首页 > 最新文献

Fungal Ecology最新文献

英文 中文
Tracing the spatial extent and lag time of carbon transfer from Picea abies to ectomycorrhizal fungi differing in host type, taxonomy, or hyphal development 追踪黑松向宿主类型、分类或菌丝发育不同的外生菌根真菌转移碳的空间范围和滞后时间
IF 2.9 3区 环境科学与生态学 Q3 ECOLOGY Pub Date : 2023-12-05 DOI: 10.1016/j.funeco.2023.101315
Erik A. Hobbie , Sonja G. Keel , Tamir Klein , Ido Rog , Matthias Saurer , Rolf Siegwolf , Michael R. Routhier , Christian Körner

We used five mature Picea abies continuously labeled with 13C-depleted CO2 in a broadleaf-dominated Swiss forest to assess the spatial extent and lag time of carbon fluxes to ectomycorrhizal fungi differing in hyphal development and host association. We traced labeled carbon into ectomycorrhizal sporocarps collected for two seasons at different distances from labeled Picea. Picea-derived photosynthate reached conifer-specific sporocarps up to 6–12 m away and reached other sporocarps only 0–6 m away. At 0–6 m, genera of lesser hyphal development acquired more Picea-derived photosynthate than those of greater hyphal development, presumably from preferential fungal colonization of inner root zones by the former genera. Correlations of sporocarp δ13C with daily solar radiation integrated for different periods indicated that carbon fluxes from Picea to sporocarps peaked 17–21 days after photosynthesis. Thus, these results provided rough estimates of the spatial extent and temporal lags of carbon transfer from Picea to ectomycorrhizal fungi.

我们在瑞士一片以阔叶树为主的森林中使用了五棵连续标记了 13C 贫化二氧化碳的成熟欧鼠李,以评估碳通量的空间范围和滞后时间。我们追踪了两个季节在距离标记的云杉不同距离处收集的外生菌根真菌孢子块中的标记碳。针叶树产生的光合成代谢物可到达 6-12 米外针叶树特有的孢子囊,而其它孢子囊只能到达 0-6 米外。在 0-6 米处,菌丝发育较弱的菌属比菌丝发育较强的菌属获得更多的 Picea 衍生的光合作用物,这可能是由于前者优先在根内侧区域进行真菌定殖。孢子囊δ13C 与不同时期的日太阳辐射综合值的相关性表明,从冰龙属到孢子囊的碳通量在光合作用后 17-21 天达到峰值。因此,这些结果提供了对松柏向外生菌根真菌转移碳的空间范围和时间滞后的粗略估计。
{"title":"Tracing the spatial extent and lag time of carbon transfer from Picea abies to ectomycorrhizal fungi differing in host type, taxonomy, or hyphal development","authors":"Erik A. Hobbie ,&nbsp;Sonja G. Keel ,&nbsp;Tamir Klein ,&nbsp;Ido Rog ,&nbsp;Matthias Saurer ,&nbsp;Rolf Siegwolf ,&nbsp;Michael R. Routhier ,&nbsp;Christian Körner","doi":"10.1016/j.funeco.2023.101315","DOIUrl":"https://doi.org/10.1016/j.funeco.2023.101315","url":null,"abstract":"<div><p>We used five mature <span><span>Picea abies</span></span> continuously labeled with <sup>13</sup>C-depleted CO<sub>2</sub><span><span> in a broadleaf-dominated Swiss forest to assess the spatial extent and lag time of carbon fluxes to </span>ectomycorrhizal fungi<span> differing in hyphal development and host association. We traced labeled carbon into ectomycorrhizal sporocarps collected for two seasons at different distances from labeled </span></span><em>Picea</em>. <em>Picea</em><span>-derived photosynthate reached conifer-specific sporocarps up to 6–12 m away and reached other sporocarps only 0–6 m away. At 0–6 m, genera of lesser hyphal development acquired more </span><em>Picea</em><span><span>-derived photosynthate than those of greater hyphal development, presumably from preferential fungal colonization of inner </span>root zones by the former genera. Correlations of sporocarp δ</span><sup>13</sup>C with daily solar radiation integrated for different periods indicated that carbon fluxes from <em>Picea</em><span> to sporocarps peaked 17–21 days after photosynthesis. Thus, these results provided rough estimates of the spatial extent and temporal lags of carbon transfer from </span><em>Picea</em> to ectomycorrhizal fungi.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"68 ","pages":"Article 101315"},"PeriodicalIF":2.9,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138489947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Do aquatic fungal environmental DNA assemblages reflect the surrounding terrestrial sporocarp communities? 水生真菌环境DNA组合是否反映了周围陆生孢子体群落?
IF 2.9 3区 环境科学与生态学 Q3 ECOLOGY Pub Date : 2023-11-29 DOI: 10.1016/j.funeco.2023.101311
Yoriko Sugiyama , Shunsuke Matsuoka , Yoshito Shimono , Masayuki Ushio , Hideyuki Doi

The relationship between aquatic environmental DNA (eDNA) assemblages in rivers and the surrounding terrestrial fungal communities has been poorly investigated. Here, we focused on fungi that form soft sporocarps (soft fungi). Two years of sporocarp and aquatic eDNA sampling were conducted at a fragmented forest site, and the soft-fungal assemblages and their temporal dynamics were compared between these two sample types. Aquatic eDNA yielded approximately 1.5 times the operational taxonomic units (OTUs) compared to sporocarps and covered approximately half of the OTUs from sporocarp samples. Lineages that seldom form sporocarps or form inconspicuous sporocarps were successfully detected from aquatic eDNA. Although the OTU composition differed between sporocarp and aquatic eDNA, their temporal dynamics were similar, with both showing a 1-year periodicity. Aquatic eDNA provides insights into fungal diversity and temporal dynamics, but does not fully reflect terrestrial fungi diversity.

