Oscar M. Contreras, R. Corzo, N. Saavedra, Z. Calderón
Fracture gradient estimates are fundamental to predict the pressure required to hydraulically fracture a formation. The main objective of this work is to propose a new methodology to calculate a fracture gradient value based on the application of two new different methods: Pseudo-Overburden Stress Method and Effective Stress Method. These new methods were obtained by modifying and improving two approaches proposed in the literature, putting them in a logic and systematic order, making possible their application to onshore wells, incorporating a new function to calculate calibration constants with the less associated uncertainty, and broadening their scope of application to involve formations at depths different from the initial calibration depths by including a new sub-process. Furthermore, they involve input field parameters: fracture gradient, vertical stress and pore pressure, which describe the geomechanical conditions of the formation. This methodology is validated in the Mirador Superior and Barco formations in Colombian Foothills. Results are compared to values obtained from MinifracTM field data. Application of this methodology allows prediction of reliable fracture gradient values.
{"title":"METHODOLOGY TO CALCULATE THE FRACTURE GRADIENT IN A TECTONICALLY ACTIVE ZONE: AN APPLICATION IN COLOMBIAN FOOTHILLS","authors":"Oscar M. Contreras, R. Corzo, N. Saavedra, Z. Calderón","doi":"10.29047/01225383.449","DOIUrl":"https://doi.org/10.29047/01225383.449","url":null,"abstract":"Fracture gradient estimates are fundamental to predict the pressure required to hydraulically fracture a formation. The main objective of this work is to propose a new methodology to calculate a fracture gradient value based on the application of two new different methods: Pseudo-Overburden Stress Method and Effective Stress Method. These new methods were obtained by modifying and improving two approaches proposed in the literature, putting them in a logic and systematic order, making possible their application to onshore wells, incorporating a new function to calculate calibration constants with the less associated uncertainty, and broadening their scope of application to involve formations at depths different from the initial calibration depths by including a new sub-process. Furthermore, they involve input field parameters: fracture gradient, vertical stress and pore pressure, which describe the geomechanical conditions of the formation. This methodology is validated in the Mirador Superior and Barco formations in Colombian Foothills. Results are compared to values obtained from MinifracTM field data. Application of this methodology allows prediction of reliable fracture gradient values.","PeriodicalId":55200,"journal":{"name":"Ct&f-Ciencia Tecnologia Y Futuro","volume":"64 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82333661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A new hybrid-composite material type for applications on hot surfaces (up to 250°C) was developed, in order to reduce the loss of energy, protect thermal insulation and improve the mechanical resistance and impermeability of the thermal insulation systems. This material is a hybrid-composite with organic polymer matrix mixed with small particles (smaller than 45 μm), like silica and organic fibers. The material may be applied directly on hot surfaces up to 250°C, but for higher temperatures it must be used on thermal insulates which can have lower thickness below 2 cm, saving material costs.
{"title":"MATERIALES COMPUESTOS REFORZADOS CON CERÁMICOS AMORFOS PARA APLICACIONES A ALTAS TEMPERATURAS","authors":"G. Latorre, F. Vargas","doi":"10.29047/01225383.456","DOIUrl":"https://doi.org/10.29047/01225383.456","url":null,"abstract":"A new hybrid-composite material type for applications on hot surfaces (up to 250°C) was developed, in order to reduce the loss of energy, protect thermal insulation and improve the mechanical resistance and impermeability of the thermal insulation systems. This material is a hybrid-composite with organic polymer matrix mixed with small particles (smaller than 45 μm), like silica and organic fibers. The material may be applied directly on hot surfaces up to 250°C, but for higher temperatures it must be used on thermal insulates which can have lower thickness below 2 cm, saving material costs.","PeriodicalId":55200,"journal":{"name":"Ct&f-Ciencia Tecnologia Y Futuro","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75248429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jhoao Villabona-Camacho, Sergio Orozco-Orozco, Zuly Calderón-Carrillo, N. Saavedra
Determination of Membrane Efficiency (ME) is a very useful tool in the study of the chemical component of wellbore stability since it is a variable input in chemical-elastic models (Lomba, Chenevert & Sharma, 2000). This article presents a novel methodology for the determination of ME using the Electrochemical Potential Test (EPT) in shale rocks. This method is based on the development of correlations with Ionic Selectivity (IS) values in presence of NaCl, KCl and CaCl2 at diverse solution concentrations. The correlation, not reported previously in the literature, depends on the type of salt used. The EPT is a generic test easily applied to any rock type from any well or basin. It is simpler and quicker than other tests used for the ME determination, like the Pressure Transmission Test (PTT). Correlations between ME and IS are applicable to any type of argillaceous rock. Samples of unperturbed plugs with diverse properties belonging to different Colombian formations were used. The results obtained with the application of the proposed methodology indicate that it is possible to obtain IS and ME values through EPT in any type of argillaceous rock by applying the developed correlations.
