporothrix splendens. Two DNA sequence markers, β-tubulin and a microsatellite region, were amplified in 97 S. splendens strains from eight populations that span its host distribution. Genetic diversity was low in a geographically isolated population, but high elsewhere. CCR populations were closely related, showing isolation by distance with populations at the eastern edge of the sampling range. Like Knoxdaviesia species, long-distance dispersal of S. splendens spores is prevalent, although likely affected by patchy host populations. This study is the first to consider populations of a non-clinical Sporothrix species, providing insights into the population attributes of a naturally distributed species.
{"title":"Convergent evolution unites the population genetics of Protea-associated ophiostomatoid fungi","authors":"Janneke Aylward , Nombuso P. Ngubane , Léanne L. Dreyer , Kenneth Oberlander , Michael J. Wingfield , Francois Roets","doi":"10.1016/j.funeco.2023.101242","DOIUrl":"https://doi.org/10.1016/j.funeco.2023.101242","url":null,"abstract":"<div><p><em>Knoxdaviesia</em> and <em>Sporothrix</em> species occupy the flower heads of some <em>Protea</em> plants in southern Africa. <em>Knoxdaviesia</em> species display exceptional genetic diversity within the Core Cape Subregion (CCR) and are readily dispersed across large distances. This study aimed to determine whether overlapping ecologies have led to a similar population genetic structure in <em>Sporothrix splendens</em>. Two DNA sequence markers, β-tubulin and a microsatellite region, were amplified in 97 <em>S. splendens</em> strains from eight populations that span its host distribution. Genetic diversity was low in a geographically isolated population, but high elsewhere. CCR populations were closely related, showing isolation by distance with populations at the eastern edge of the sampling range. Like <em>Knoxdaviesia</em> species, long-distance dispersal of <em>S. splendens</em> spores is prevalent, although likely affected by patchy host populations. This study is the first to consider populations of a non-clinical <em>Sporothrix</em> species, providing insights into the population attributes of a naturally distributed species.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"63 ","pages":"Article 101242"},"PeriodicalIF":2.9,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49742954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1016/j.funeco.2022.101221
Emily Lorine Davis, Emily Weatherhead, Roger T. Koide
Endophytic fungi occur in living tissues of terrestrial plants. Many of these fungi are primarily biotrophic, but the trophic range of endophytic fungi as a group may not be fully appreciated. In this study, our goals were (1) for the Class 3 foliar endophytic fungi isolated from Quercus gambelii, determine their potential saprotrophic capacity, which we define as the difference in growth rate in culture on Quercus gambelii leaf litter medium and control medium lacking leaf litter and (2) quantify sources of variation among isolates of these endophytic fungi in potential saprotrophic capacity, including variation due to microsite within host trees (leaves receiving full sun vs. shade) and variation within and among fungal genera. We found that 48 of the 49 tested endophytic fungal isolates have significant potential saprotrophic capacity. Contrary to expectation, the amount of solar radiation available to the leaf from which the fungi were isolated had no significant impact on potential saprotrophic capacity and there was more variability in potential saprotrophic capacity among isolates within a genus than among genera. Our results suggest that some Class 3 endophytic fungi may have the potential to function as saprotrophic fungi within plant litter, but this remains to be seen for these Quercus gambelii isolates under more natural circumstances.