河流中水生环境DNA (eDNA)组合与周围陆生真菌群落之间的关系研究甚少。在这里,我们关注的是形成软孢子囊的真菌(软真菌)。在一个破碎的森林样地进行了两年的孢子皮和水生eDNA采样,比较了这两种样品类型的软真菌组合及其时间动态。水生eDNA产生的操作分类单位(OTUs)约为孢子皮的1.5倍,约占孢子皮样品中OTUs的一半。从水生生物的eDNA中成功地检测到很少形成子果皮或形成不明显的子果皮的谱系。尽管子皮和水生eDNA的OTU组成不同,但它们的时间动态相似,都表现出1年的周期性。水生eDNA提供了真菌多样性和时间动态的见解,但不能完全反映陆生真菌的多样性。
{"title":"Do aquatic fungal environmental DNA assemblages reflect the surrounding terrestrial sporocarp communities?","authors":"Yoriko Sugiyama ,&nbsp;Shunsuke Matsuoka ,&nbsp;Yoshito Shimono ,&nbsp;Masayuki Ushio ,&nbsp;Hideyuki Doi","doi":"10.1016/j.funeco.2023.101311","DOIUrl":"https://doi.org/10.1016/j.funeco.2023.101311","url":null,"abstract":"<div><p>The relationship between aquatic environmental DNA (eDNA) assemblages in rivers and the surrounding terrestrial fungal communities has been poorly investigated. Here, we focused on fungi that form soft sporocarps (soft fungi). Two years of sporocarp and aquatic eDNA sampling were conducted at a fragmented forest site, and the soft-fungal assemblages and their temporal dynamics were compared between these two sample types. Aquatic eDNA yielded approximately 1.5 times the operational taxonomic units (OTUs) compared to sporocarps and covered approximately half of the OTUs from sporocarp samples. Lineages that seldom form sporocarps or form inconspicuous sporocarps were successfully detected from aquatic eDNA. Although the OTU composition differed between sporocarp and aquatic eDNA, their temporal dynamics were similar, with both showing a 1-year periodicity. Aquatic eDNA provides insights into fungal diversity and temporal dynamics, but does not fully reflect terrestrial fungi diversity.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"67 ","pages":"Article 101311"},"PeriodicalIF":2.9,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1754504823000880/pdfft?md5=a82999876504a72f5374d492d50882d0&pid=1-s2.0-S1754504823000880-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138453955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symbiosis with endophyte leads to greater C accumulation in grassland soils 与内生菌共生导致草地土壤中碳积累量增大
IF 2.9 3区 环境科学与生态学 Q3 ECOLOGY Pub Date : 2023-11-27 DOI: 10.1016/j.funeco.2023.101301
Farshid Nourbakhsh

Epichloë coenophiala forms aboveground symbiotic relationships with tall fescue (Festuca arundinacea) and provides the host with better fitness. This study investigated the effects of endophyte symbiosis on carbon mineralization in soil. Two soils were amended with endophyte-infected (E+) or endophyte-free (E−) residues of two tall fescue genotypes. At the end of the experiment, CO2 evolution rates were monitored to quantify the mineralized carbon. The indices of carbon mineralization were significantly greater (LSD, P < 0.05) in the E−compared to E+ plant residue treated soils. Cellulose, hemicellulose, lignin contents, C:N and lignin:N ratios were significantly greater (LSD, P < 0.05) in soils with the E+ residues than in those with E residues. Additionally, the E+ plant residues consistently contained significantly less N (LSD, P < 0.05). Overall, it is concluded that grass-endophyte symbiosis results in the production of less biodegradable plant residues, in turn reducing the residue biodegradability and promoting greater C accumulation in the soils.