{"title":"ASSEMBLY OF A METHODOLOGY FOR DETERMINATION OF MEMBRANE EFFICIENCY IN PRESERVED SHALES","authors":"Jhoao Villabona-Camacho, Sergio Orozco-Orozco, Zuly Calderón-Carrillo, N. Saavedra","doi":"10.29047/01225383.450","DOIUrl":"https://doi.org/10.29047/01225383.450","url":null,"abstract":"Determination of Membrane Efficiency (ME) is a very useful tool in the study of the chemical component of wellbore stability since it is a variable input in chemical-elastic models (Lomba, Chenevert & Sharma, 2000). This article presents a novel methodology for the determination of ME using the Electrochemical Potential Test (EPT) in shale rocks. This method is based on the development of correlations with Ionic Selectivity (IS) values in presence of NaCl, KCl and CaCl2 at diverse solution concentrations. The correlation, not reported previously in the literature, depends on the type of salt used. The EPT is a generic test easily applied to any rock type from any well or basin. It is simpler and quicker than other tests used for the ME determination, like the Pressure Transmission Test (PTT). Correlations between ME and IS are applicable to any type of argillaceous rock. Samples of unperturbed plugs with diverse properties belonging to different Colombian formations were used. The results obtained with the application of the proposed methodology indicate that it is possible to obtain IS and ME values through EPT in any type of argillaceous rock by applying the developed correlations.","PeriodicalId":55200,"journal":{"name":"Ct&f-Ciencia Tecnologia Y Futuro","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80933108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The utilization of new renewable energy sources has been of special interest during the past years, seeking to decrease our dependence on fossil fuels and the corresponding environmental impact derived from their use. The combustion properties of a simulated gas composed of 60% methane and 40% carbon dioxide in volume are determined in this paper by means of calculation algorithms developed by the GASURE team, comparing them to pure methane properties. Furthermore, the effect of these properties on premixed flame characteristic phenomena is demonstrated. These properties were determined by theoretical estimations. The characteristic phenomena (laminar deflagration velocity, flame structure, radiation pattern) are determined experimentally. Results show a high effect of carbon dioxide in the combustion properties and characteristic parameters of a biogas premixed flame such as laminar deflagration velocity, flame structure and gas-methane exchangeability problems. The difference regarding flame structure and combustion properties lead to a difference in radiation pattern of the gases studied.
{"title":"COMPARISON OF COMBUSTION PROPERTIES OF SIMULATED BIOGAS AND METHANE","authors":"C. Díaz-González, A. Arrieta, J. Suárez","doi":"10.29047/01225383.459","DOIUrl":"https://doi.org/10.29047/01225383.459","url":null,"abstract":"The utilization of new renewable energy sources has been of special interest during the past years, seeking to decrease our dependence on fossil fuels and the corresponding environmental impact derived from their use. The combustion properties of a simulated gas composed of 60% methane and 40% carbon dioxide in volume are determined in this paper by means of calculation algorithms developed by the GASURE team, comparing them to pure methane properties. Furthermore, the effect of these properties on premixed flame characteristic phenomena is demonstrated. These properties were determined by theoretical estimations. The characteristic phenomena (laminar deflagration velocity, flame structure, radiation pattern) are determined experimentally. Results show a high effect of carbon dioxide in the combustion properties and characteristic parameters of a biogas premixed flame such as laminar deflagration velocity, flame structure and gas-methane exchangeability problems. The difference regarding flame structure and combustion properties lead to a difference in radiation pattern of the gases studied.","PeriodicalId":55200,"journal":{"name":"Ct&f-Ciencia Tecnologia Y Futuro","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79442437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
On pore pressure calculations it is common to obtain a profile in a wellbore, which is then extrapolated toward offset wells. This practice might generate mistakes on pore pressure measurements, since geological conditions may change from a wellbore to another, even into the same basin. Therefore, it is important to use other tools which allow engineers not only to detect and estimate in an indirect way overpressure zones, but also to keep a lateral tracking of possible changes that may affect those values in the different formations. Taking into account this situation, we applied a methodology that estimates formation pressure from 3D seismic velocities by using the Eaton method. First, we estimated formation pore pressure; then, we identified possible overpressure zones. Finally, those results obtained from seismic information were analyzed involving well logs and pore pressure tests, in order to compare real data with prediction based on seismic information from the Colombian foothill.