{"title":"The potential saprotrophic capacity of foliar endophytic fungi from Quercus gambelii","authors":"Emily Lorine Davis, Emily Weatherhead, Roger T. Koide","doi":"10.1016/j.funeco.2022.101221","DOIUrl":"https://doi.org/10.1016/j.funeco.2022.101221","url":null,"abstract":"<div><p>Endophytic fungi occur in living tissues of terrestrial plants. Many of these fungi are primarily biotrophic, but the trophic range of endophytic fungi as a group may not be fully appreciated. In this study, our goals were (1) for the Class 3 foliar endophytic fungi isolated from <em>Quercus gambelii</em>, determine their potential saprotrophic capacity, which we define as the difference in growth rate in culture on <em>Quercus gambelii</em> leaf litter medium and control medium lacking leaf litter and (2) quantify sources of variation among isolates of these endophytic fungi in potential saprotrophic capacity, including variation due to microsite within host trees (leaves receiving full sun vs. shade) and variation within and among fungal genera. We found that 48 of the 49 tested endophytic fungal isolates have significant potential saprotrophic capacity. Contrary to expectation, the amount of solar radiation available to the leaf from which the fungi were isolated had no significant impact on potential saprotrophic capacity and there was more variability in potential saprotrophic capacity among isolates within a genus than among genera. Our results suggest that some Class 3 endophytic fungi may have the potential to function as saprotrophic fungi within plant litter, but this remains to be seen for these <em>Quercus gambelii</em> isolates under more natural circumstances.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"62 ","pages":"Article 101221"},"PeriodicalIF":2.9,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49746967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1016/j.funeco.2022.101223
Gisele Gomes Barreto , Luiz Ubiratan Hepp , Renan de Souza Rezende , José Francisco Gonçalves Junior , Marcelo da Silva Moretti , Yara Moretto , Rafael Chaves Loureiro , Rozane Maria Restello , Adriana Oliveira Medeiros
Aquatic hyphomycetes are microbial decomposers in freshwater environments that, together with detritivores, play an essential role in the functioning of low-order streams. Here, we evaluated aquatic hyphomycetes communities associated with decomposing leaves of Nectandra megapotamica, a common Neotropical riparian tree, along a subtropical-tropical latitudinal gradient. Two forest streams located in subtropical regions and 3 in tropical regions were selected. We identified 29 species of aquatic hyphomycetes, 22 (75.8%) in subtropical streams and 15 (51.7%) in tropical streams. We also found a higher fungal biomass in subtropical streams. However, the amounts of leaf mass loss did not differ between regions, but the values were higher in summer than in winter. High temperature, pH and electrical conductivity values, as well as low dissolved oxygen levels, negatively affected spore production. These results suggest that the subtropical-tropical gradient is an important predictor of aquatic hyphomycete diversity; however, the observed species had different sensitivities to local environmental factors.
{"title":"The cooler the better: Increased aquatic hyphomycete diversity in subtropical streams along a neotropical latitudinal gradient","authors":"Gisele Gomes Barreto , Luiz Ubiratan Hepp , Renan de Souza Rezende , José Francisco Gonçalves Junior , Marcelo da Silva Moretti , Yara Moretto , Rafael Chaves Loureiro , Rozane Maria Restello , Adriana Oliveira Medeiros","doi":"10.1016/j.funeco.2022.101223","DOIUrl":"https://doi.org/10.1016/j.funeco.2022.101223","url":null,"abstract":"<div><p>Aquatic hyphomycetes are microbial decomposers in freshwater environments that, together with detritivores, play an essential role in the functioning of low-order streams. Here, we evaluated aquatic hyphomycetes communities associated with decomposing leaves of <em>Nectandra megapotamica</em>, a common Neotropical riparian tree, along a subtropical-tropical latitudinal gradient. Two forest streams located in subtropical regions and 3 in tropical regions were selected. We identified 29 species of aquatic hyphomycetes, 22 (75.8%) in subtropical streams and 15 (51.7%) in tropical streams. We also found a higher fungal biomass in subtropical streams. However, the amounts of leaf mass loss did not differ between regions, but the values were higher in summer than in winter. High temperature, pH and electrical conductivity values, as well as low dissolved oxygen levels, negatively affected spore production. These results suggest that the subtropical-tropical gradient is an important predictor of aquatic hyphomycete diversity; however, the observed species had different sensitivities to local environmental factors.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"62 ","pages":"Article 101223"},"PeriodicalIF":2.9,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49767124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}