Epichloë coenophiala与高羊茅(Festuca arundinacea)形成地上共生关系,为寄主提供更好的适合度。研究了内生菌共生对土壤碳矿化的影响。用两种高羊茅基因型的内生菌感染(E+)或内生菌无(E−)残基对两种土壤进行改良。在实验结束时,监测CO2演化速率以量化矿化碳。碳矿化指数(LSD, P <与E+植物残茬处理土壤相比,E−处理土壤中E+含量为0.05)。纤维素、半纤维素、木质素含量、C:N和木质素:N比显著高于玉米(LSD、P <0.05), E+残基土壤比E−残基土壤的土壤养分含量高。此外,E+植物残留物中N (LSD)、P和lt含量持续显著降低;0.05)。综上所述,草内生菌共生导致植物残留物的可生物降解性降低,从而降低了残留物的可生物降解性,促进了土壤中C的积累。
{"title":"Symbiosis with endophyte leads to greater C accumulation in grassland soils","authors":"Farshid Nourbakhsh","doi":"10.1016/j.funeco.2023.101301","DOIUrl":"https://doi.org/10.1016/j.funeco.2023.101301","url":null,"abstract":"<div><p><em>Epichloë coenophiala</em> forms aboveground symbiotic relationships with tall fescue (<em>Festuca arundinacea</em>) and provides the host with better fitness. This study investigated the effects of endophyte symbiosis on carbon mineralization in soil. Two soils were amended with endophyte-infected (E+) or endophyte-free (E−) residues of two tall fescue genotypes. At the end of the experiment, CO<sub>2</sub> evolution rates were monitored to quantify the mineralized carbon. The indices of carbon mineralization were significantly greater (LSD, <em>P</em> &lt; 0.05) in the E−compared to E+ plant residue treated soils. Cellulose, hemicellulose, lignin contents, C:N and lignin:N ratios were significantly greater (LSD, <em>P</em> &lt; 0.05) in soils with the E<sup>+</sup> residues than in those with E<sup>−</sup> residues. Additionally, the E+ plant residues consistently contained significantly less N (LSD, <em>P</em> &lt; 0.05). Overall, it is concluded that grass-endophyte symbiosis results in the production of less biodegradable plant residues, in turn reducing the residue biodegradability and promoting greater C accumulation in the soils.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"67 ","pages":"Article 101301"},"PeriodicalIF":2.9,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1754504823000788/pdfft?md5=e0f82d756d5546f9a283a2330fed3b90&pid=1-s2.0-S1754504823000788-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138448063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyphal exploration strategies and habitat modification of an arbuscular mycorrhizal fungus in microengineered soil chips 微工程土壤芯片中丛枝菌根真菌菌丝探索策略及生境改造
IF 2.9 3区 环境科学与生态学 Q3 ECOLOGY Pub Date : 2023-11-24 DOI: 10.1016/j.funeco.2023.101302
Edith C. Hammer , Carlos Arellano-Caicedo , Paola Micaela Mafla-Endara , E. Toby Kiers , Tom Shimizu , Pelle Ohlsson , Kristin Aleklett

Arbuscular mycorrhizal fungi (AMF) are considered ecosystem engineers, but the interactions of their mycelium with their immediate surroundings are largely unknown. In this study, we used microfluidic chips, simulating artificial soil structures, to study foraging strategies and habitat modification of Rhizophagus irregularis symbiotically associated to carrot roots. AMF hyphae foraged over long distances in nutrient-void spaces, preferred straight over tortuous passages, anastomosed and showed strong inducement of branching when encountering obstacles. We measured bi-directional transport of cellular content inside active hyphae and documented strategic allocation of biomass within the mycelium via cytoplasm retraction from inefficient paths. R. irregularis modified pore-spaces in the chips by clogging pores with irregularly shaped spores. We suggest that studying AMF hyphal behaviour in spatial settings can explain phenomena reported at bulk scale such as AMF modification of water retention in soils. The use of microfluidic soil chips in AMF research opens up novel opportunities to study their ecophysiology and interactions with both biotic and abiotic factors.

丛枝菌根真菌(AMF)被认为是生态系统工程师,但其菌丝体与周围环境的相互作用在很大程度上是未知的。本研究利用微流控芯片模拟人工土壤结构,研究了与胡萝卜根共生的不规则根噬菌的觅食策略和生境改变。AMF菌丝在营养空隙中长距离觅食,倾向于直行而非曲行,在遇到障碍物时相互吻合并表现出强烈的分支诱导。我们测量了活性菌丝内细胞内容物的双向运输,并记录了生物量在菌丝内通过细胞质从低效途径收缩的战略分配。不规则孢子通过用不规则形状的孢子堵塞气孔来改变碎块中的孔隙空间。我们认为,研究AMF在空间环境中的菌丝行为可以解释大量报道的现象,如AMF对土壤保水能力的改变。微流控土壤芯片在AMF研究中的应用为研究其生态生理学及其与生物和非生物因素的相互作用提供了新的机会。
{"title":"Hyphal exploration strategies and habitat modification of an arbuscular mycorrhizal fungus in microengineered soil chips","authors":"Edith C. Hammer ,&nbsp;Carlos Arellano-Caicedo ,&nbsp;Paola Micaela Mafla-Endara ,&nbsp;E. Toby Kiers ,&nbsp;Tom Shimizu ,&nbsp;Pelle Ohlsson ,&nbsp;Kristin Aleklett","doi":"10.1016/j.funeco.2023.101302","DOIUrl":"https://doi.org/10.1016/j.funeco.2023.101302","url":null,"abstract":"<div><p>Arbuscular mycorrhizal fungi (AMF) are considered ecosystem engineers, but the interactions of their mycelium with their immediate surroundings are largely unknown. In this study, we used microfluidic chips, simulating artificial soil structures, to study foraging strategies and habitat modification of <em>Rhizophagus irregularis</em> symbiotically associated to carrot roots. AMF hyphae foraged over long distances in nutrient-void spaces, preferred straight over tortuous passages, anastomosed and showed strong inducement of branching when encountering obstacles. We measured bi-directional transport of cellular content inside active hyphae and documented strategic allocation of biomass within the mycelium via cytoplasm retraction from inefficient paths. <em>R. irregularis</em> modified pore-spaces in the chips by clogging pores with irregularly shaped spores. We suggest that studying AMF hyphal behaviour in spatial settings can explain phenomena reported at bulk scale such as AMF modification of water retention in soils. The use of microfluidic soil chips in AMF research opens up novel opportunities to study their ecophysiology and interactions with both biotic and abiotic factors.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"67 ","pages":"Article 101302"},"PeriodicalIF":2.9,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S175450482300079X/pdfft?md5=fc34e418d06b02ba020d2823be6a4088&pid=1-s2.0-S175450482300079X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138430917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Climatic shifts threaten alpine mycorrhizal communities above the treeline 气候变化威胁着高山树木线以上的菌根群落
IF 2.9 3区 环境科学与生态学 Q3 ECOLOGY Pub Date : 2023-11-17 DOI: 10.1016/j.funeco.2023.101300
R. Arraiano-Castilho , M.I. Bidartondo , T. Niskanen , I. Brunner , S. Zimmermann , B. Senn-Irlet , B. Frey , U. Peintner , T. Mrak , L.M. Suz