{"title":"ESTIMACIÓN DE PRESIÓN DE PORO A PARTIR DE VELOCIDADES SÍSMICAS.","authors":"Zayra Pérez, G. Ojeda, Darwin Mateus","doi":"10.29047/01225383.446","DOIUrl":"https://doi.org/10.29047/01225383.446","url":null,"abstract":"On pore pressure calculations it is common to obtain a profile in a wellbore, which is then extrapolated toward offset wells. This practice might generate mistakes on pore pressure measurements, since geological conditions may change from a wellbore to another, even into the same basin. Therefore, it is important to use other tools which allow engineers not only to detect and estimate in an indirect way overpressure zones, but also to keep a lateral tracking of possible changes that may affect those values in the different formations. Taking into account this situation, we applied a methodology that estimates formation pressure from 3D seismic velocities by using the Eaton method. First, we estimated formation pore pressure; then, we identified possible overpressure zones. Finally, those results obtained from seismic information were analyzed involving well logs and pore pressure tests, in order to compare real data with prediction based on seismic information from the Colombian foothill.","PeriodicalId":55200,"journal":{"name":"Ct&f-Ciencia Tecnologia Y Futuro","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82366903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Elizabeth Gómez, Clemencia Vargas, J. Lizcano
This study is based on the current scheme followed by a refinery with available Catalytic Cracking capacity to process new feedstocks such as Straight Run Naphtha and Naphthas from FCC. These feedstocks are of petrochemical interest to produce Ethane, Ethylene, Propylene, i-Butane, Toluene and Xylene. To evaluate the potential of these new streams versus the Cracking-charged Residues, it was performed a detailed chemical analysis on the structural groups in carbons [C1-C12] at the reactor product obtained in pilot plant. A catalyst with and without Propylene - Promoter Additive was used. This study analyzes the differences in the chemical composition of the feedstocks, relating them to the yield of each petrochemical product. Straight Run Naphthas with a high content of Naphthenes, and Paraffines n[C5-C12] and i[C7-C12] are selective to the production of i-Butane and Propane, while Naphthas from FCC with a high content of n[C5-C12]Olefins, i-Olefins, and Aromatics are more selective to Propylene, Toluene, and Xylene. Concerning Catalytic Cracking of Naphthas, the Additive has similar selectivity for all the petrochemical products, their yields increase by about one point with 4%wt of Additive, while in cracking of Residues, the Additive increases in three points Propylene yield, corresponding to a selectivity of 50% (ΔC3= / ΔLPG).