The European Alps are experiencing more than twice the increase in air temperature observed in the rest of the world. Thus, the treeline ecotone, and the unique habitats above it, offer a preview of drastic changes in plant and animal communities. However, our knowledge about climate change impacts on microbial diversity belowground is scarce. Here we investigate how upslope shift of the treeline ecotone, associated with changes in soil nutrient content, temperature and precipitation, will influence alpine ectomycorrhizal (EM) communities of Dryas octopetala, Bistorta vivipara and Salix herbacea across different habitat types in the Alps. We also assessed the degree of EM community taxonomic composition turnover in these habitats across three different climatic projections for 2040 and 2070. Our results indicate that the specialized EM fungal communities from snowbed habitats will be mostly negatively influenced under the current trajectory of environmental shifting predicted for the region. In contrast, fungi from the treeline ecotone, having wider niches, will be positively influenced by future climate and extend upwards. In addition, our predictions of EM community turnover for putative future climatic scenarios revealed high rates of turnover across the entire alpine region. This, together with glacier retreats, will aid colonization of alpine snowbed habitats by new EM plants and associated fungi, bringing additional pressures on local mycorrhizas and likely leading to fungal species extinctions.

欧洲阿尔卑斯山脉的气温上升幅度是世界其他地区的两倍多。因此,树线交错带及其上独特的栖息地为植物和动物群落的剧烈变化提供了一个预览。然而,我们对气候变化对地下微生物多样性的影响知之甚少。本文研究了在不同生境类型下,树线过渡带的上坡移动,以及土壤养分、温度和降水的变化对八爪木、活木和草本柳的外生菌根群落的影响。我们还评估了这些栖息地在2040年和2070年三种不同气候预测下的EM群落分类组成更替程度。我们的研究结果表明,在目前预测的该地区环境变化轨迹下,来自雪床栖息地的特殊EM真菌群落将主要受到负面影响。相比之下,来自树线过渡带的真菌具有更宽的生态位,将受到未来气候的积极影响并向上延伸。此外,我们对假定的未来气候情景下新兴市场群落更替的预测显示,整个高山地区的更替率很高。这与冰川退缩一起,将有助于新的EM植物和相关真菌在高山雪床栖息地的定植,给当地菌根带来额外的压力,并可能导致真菌物种灭绝。
{"title":"Climatic shifts threaten alpine mycorrhizal communities above the treeline","authors":"R. Arraiano-Castilho ,&nbsp;M.I. Bidartondo ,&nbsp;T. Niskanen ,&nbsp;I. Brunner ,&nbsp;S. Zimmermann ,&nbsp;B. Senn-Irlet ,&nbsp;B. Frey ,&nbsp;U. Peintner ,&nbsp;T. Mrak ,&nbsp;L.M. Suz","doi":"10.1016/j.funeco.2023.101300","DOIUrl":"https://doi.org/10.1016/j.funeco.2023.101300","url":null,"abstract":"<div><p>The European Alps are experiencing more than twice the increase in air temperature observed in the rest of the world. Thus, the treeline ecotone, and the unique habitats above it, offer a preview of drastic changes in plant and animal communities. However, our knowledge about climate change impacts on microbial diversity belowground is scarce. Here we investigate how upslope shift of the treeline ecotone, associated with changes in soil nutrient content, temperature and precipitation, will influence alpine ectomycorrhizal (EM) communities of <em>Dryas octopetala</em>, <em>Bistorta vivipara</em> and <em>Salix herbacea</em> across different habitat types in the Alps. We also assessed the degree of EM community taxonomic composition turnover in these habitats across three different climatic projections for 2040 and 2070. Our results indicate that the specialized EM fungal communities from snowbed habitats will be mostly negatively influenced under the current trajectory of environmental shifting predicted for the region. In contrast, fungi from the treeline ecotone, having wider niches, will be positively influenced by future climate and extend upwards. In addition, our predictions of EM community turnover for putative future climatic scenarios revealed high rates of turnover across the entire alpine region. This, together with glacier retreats, will aid colonization of alpine snowbed habitats by new EM plants and associated fungi, bringing additional pressures on local mycorrhizas and likely leading to fungal species extinctions.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"67 ","pages":"Article 101300"},"PeriodicalIF":2.9,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1754504823000776/pdfft?md5=348870f24bcf09d5d495b4378c5b6ab2&pid=1-s2.0-S1754504823000776-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138475015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nitrogen addition drives changes in arbuscular mycorrhizal fungal richness through changes in plant species richness in revegetated alpine grassland 氮添加通过植物物种丰富度的变化驱动高寒草地丛枝菌根真菌丰富度的变化
IF 2.9 3区 环境科学与生态学 Q3 ECOLOGY Pub Date : 2023-11-16 DOI: 10.1016/j.funeco.2023.101303
Guoxi Shi , Zhonghua Zhang , Li Ma , Yongjun Liu , Yibo Wang , Jean Yves Uwamungu , Huyuan Feng , Shikui Dong , Buqing Yao , Huakun Zhou

Nitrogen (N) addition not only promotes the restoration of degraded grasslands, but also threatens ecosystem functioning through the loss of species richness. Thus, a deep understanding of the effect of N addition on the richness of key organisms in restored grasslands is critical to sustainably restoring degraded grasslands. We conducted a 4-year N addition experiment to investigate the response of both plant and arbuscular mycorrhizal (AM) fungal richness to the combined addition of ammonium (Am) and nitrate (Ni) in a revegetated grassland rehabilitated (with a focus on restoration) on the Qinghai–Tibet Plateau. Both nitrogen forms were added at three levels: 0, 10, and 20 g N m−2 year−1. By itself, Ni addition of 20 g N m−2 year−1 (Ni20) reduced both plant and AM fungal richness, while Am addition of 20 g N m−2 year−1 (Am20) had no significant effect on them. However, when Ni and Am were combined, only Ni20 plus Am20 among all combinations reduced both plant and AM fungal richness. Both soil nitrate-N and plant species richness jointly drove changes in AM fungal richness, but plant species richness was the main factor affecting AM fungal richness under N addition. Our results suggest that minimizing the loss of AM fungi caused by plant species loss resulting from N addition is a key means to sustainably restore degraded grasslands.

氮素的添加不仅能促进退化草地的恢复,还会通过物种丰富度的丧失威胁生态系统的功能。因此,深入了解N添加对恢复草地关键生物丰富度的影响,对退化草地的可持续恢复至关重要。通过为期4年的N添加试验,研究了青藏高原恢复草地植物和丛枝菌根真菌丰富度对铵态氮和硝态氮联合添加的响应。两种形式的氮均以3个水平添加:0、10和20 g N m−2 year−1。添加20 g N m−2 year−1 (Ni20)的Ni本身降低了植物和AM真菌的丰富度,而添加20 g N m−2 year−1 (Am20)的AM对它们没有显著影响。然而,当Ni和Am组合时,所有组合中只有Ni20 + Am20降低了植物和Am的真菌丰富度。土壤硝态氮和植物物种丰富度共同驱动AM真菌丰富度的变化,但植物物种丰富度是N添加下影响AM真菌丰富度的主要因素。综上所述,尽量减少氮素对植物物种损失造成的AM真菌损失是实现退化草地可持续恢复的关键手段。
{"title":"Nitrogen addition drives changes in arbuscular mycorrhizal fungal richness through changes in plant species richness in revegetated alpine grassland","authors":"Guoxi Shi ,&nbsp;Zhonghua Zhang ,&nbsp;Li Ma ,&nbsp;Yongjun Liu ,&nbsp;Yibo Wang ,&nbsp;Jean Yves Uwamungu ,&nbsp;Huyuan Feng ,&nbsp;Shikui Dong ,&nbsp;Buqing Yao ,&nbsp;Huakun Zhou","doi":"10.1016/j.funeco.2023.101303","DOIUrl":"https://doi.org/10.1016/j.funeco.2023.101303","url":null,"abstract":"<div><p>Nitrogen (N) addition not only promotes the restoration of degraded grasslands, but also threatens ecosystem functioning through the loss of species richness. Thus, a deep understanding of the effect of N addition on the richness of key organisms in restored grasslands is critical to sustainably restoring degraded grasslands. We conducted a 4-year N addition experiment to investigate the response of both plant and arbuscular mycorrhizal (AM) fungal richness to the combined addition of ammonium (Am) and nitrate (Ni) in a revegetated grassland rehabilitated (with a focus on restoration) on the Qinghai–Tibet Plateau. Both nitrogen forms were added at three levels: 0, 10, and 20 g N m<sup>−2</sup> year<sup>−1</sup>. By itself, Ni addition of 20 g N m<sup>−2</sup> year<sup>−1</sup> (Ni20) reduced both plant and AM fungal richness, while Am addition of 20 g N m<sup>−2</sup> year<sup>−1</sup> (Am20) had no significant effect on them. However, when Ni and Am were combined, only Ni20 plus Am20 among all combinations reduced both plant and AM fungal richness. Both soil nitrate-N and plant species richness jointly drove changes in AM fungal richness, but plant species richness was the main factor affecting AM fungal richness under N addition. Our results suggest that minimizing the loss of AM fungi caused by plant species loss resulting from N addition is a key means to sustainably restore degraded grasslands.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"67 ","pages":"Article 101303"},"PeriodicalIF":2.9,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1754504823000806/pdfft?md5=58a8b9d8d1dd080ebecfd323ed9119c3&pid=1-s2.0-S1754504823000806-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138423061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Black pepper pathogen suppression: Divergent rhizosphere fungal communities of healthy and diseased plants yield new insights for orchard management in Vietnam 黑胡椒病原菌抑制:健康和患病植株的不同根际真菌群落为越南果园管理提供了新的见解
IF 2.9 3区 环境科学与生态学 Q3 ECOLOGY Pub Date : 2023-11-16 DOI: 10.1016/j.funeco.2023.101295
Chinedu C. Obieze , Paul B.L. George , Brian Boyle , Damase P. Khasa