{"title":"PETROCHEMICAL PROMOTERS IN CATALYTIC CRACKING","authors":"Maria Elizabeth Gómez, Clemencia Vargas, J. Lizcano","doi":"10.29047/01225383.454","DOIUrl":"https://doi.org/10.29047/01225383.454","url":null,"abstract":"This study is based on the current scheme followed by a refinery with available Catalytic Cracking capacity to process new feedstocks such as Straight Run Naphtha and Naphthas from FCC. These feedstocks are of petrochemical interest to produce Ethane, Ethylene, Propylene, i-Butane, Toluene and Xylene. To evaluate the potential of these new streams versus the Cracking-charged Residues, it was performed a detailed chemical analysis on the structural groups in carbons [C1-C12] at the reactor product obtained in pilot plant. A catalyst with and without Propylene - Promoter Additive was used. This study analyzes the differences in the chemical composition of the feedstocks, relating them to the yield of each petrochemical product. Straight Run Naphthas with a high content of Naphthenes, and Paraffines n[C5-C12] and i[C7-C12] are selective to the production of i-Butane and Propane, while Naphthas from FCC with a high content of n[C5-C12]Olefins, i-Olefins, and Aromatics are more selective to Propylene, Toluene, and Xylene. Concerning Catalytic Cracking of Naphthas, the Additive has similar selectivity for all the petrochemical products, their yields increase by about one point with 4%wt of Additive, while in cracking of Residues, the Additive increases in three points Propylene yield, corresponding to a selectivity of 50% (ΔC3= / ΔLPG).","PeriodicalId":55200,"journal":{"name":"Ct&f-Ciencia Tecnologia Y Futuro","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85319002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Escobar, Matilde Montealegre-Madero, Daniel Carrillo-Moreno
Some well pressure tests conducted in channelized systems which result from either fluvial deposition or faulting, cannot be completely interpreted by conventional techniques, since variation in facies or reservoir width are not normally recognized yet in the oil literature. In this case, the corresponding equations traditionally used for single linear flow will provide inaccurate results. Therefore, they must be corrected. In this study, new equations to be used in conventional analysis for the linear flow (pseudo linear) regime formed during the acting of the anomaly - reservoir width or permeability - are introduced to the oil literature. The equations do not consider the simultaneous variation of both parameters. The proposed equations were validated by applying them to synthetic and field examples.
{"title":"STRAIGHT LINE METHODS FOR ESTIMATING PERMEABILITY OR WIDTH FOR A TWO-ZONE COMPOSITE CHANNELIZED RESERVOIR","authors":"F. Escobar, Matilde Montealegre-Madero, Daniel Carrillo-Moreno","doi":"10.29047/01225383.452","DOIUrl":"https://doi.org/10.29047/01225383.452","url":null,"abstract":"Some well pressure tests conducted in channelized systems which result from either fluvial deposition or faulting, cannot be completely interpreted by conventional techniques, since variation in facies or reservoir width are not normally recognized yet in the oil literature. In this case, the corresponding equations traditionally used for single linear flow will provide inaccurate results. Therefore, they must be corrected. In this study, new equations to be used in conventional analysis for the linear flow (pseudo linear) regime formed during the acting of the anomaly - reservoir width or permeability - are introduced to the oil literature. The equations do not consider the simultaneous variation of both parameters. The proposed equations were validated by applying them to synthetic and field examples.","PeriodicalId":55200,"journal":{"name":"Ct&f-Ciencia Tecnologia Y Futuro","volume":"99 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74866500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Escobar, J. Martínez, Matilde Montealegre-Madero
It is expected for naturally occurring formations that the transition period of flow from fissures to matrix takes place during the radial flow regime. However, depending upon the value of the interporosity flow parameter, this transition period can show up before or after the radial flow regime. First, in a heterogeneous formation which has been subjected to a hydraulic fracturing treatment, the transition period can interrupt either the bilinear or linear flow regime. Once the fluid inside the hydraulic fracture has been depleted, the natural fracture network will provide the necessary flux to the hydraulic fracture. Second, in an elongated formation, for interporosity flow parameters approximated lower than 1x10-6, the transition period takes place during the formation linear flow period. It is desirable, not only to appropriately identify these types of systems but also to complement the conventional analysis with the adequate expressions, to characterize such formations for a more comprehensive reservoir/well management. So far, the conventional methodology does not account for the equations for interpretation of pressure tests under the above two mentioned conditions. Currently, an interpretation study can only be achieved by non-linear regression analysis (simulation) which is obviously related to non-unique solutions especially when estimating reservoir limits and the naturally fractured parameters. Therefore, in this paper, we provide and verify the necessary mathematical expressions for interpretation of a vertical well test in both a hydraulically-fractured naturally fractured formation or an elongated closed heterogeneous reservoir. The equations presented in this paper could provide good initial guesses for the parameters to be used in a general nonlinear regression analysis procedure so that the non-uniqueness problem associated with nonlinear regression may be improved.