Complex interactions involving soil physicochemical parameters and plant-associated microbial communities determine crop health. In Vietnam, this process is poorly understood in the context of black pepper production. Specifically, there is a dearth of information for improving the suppression of pathogenic fungi. Understanding the environmental dynamics influencing the distribution of these pathogens would facilitate the development and use of biological agents in black pepper pathogen management. Here, the molecular profiles of fungal communities from the rhizosphere of healthy and unhealthy Vietnamese black pepper orchards and their relationships were determined. Additionally, co-occurrence analyses with a previously constructed bacterial dataset identified taxa indicative of soil suppression. Alpha diversity of total fungi was influenced by only environmental factors, while that of arbuscular mycorrhizal fungi was more responsive to orchard health state. Glomus sp., Rhizophagus sp., Purpureocillium sp. and Plectosphaerella sp. were the most responsive genera to orchard health state. Potential fungal pathogens were more prevalent in the unhealthy orchards. Co-occurrence network analyses revealed that unhealthy orchards were less connected, had longer path distance and were missing putative pathogen-to-biocontrol interactions common in the healthy orchards. Soil electrical conductivity and potassium may be key factors in differentiating fungal communities of unhealthy from healthy orchards. This work highlights important microbial species and environmental considerations critical to improved black pepper management strategies.

涉及土壤理化参数和植物相关微生物群落的复杂相互作用决定了作物的健康。在越南,人们对黑胡椒生产过程知之甚少。具体来说,关于提高对致病真菌的抑制的信息缺乏。了解影响黑胡椒病原菌分布的环境动态,有助于黑胡椒病原菌生物制剂的开发和应用。本研究确定了健康和不健康越南黑胡椒果园根际真菌群落的分子特征及其相互关系。此外,与先前构建的细菌数据集的共生分析确定了指示土壤抑制的分类群。总真菌α多样性仅受环境因子的影响,而丛枝菌根真菌α多样性对果园健康状况的响应更大。Glomus sp.、Rhizophagus sp.、Purpureocillium sp.和Plectosphaerella sp.对果园健康状态的响应最大。潜在真菌病原菌在不健康果园中更为普遍。共现网络分析显示,不健康果园的联系较少,路径距离较长,并且缺少健康果园常见的假定的病原体-生物防治相互作用。土壤电导率和土壤钾可能是区分健康果园和不健康果园真菌群落的关键因素。这项工作强调了重要的微生物种类和环境因素对改进黑胡椒管理策略至关重要。
{"title":"Black pepper pathogen suppression: Divergent rhizosphere fungal communities of healthy and diseased plants yield new insights for orchard management in Vietnam","authors":"Chinedu C. Obieze ,&nbsp;Paul B.L. George ,&nbsp;Brian Boyle ,&nbsp;Damase P. Khasa","doi":"10.1016/j.funeco.2023.101295","DOIUrl":"https://doi.org/10.1016/j.funeco.2023.101295","url":null,"abstract":"<div><p><span><span><span>Complex interactions involving soil physicochemical parameters and plant-associated microbial communities<span> determine crop health. In Vietnam, this process is poorly understood in the context of black pepper production. Specifically, there is a dearth of information for improving the suppression of pathogenic fungi. Understanding the environmental dynamics influencing the distribution of these pathogens would facilitate the development and use of biological agents in black pepper pathogen management. Here, the molecular profiles of </span></span>fungal communities from the </span>rhizosphere<span> of healthy and unhealthy Vietnamese black pepper orchards and their relationships were determined. Additionally, co-occurrence analyses with a previously constructed bacterial dataset identified taxa indicative of soil suppression. Alpha diversity of total fungi was influenced by only environmental factors, while that of arbuscular mycorrhizal fungi was more responsive to orchard health state. </span></span><span><em>Glomus</em></span> sp., <span><em>Rhizophagus</em></span> sp., <span><em>Purpureocillium</em></span> sp. and <em>Plectosphaerella</em> sp. were the most responsive genera to orchard health state. Potential fungal pathogens were <em>more prevalent in the unhealthy orchards.</em><span> Co-occurrence network analyses revealed that unhealthy orchards were less connected, had longer path distance and were missing putative pathogen-to-biocontrol interactions common in the healthy orchards. Soil electrical conductivity and potassium may be key factors in differentiating fungal communities of unhealthy from healthy orchards. This work highlights important microbial species and environmental considerations critical to improved black pepper management strategies.</span></p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"66 ","pages":"Article 101295"},"PeriodicalIF":2.9,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134667519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recovery kinetics of epiphytic lichen diversity after dieback during a continuously wet season 连续湿季枯死后附生地衣多样性恢复动力学
IF 2.9 3区 环境科学与生态学 Q3 ECOLOGY Pub Date : 2023-11-16 DOI: 10.1016/j.funeco.2023.101299
Yngvar Gauslaa

Epiphytic lichens are considered sensitive indicators of environmental change. Excess water is known to depress their photosynthesis, but the effect of long-lasting rain on species richness of epiphytic lichens is rarely reported. By annually repeated records of macrolichen species richness on tree trunks over a period of 33 years that included one long rainy season in year 2000, a strong decline in macrolichen richness on tree trunks was detected after the unusually wet autumn. Afterwards, the lichen richness slowly recovered, but had not yet fully recovered 19 years after the dieback. Thereby, long rainy periods can cause lasting depression in epiphytic lichen richness, and continuous rain should be considered a possible threat to lichens in regions like northern Europe where global change predicts enhanced rainfall frequency.

附生地衣被认为是环境变化的敏感指标。过量的水分会抑制附生地衣的光合作用,但长期降雨对附生地衣物种丰富度的影响鲜有报道。通过对包括2000年一个长雨季在内的33年的树干上的大地衣物种丰富度的年度重复记录,发现在异常潮湿的秋季之后,树干上的大地衣物种丰富度明显下降。此后,地衣丰富度缓慢恢复,但在枯死后19年仍未完全恢复。因此,长时间的雨季会导致附生地衣丰富度的持续下降,在全球变化预测降雨频率增加的北欧等地区,应考虑持续降雨对地衣的可能威胁。
{"title":"Recovery kinetics of epiphytic lichen diversity after dieback during a continuously wet season","authors":"Yngvar Gauslaa","doi":"10.1016/j.funeco.2023.101299","DOIUrl":"https://doi.org/10.1016/j.funeco.2023.101299","url":null,"abstract":"<div><p>Epiphytic lichens are considered sensitive indicators of environmental change. Excess water is known to depress their photosynthesis, but the effect of long-lasting rain on species richness of epiphytic lichens is rarely reported. By annually repeated records of macrolichen species richness on tree trunks over a period of 33 years that included one long rainy season in year 2000, a strong decline in macrolichen richness on tree trunks was detected after the unusually wet autumn. Afterwards, the lichen richness slowly recovered, but had not yet fully recovered 19 years after the dieback. Thereby, long rainy periods can cause lasting depression in epiphytic lichen richness, and continuous rain should be considered a possible threat to lichens in regions like northern Europe where global change predicts enhanced rainfall frequency.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"66 ","pages":"Article 101299"},"PeriodicalIF":2.9,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1754504823000764/pdfft?md5=a4b025cb9590fd60ed0b4b771be281f5&pid=1-s2.0-S1754504823000764-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134667521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizing oomycete communities after windstorm disturbance in alpine Norway spruce forests: A metabarcoding approach 表征挪威高山云杉林风暴扰动后卵菌群落:元条形码方法
IF 2.9 3区 环境科学与生态学 Q3 ECOLOGY Pub Date : 2023-11-16 DOI: 10.1016/j.funeco.2023.101296
Davide Nardi , Duccio Migliorini , Cristiano Vernesi , Matteo Girardi , Alberto Santini

Understanding the effects of windstorm disturbances on soil communities is of pivotal importance. Oomycete communities host some species of plant pathogens, which might affect the forest regeneration after the disturbance. Here, we sampled a large area to compare three habitats (e.g., windfall, old clearings, and undisturbed spruce forest) along a gradient of elevation and slope. We used an eDNA metabarcoding approach targeting the rps10 gene. Our results showed that both wind disturbance and underlying topography can influence the richness of oomycetes. Higher richness of oomycetes was found in disturbed sites and high steepness. We did not find differences in community composition among the different habitat types at the landscape scale. However, we found significant differences among drainage basins at larger spatial scale. Our work contributed to the understanding of the oomycete communities in Norway spruce forests affected by wind disturbance.