{"title":"CONVENTIONAL PRESSURE ANALYSIS FOR NATURALLY FRACTURED RESERVOIRS WITH TRANSITION PERIOD BEFORE AND AFTER THE RADIAL FLOW REGIME","authors":"F. Escobar, J. Martínez, Matilde Montealegre-Madero","doi":"10.29047/01225383.451","DOIUrl":"https://doi.org/10.29047/01225383.451","url":null,"abstract":"It is expected for naturally occurring formations that the transition period of flow from fissures to matrix takes place during the radial flow regime. However, depending upon the value of the interporosity flow parameter, this transition period can show up before or after the radial flow regime. First, in a heterogeneous formation which has been subjected to a hydraulic fracturing treatment, the transition period can interrupt either the bilinear or linear flow regime. Once the fluid inside the hydraulic fracture has been depleted, the natural fracture network will provide the necessary flux to the hydraulic fracture. Second, in an elongated formation, for interporosity flow parameters approximated lower than 1x10-6, the transition period takes place during the formation linear flow period. It is desirable, not only to appropriately identify these types of systems but also to complement the conventional analysis with the adequate expressions, to characterize such formations for a more comprehensive reservoir/well management. So far, the conventional methodology does not account for the equations for interpretation of pressure tests under the above two mentioned conditions. Currently, an interpretation study can only be achieved by non-linear regression analysis (simulation) which is obviously related to non-unique solutions especially when estimating reservoir limits and the naturally fractured parameters. Therefore, in this paper, we provide and verify the necessary mathematical expressions for interpretation of a vertical well test in both a hydraulically-fractured naturally fractured formation or an elongated closed heterogeneous reservoir. The equations presented in this paper could provide good initial guesses for the parameters to be used in a general nonlinear regression analysis procedure so that the non-uniqueness problem associated with nonlinear regression may be improved.","PeriodicalId":55200,"journal":{"name":"Ct&f-Ciencia Tecnologia Y Futuro","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78328924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Edgar Ricardo Pérez Carrillo, José Francisco Zapata Arango, N. Santos
Petroleum reservoirs under primary, secondary or tertiary recovery processes usually experience simultaneous flow of three fluids phases (oil, water and gas). Reports on some mathematical models for calculating three-phase relative permeability are available in the Literature. Nevertheless, many of these models were designed based on certain experimental conditions and reservoir rocks and fluids. Therefore, special care has to be taken when applying them to specific reservoirs. At the laboratory level, three-phase relative permeability can be calculated using experimental unsteady-state or steady state methodologies. This paper proposes an unsteady-state methodology to evaluate three-phase relative permeability using the equipment available at the petrophysical analysis Laboratory of the Instituto Colombiano del Petróleo (ICP) of Ecopetrol S.A. Improvements to the equipment were effected in order to achieve accuracy in the unsteady-state measurement of three-phase relative permeability. The target of improvements was directed toward to the attainment of two objectives:1) the modification of the equipment to obtain more reliable experimental data and 2) the appropriate interpretation of the data obtained. Special attention was given to the differential pressure and uncertainty measurement in the determination of fluid saturation in the rock samples. Three experiments for three-phase relative permeability were conducted using a sample A and reservoir rock from the Colombian Foothills. Fluid tests included the utilization of synthetic brine, mineral oil, reservoir crude oil and nitrogen. Two runs were conducted at the laboratory conditions while one run was conducted at reservoir conditions. Experimental results of these tests were compared using 16 mathematical models of three-phase relative permeability. For the three-phase relative permeability to oil, the best correlations between experimental data and tests using Blunt, Hustad Hasen, and Baker's models were obtained at oil saturations between 40% and 70%.