了解风暴扰动对土壤群落的影响是至关重要的。卵菌群落携带一些植物病原菌,干扰后可能影响森林的更新。在这里,我们选取了大面积的样本,沿着海拔和坡度比较了三种栖息地(例如,意外收获、旧空地和未受干扰的云杉林)。我们使用了针对rps10基因的eDNA元条形码方法。结果表明,风扰动和下垫地形对卵菌的丰富度都有影响。受干扰的地点卵菌丰富度较高,且坡度较高。在景观尺度上,不同生境类型的群落组成没有差异。但在更大的空间尺度上,流域间存在显著差异。我们的工作有助于了解风干扰对挪威云杉林卵菌群落的影响。
{"title":"Characterizing oomycete communities after windstorm disturbance in alpine Norway spruce forests: A metabarcoding approach","authors":"Davide Nardi ,&nbsp;Duccio Migliorini ,&nbsp;Cristiano Vernesi ,&nbsp;Matteo Girardi ,&nbsp;Alberto Santini","doi":"10.1016/j.funeco.2023.101296","DOIUrl":"https://doi.org/10.1016/j.funeco.2023.101296","url":null,"abstract":"<div><p><span>Understanding the effects of windstorm disturbances on soil communities is of pivotal importance. Oomycete<span><span><span> communities host some species of plant pathogens<span>, which might affect the forest regeneration after the disturbance. Here, we sampled a large area to compare three habitats (e.g., windfall, old clearings, and undisturbed spruce forest) along a gradient of elevation and slope. We used an </span></span>eDNA </span>metabarcoding approach targeting the </span></span><em>rps10</em><span> gene. Our results showed that both wind disturbance and underlying topography can influence the richness of oomycetes. Higher richness of oomycetes was found in disturbed sites and high steepness. We did not find differences in community composition among the different habitat types at the landscape scale. However, we found significant differences among drainage basins at larger spatial scale. Our work contributed to the understanding of the oomycete communities in Norway spruce forests affected by wind disturbance.</span></p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"66 ","pages":"Article 101296"},"PeriodicalIF":2.9,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134836379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Climate change and plant-microbe interactions: Water-availability influences the effective specialization of a fungal pathogen 气候变化和植物-微生物的相互作用:水分有效性影响真菌病原体的有效特化
IF 2.9 3区 环境科学与生态学 Q3 ECOLOGY Pub Date : 2023-11-16 DOI: 10.1016/j.funeco.2023.101286
Jakob Joachin , Camryn Kritzell, Elliot Lagueux, Noah C. Luecke , Kerri M. Crawford

Through species-specific effects on plants, pathogens play a key role in structuring plant communities. A change in abiotic context, such as those mediated by climate change, may alter plant communities through changes in the specificity of plant-pathogen interactions. To test how water availability influenced the specificity of plant-pathogen interactions, we grew paired congeners of three native and three nonnative coastal prairie plant species with or without a pathogenic soil fungus, Fusarium incarnatum-equiseti species complex 6 b, under low, average, and high water treatments. Across the plant species tested, the Fusarium treatment had stronger negative and species-specific effects on plant biomass at high water availability than low water availability. If generalizable, our results suggest that stronger and more species-specific pathogen effects could drive changes in plant community composition in wetter conditions, but plant-pathogen interactions may be less important for plant community structure in drier conditions.

通过对植物的物种特异性作用,病原体在植物群落的构建中起着关键作用。非生物环境的变化,如由气候变化介导的变化,可能通过改变植物与病原体相互作用的特异性来改变植物群落。为了测试水分有效性如何影响植物-病原体相互作用的特异性,我们在低、平均和高水分处理下,培养了三种本地和三种非本地沿海草原植物物种的配对同源物,其中有或没有致病性土壤真菌,镰刀菌-马属植物复合体6b。在所有被测试的植物物种中,镰刀菌处理在高水分有效度下比低水分有效度下对植物生物量有更强的负性和物种特异性影响。如果可以推广,我们的研究结果表明,在湿润条件下,更强的物种特异性病原体效应可以驱动植物群落组成的变化,但在干燥条件下,植物-病原体相互作用对植物群落结构的影响可能不那么重要。
{"title":"Climate change and plant-microbe interactions: Water-availability influences the effective specialization of a fungal pathogen","authors":"Jakob Joachin ,&nbsp;Camryn Kritzell,&nbsp;Elliot Lagueux,&nbsp;Noah C. Luecke ,&nbsp;Kerri M. Crawford","doi":"10.1016/j.funeco.2023.101286","DOIUrl":"https://doi.org/10.1016/j.funeco.2023.101286","url":null,"abstract":"<div><p><span>Through species-specific effects on plants, pathogens play a key role in structuring plant communities. A change in abiotic context, such as those mediated by climate change, may alter plant communities through changes in the specificity of plant-pathogen interactions. To test how water availability influenced the specificity of plant-pathogen interactions, we grew paired congeners of three native and three nonnative coastal prairie plant species with or without a pathogenic soil fungus, </span><span><em>Fusarium</em><em> incarnatum-equiseti</em></span> species complex 6 b<em>,</em><span> under low, average, and high water treatments. Across the plant species tested, the </span><em>Fusarium</em> treatment had stronger negative and species-specific effects on plant biomass at high water availability than low water availability. If generalizable, our results suggest that stronger and more species-specific pathogen effects could drive changes in plant community composition in wetter conditions, but plant-pathogen interactions may be less important for plant community structure in drier conditions.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"66 ","pages":"Article 101286"},"PeriodicalIF":2.9,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134836378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Fungal Ecology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1