{"title":"A NEW METHOD FOR THE EXPERIMENTAL DETERMINATION OF THREE-PHASE RELATIVE PERMEABILITIES","authors":"Edgar Ricardo Pérez Carrillo, José Francisco Zapata Arango, N. Santos","doi":"10.29047/01225383.461","DOIUrl":"https://doi.org/10.29047/01225383.461","url":null,"abstract":"Petroleum reservoirs under primary, secondary or tertiary recovery processes usually experience simultaneous flow of three fluids phases (oil, water and gas). Reports on some mathematical models for calculating three-phase relative permeability are available in the Literature. Nevertheless, many of these models were designed based on certain experimental conditions and reservoir rocks and fluids. Therefore, special care has to be taken when applying them to specific reservoirs. At the laboratory level, three-phase relative permeability can be calculated using experimental unsteady-state or steady state methodologies. This paper proposes an unsteady-state methodology to evaluate three-phase relative permeability using the equipment available at the petrophysical analysis Laboratory of the Instituto Colombiano del Petróleo (ICP) of Ecopetrol S.A. Improvements to the equipment were effected in order to achieve accuracy in the unsteady-state measurement of three-phase relative permeability. The target of improvements was directed toward to the attainment of two objectives:1) the modification of the equipment to obtain more reliable experimental data and 2) the appropriate interpretation of the data obtained. Special attention was given to the differential pressure and uncertainty measurement in the determination of fluid saturation in the rock samples. Three experiments for three-phase relative permeability were conducted using a sample A and reservoir rock from the Colombian Foothills. Fluid tests included the utilization of synthetic brine, mineral oil, reservoir crude oil and nitrogen. Two runs were conducted at the laboratory conditions while one run was conducted at reservoir conditions. Experimental results of these tests were compared using 16 mathematical models of three-phase relative permeability. For the three-phase relative permeability to oil, the best correlations between experimental data and tests using Blunt, Hustad Hasen, and Baker's models were obtained at oil saturations between 40% and 70%.","PeriodicalId":55200,"journal":{"name":"Ct&f-Ciencia Tecnologia Y Futuro","volume":"80 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2008-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73672981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Héctor Julio Picón Hernández, Aristóbulo Centeno Hurtado, Edgar Francisco Pantoja Agreda
Amorphological classification of cokes from the Castilla and Jazmín Colombian crude oils was completed. These heavy-nature crude oils, after being fractioned during the refining stages, were physicochemically characterized and submitted to the coking process. The conclusions of this work are based on the characterization of the feedstock chemical composition according to the type of aromatic carbon. UV visible spectrophotometry and the corresponding micrographs obtained by a Scan Electron Microscope (SEM), in amplification intervals from 100X to 5000X for the samples of formed cokes, were analyzed. Results of this work allowed the determination of the morphological classification intervals in function of the polyaromatic compound concentration ratio (tetraromatic / triaromatic, and diaromatic / triaromatic) of the different coked feedstocks. Furthermore, high content of calcium and sulfur in the feedstocks promotes morphologies of the associated - shot type.
{"title":"MORPHOLOGICAL CLASSIFICATION OF COKE FORMED FROM THE CASTILLA AND JAZMÍN CRUDE OILS","authors":"Héctor Julio Picón Hernández, Aristóbulo Centeno Hurtado, Edgar Francisco Pantoja Agreda","doi":"10.29047/01225383.471","DOIUrl":"https://doi.org/10.29047/01225383.471","url":null,"abstract":"Amorphological classification of cokes from the Castilla and Jazmín Colombian crude oils was completed. These heavy-nature crude oils, after being fractioned during the refining stages, were physicochemically characterized and submitted to the coking process. The conclusions of this work are based on the characterization of the feedstock chemical composition according to the type of aromatic carbon. UV visible spectrophotometry and the corresponding micrographs obtained by a Scan Electron Microscope (SEM), in amplification intervals from 100X to 5000X for the samples of formed cokes, were analyzed. Results of this work allowed the determination of the morphological classification intervals in function of the polyaromatic compound concentration ratio (tetraromatic / triaromatic, and diaromatic / triaromatic) of the different coked feedstocks. Furthermore, high content of calcium and sulfur in the feedstocks promotes morphologies of the associated - shot type.","PeriodicalId":55200,"journal":{"name":"Ct&f-Ciencia Tecnologia Y Futuro","volume":"171 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2008-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73286547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}